Yu Rin-rin (2005) observed that recreational water illnesses range from “swimmer’s itch” to serious infections such as gastrointestinal disorder, diarrhoea, haemolytic uraemic syndrome, hepatitis, giardiasis, asthma, bladder cancer, etc. some of which could result in death. Infections frequently occur on abraded elbows and knees and result in localized lesions, often referred to as swimming pool granuloma (Collins et al., 1984). S. aureus is shed by bathers under all conditions of swimming (Robinton & Mood, 1966), and is believed to have resulted in skin rashes, wound infections, urinary tract infections, eye infections, otitis externa, impetigo and other infections (Calvert & Storey, 1988; Rivera & Adera, 1991). Coagulase-positive Staphylococcus strains of normal human flora have been found in chlorinated swimming pools (Rocheleau et al., 1986). Research findings show that most of these infections occur because many pools do not meet standards for pool water quality (CDC, 2002, 2003). Faecal contamination may be due to faeces released by bathers or a contaminated water source or direct animal contamination - e.g. birds and rodents (CDC, 2001a). Non-faecal human shedding such as vomit, mucus, saliva or skin in the swimming pool water or similar recreational water environments is a potential source of pathogenic organisms. Swimmers are usually endangered when they swallow contaminated pool water, inhale toxic disinfection by products such as trihalomethane (Nickmilder and Bernard, 2007) or by skin adsorption (Villacueva et al, 2007). The chance of infection through swallowing of pool water increases with the amount of water swallowed, however, researchers have not reached a consensus on the amount of water swallowed by an average swimmer. While Evans et al, 2001 and Alen et al (1982) reported that swimmers ingest as much as 100ml and 160ml/hr respectively, Shuval (1975) suggested 10ml of pool water per bathing day, and WHO (2003) suggested 20 to 50ml per hour. However, in a more recent study by Dufour et al (2006) using cyanuric acid as a marker, it was found that children ingest about twice (37ml) as much pool water as ingested by adults (16ml) in a bathing period of 45 minutes.

In order to reduce the incidence of infection, White (1972) recommended that swimming pool water should be of the quality of drinking water. This requirement is usually achieved by constantly subjecting the pool water to treatment processes such as coagulation, filtration, dilution with freshwater and disinfection by chlorination, ozonation and ultraviolet disinfection. While filtration helps trap organic matter such as hair, skin and dirt that are usually oxidized by chlorine, ozone or UV to nitrogen and CO₂ in addition to disinfection by-products (Villacueva et al, 2007); disinfection destroys pathogenic microorganisms that might have entered the pool via various sources. Properly operated filtration with coagulation can remove much of the pollution from the pool water resulting in lower levels of organisms, lower chlorine demand and less disinfection by-products (Bonnick, 2005). The absence of residual chlorine in pool water can be catastrophic, hence, the Iowa State Department for Public Health (2005) recommended that the pool should be closed if free chlorine falls below 0.6ppm. Pool water quality should be consistently monitored and any sign of serious contamination should be addressed by superchlorination (Villacueva et al, 2007). The consequence of neglect of swimming pool water qualities have been demonstrated by a number of researchers. Harley et al (2001) reported the presence of Adenoviruse as a result of inadequate chlorination and poor maintenance; Maunula et al (2004) isolated Norovirus from pool water as a result of chlorination failure; Mahony et al (1992) found Hepatitis A resulting from accidental faecal release; Kee et al (1994) found Echovirus 30 introduced by
vomit; Martone et al (1980) reported an outbreak of pharyngo-conjunctivitis when residual chlorine fell below 0.4mg/l; Blostein (1991) reported the presence of Shigella spp resulting from accidental discharge; Cransberg et al (1996) isolated E. coli O157 introduced by accidental faecal discharge; Greensmith et al (1988) and Galmes et al (2003) reported the presence of Giardia and Cryptosporidium respectively as a result of accidental faecal discharge. There are, no doubt, several other cases which might have gone unreported especially in developing countries.

METHODOLOGY

The swimming pool used for this study is the University of Nigeria, Nsukka swimming pool located at the north-eastern part of the university community close to the Health and Physical Education Department (6º52' N and 7º24' E, 70km North of Enugu, the capital of Enugu State). It was constructed and started its operation in 1961. The pool was designed for maximum number of 50 persons. The facilities constructed in the UNN swimming pool include: water reservoir, treatment plants and aeration system, shower rooms, toilets, toddlers pool, changing rooms, etc. However, facilities like the toddler pool, treatment plant and shower rooms are no longer in use due to technical faults. The pool has varying depths of 4feets, 6feets and 15feets. The dimensions of 4feets, 6feets and 15feets depth of the UNN swimming pool are 14.5m by 13.9m, 15m by 19.6m, and 12.7m by 9.7m respectively. The pool is used for instructional and recreational purposes and has only one lifeguard but hires part-time lifeguards when the need arises. The university also has an Olympic-sized swimming pool constructed in 2009, however, it is currently not being used by swimmers.

Preliminary Study: Firstly, questionnaires, observations and interviews were employed as means of ascertaining the necessity for the study. On this note, 50 questionnaires were distributed by hand to swimmers at the swimming pool. A return rate of 92% was recorded. Figure 1 shows that more than 70% of the swimmers think that the pool water is not clean while about 60% are dissatisfied with the general hygiene of the pool. Even though these respondents may not know standards for swimming pool, it is unlikely that that their personal yardsticks will be stricter than laid down standards. It was also found that 41% of the respondents would have preferred other pools if there were any but there is no other public pool in the Town. Also Figure 2 shows that 28% have body itch after swimming while 21% suffers from other forms of skin disease. This implies that either they were infected at the pool or from other sources in which case there are chances that they will contaminate the pool. It was also observed that 21% of the swimmers do not shower after swimming. This is because the shower room at the pool is no longer in use so these swimmers lose the urge or simply forget to shower by the time they get home hence, exposing themselves to infection. Figure 3 shows that 13% of respondents urinate in the pool while 30% spit in the pool. It is known that pathogens can be introduced into the pool via urine and saliva in addition to increasing the organic load of the pool so that some treatment chemicals are wasted in oxidizing the organic matter. Some (21%) of the swimmers believe that the pool has a foul smell. The foregoing is a strong sign that something is wrong with the pool and more so because the treatment facilities at the pool are faulty, chlorination is done manually, the pool water is replenished once a year and the pool water quality is not being monitored as recommended.
Water Sampling and Analyses: Samples were collected from the swimming pool during which an in-situ test for the dissolved oxygen and temperature were carried out. All the laboratory analyses were carried out in the public health laboratory of the Department of Civil Engineering, University of Nigeria, Nsukka. The samples used for the laboratory analysis were collected from the shallowest section (4ft) and deepest section (15ft) of the pool designated as the sample A and B respectively. The samples were collected between 8.00am – 12.00noon. All the pool water samples collected for laboratory analysis were analysed immediately they were brought into the sanitary laboratory. Sample which could not be analysed on the collection day were preserved in the refrigerator and analysed the following day. Bacteriological tests which include the plate count test, E-coli and total coliform tests were carried out first before other tests to avoid deterioration of the sample with time. Chlorine content was determined using iodometric method. Coliform test and E-coli test were performed using standard total coliform Most Probable Number (MPN) while COD (Chemical Oxygen Demand) test and suspended solid (SS) test were performed using the dichromate reflux method and gravimetric method respectively. The pH test was determined using glass electrode method while the plate count test was performed using the standard plate count empirical method.

RESULTS AND DISCUSSION
The complete breakdown of the treatment facilities at the pool has caused its management to resort to manual treatment. This is done by the lifeguard in the most uninformed way. He simply sprays the chemicals on the water surface in the evening and leaves them for swimmers to do the mixing the following day. In addition to this unhealthy approach, the treatment is both irregular and infrequent, and the pool water is replenished only once a year (usually in January).

The results of the physicochemical and the microbial analyses obtained for the three months period have been compared with laid down standards. Nigeria has no standard for swimming pool water; hence the World Health Organization Guidelines for Safe Recreational Water Environment (WHO, 2006) were used. The guidelines do not cover such physicochemical parameters as BOD, COD and dissolved oxygen, therefore, drinking water standards were used as a yardstick since it has been reported that swimmers swallow as much as 160ml per hour Alen et al (1982) and White (1972) recommended that swimming pool water quality should be of the same quality as drinking water. Generally, the pool is very poorly managed – all treatment facilities are spoilt and disinfection is done manually; the pool water is changed only once a year and its dilution comes from rainfall. No remarkable difference was seen between the results obtained from the 4ft and 15ft sections.

Figures 4 to 6 shows that, though the pool water has sufficient dissolved oxygen, the BOD and COD (as high as 80mg/l) are not in keeping with the standards. It is suspected the very high COD levels could be as a result of accumulation of disinfection by products produced by the reaction between chlorine and organic matter in the pool.
The Ineffectiveness of Manual... (Erdinger et al., 1997a). It can be seen from Figures 7 and 8 that, for the most part, there was no residual chlorine in the pool. Residual chlorine was only detected twice after the pool had been disinfected by management. After this period, the residual chlorine level quickly declined to zero. The rapid loss of chlorine immediately after treatment can be attributed to the consistently low pH and the fact that a part of the chlorine is used to oxidize the organic matter in the pool.

The preliminary study revealed that some of the swimmers urinate in the pool and since the pool is open to the atmosphere there is the possibility of organic pollution from the environment. The release of urine into swimming pools can cause substantial organic loading and has been estimated to average between 25 and 30 ml per bather (Gunkel & Jessen, 1988); and can be as high as 77.5 ml per bather...
Iowa State Department for Health, Division of Environmental Health (2009) considers a pH of less than 6.8 critical enough as to warrant closing the pool. The pH of the pool water was less than this critical value throughout the monitoring period except for once. The recommended temperature range to ensure swimmers’ comfort is 27°C – 30°C. The pool also failed in this aspect as the temperature was almost always below 27°C. The total plate count result was well below 200cfu/ml recommended by the standard but the coliform result and Ecoli results (not shown) are in violation of the standard that recommends less than 1 per 100ml. The presence of E. coli indicates poor pool management (Barrell et al, 2000) and deficiencies in the treatment of the swimming pool or inadequate protection of the source of untreated water (Borchardt and Walton, 1971).

REFERENCES

Beech, A. J., Diaz, R., Ordaz, C. And Palomeque, B. (1980) Nitrates, chlorates and trihalomethanes in swimming pool water. AJPH, 70: 1

http://www.cdc.gov/mmwr/PDF/wk/mm5222.pdf.

The Ineffectiveness of Manual......

The Iowa State Department for Health, Division of Environmental Health (2009). Swimming Pools and Spa Programme, Swimming Pool Rules. Des Moines, Iowa State, USA.

