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ABSTRACT: The objective of this paper is to present a mathematical model formulated to investigate the dynamics 

of human immunodeficiency virus (HIV). The disease free equilibrium of the model was found to be locally and 

globally asymptotically stable. The endemic equilibrium point exists and it was discovered that the endemic equilibrium 

point is globally asymptotically stable; suggestion was also made in the research in regards to protection during sexual 

intercourse especially in a sexually active population.  
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HIV is a virus that spread through body fluids (which 

majorly involves the exchange of body fluids during 

sexual intercourse) that affects specific cells of the 

immune system called CD4 cells or T cells. With 

time, so many of these cells are destroyed and the 

infection leads to Acquired Immunodeficiency 

Syndrome (AIDS) (Weiss, 1993). AIDS can be said 

to be a condition in humans in which progressive 

failure of the immune system allows for life 

threatening opportunistic infections and cancers to 

thrive (Weiss, 1993).  Without treatment, average 

survival time after infection with HIV is estimated to 

be 9 to 11 years depending on the HIV subtype and  

it usually overwhelms the immune system (UNAIDS, 

WHO 2007). 

 

 The stages of progression of HIV include; Acute 

infection which last within two to four weeks after 

infection. During this period, one may feel flu-like 

symptoms called acute retroviral syndrome (ARS) or 

primary HIV infection (CDC, 2015). One has the 

highest likelihood to spread HIV at this stage due to 

the amount of viral load in the blood. After this 

period, the immune system begins to build up again 

but it may not return to pre infection levels (CDC, 

2015). Clinical latency (inactivity or dormancy) 

sometimes called the asymptomatic HIV infection.  

At this stage, the viruses reproduce but at very low 

levels, there may be no symptoms which can last up 

to a decade. During this phase of infection, HIV is 

active within the lymph nodes (Burton et al, 2002). 

However, with anti-retroviral therapy (ART), latency 

can last for several decades and also reduces the 

tendency to transmit the infection. As time 

progresses, the viral load begins to increase and the 

CD4 cell count begins to drop. And symptoms may 

begin to appear (CDC, 2015). Acquired 

Immunodeficiency Syndrome (AIDS). This is the 

final stage. The immune system is completely 

damaged with the CD4 cells below 200 cells per 

1mm
3
 of blood, one becomes vulnerable to infections 

and infection related cancers called opportunistic 

illnesses with life expectancy of about 3years. When 

one is hit by a dangerous opportunistic illness, which 

is mainly determined by the prevalent infection in the 

geographical area of the patient, life expectancy 

drops to a year (CDC, 2015). HIV has no cure or 

vaccination. However treatment is available. Highly 

active retroviral therapy has been resoundingly 

successful at reducing morbidity and mortality of 

infected individuals (May and Ingle, 2011). Anderson 

et al (1986), May and Anderson (1987) analysed a 

simple deterministic HIV model, without treatment, 

using a bilinear incidence function. The population 

was divided into three classes; the susceptibles (S), 

the infected (I) and the AIDS patients, (A). They took 

the assumption that only those in the I class can 

spread the disease. The system below was used to 

describe the dynamics of the disease. Naresh et al 

(2008) formulated a model with a population of 

varying size and immigration of infectives. Despite 

the introduction of different control strategies 

including anti-retroviral therapy (ART), HIV remains 

a global health challenge in the world. In this paper, a 

mathematical model is formulated and analysed to 

investigate the transmission pattern of HIV in a 

sexually active population in order to understand and 
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reduce the threat posed by the disease. Also, global 

properties will be discussed. 

 

MATERIALS AND METHODS 
The total sexually active population at time t is 

denoted by �(�)and it is divided into 2 mutually 

exclusive compartments. Let  �(�) ��	 
�(�) be the 

two (2) compartments which represent the 

populations of susceptible individuals and individuals 

with human immunodeficiency virus (HIV). So that �(�) = �(�) + 
�(�). 

 

The susceptible population S(t) is generated by the 

recruitment of individuals (assumed susceptible) into 

the population at a rate Λ. Infectious interactions in 

the population are modeled using a standard 

incidence function typically written in the form 
���   

where the effective contact rate β increases linearly 

with the population size N. Susceptible individuals 

acquire HIV infection following effective contacts 

with people infected with HIV that is those in the 

H1(t) class at a rate given by �� = �� ���  

Where �� is the effective contact rate for the 

transmission. 

 

Mathematical Model Formulation: The population of 

individuals in the both classes has a mortality rate � 

and those in 
�  classes has a disease induced death 

rate 	��. Combining all the afore-mentioned 

assumptions and definitions, the model for the 

transmission of HIV in a sexually active population is 

given by the following system of differential 

equations (1) �� =  Λ − ��� − ��                                                     (1�) 

 
�� = ��� − (� + 	��)
�                                         (1�) 

 ��  is defined as �� = �����  and N = S + H1 

 

Data Acquisition and Analysis 

Consider the region�� = �(�, 
�)  ∈  ℝ!" : � ≤  %&'. It 

can be shown that the set D1 is positively invariant 

and a global attractor of all positive solution of the 

system (1). 

 

Lemma 1 The region D1 is positively invariant for the system (1) 

 

Proof: The rate of change of the total population is given as  �� = �� + 
�� = Λ − �(� + 
�) − 	��
� �� = Λ − �� − 	��
� 

By standard comparison theorem, �� ≤ Λ − �� 

So we have �� + �� ≤  Λ. Using the integrating factor method � = �()*&+ + %& ,1 − )*&+- 
If N0≤ 

%& then N ≤ 
%&  so, D1 is a positively invariant set under the flow described in (1). Hence, no solution path 

leaves through and boundary of D1. Also, since solution paths cannot leave D1, solutions remain non-negative 

for non-negative initial conditions. Solutions exist for all time t. In this region, the model (1) is said to be well 

posed mathematically and epidemiologically. 

 

Lemma 2 Let the initial data for the model (1) be S (0) > 0, H1 (0) > 0, then the solution S(t), H1(t) with 

positive initial data will remain positive for all time t > 0 

 

Proof: Let �� = ./01� > 0: �(�) > 0, 
�(�) > 04 > 0,  �� = Λ − ��� − �� = Λ − (�� + �)� 

To solve the ODE using the integrating factor method 5. 7 = )80 9�� + :; ��(<)	(<)+
( => 		� 9�(�))80 :�� + ; ��(<)	(<)+
( => = Λ 9)80 :�� + ; ��(<)	(<)+

( => 

�(��))80 :��� + ; ��(<)	(<)+�
( = = �(0) + ; Λ 9)80 :�? + ; ��(<)	(<)@

( => 	?+�
(  

�(��) = �(0))80 :−��� − ; ��(<)	(<)+�
( =

+ 9)80 :−��� − ; ��(<)	(<)+�
( => ; Λ 9)80 :�? + ; ��(<)	(<)@

( => 	? > 0+�
(  

For 
�� = ��� − (� + 	��)
� we have that 
�� ≥ −(� + 	��)
� 
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Similarly, we can show that H1 (t) > 0 

 

Local Stability of Disease-free Equilibrium (DFE): 

The model 1 has a disease-free equilibrium obtained 

by setting the right hand side of the model to zero 

given by  B((,�) = (�∗, 
�∗) = (Λ�  , 0) 

The stability of  B( is established using the next 

generation operator method on the system (1). Using 

the notation in Van den Driessche and Watmough 

(2002), Andrawus and Eguda(2017) the matrices F 

and V for the new infection terms and the remaining 

transfer terms respectively, are respectively given as 

 7 = (��),  D = (� + 	��) 

 

The spectral radius given byE(7D*�) = ��&!F�� = G� 

 

The next result follows from theorem 2 of Van den 

Driessche and Watmough (2002). 

 

Lemma 3 The DFE of model (1),B((,�) is locally 

asymptotically stable if RH< 1 and unstable if RH> 1 

The threshold quantity RH is the basic reproduction 

number for the HIV. Speaking biologically, Lemma 

(3) implies that HIV can be eliminated from the 

population when (RH< 1) if the initial sizes of the 

sub-population of the sub-model are in the region of 

attraction of B((,�). 
 

It was also established from Lemma (3) that if the 

DFE actually exists, it is locally asymptotically stable 

if and only if RH< 1. 

 

Existence and Local Stability of Endemic Equilibrium 

Point (EEP) of the Model: Let the EEP of model (1) 

be denoted by B(�,�) = (�∗∗, 
�∗∗). The equations in 1 

are solved in terms of the force of infection at steady 

state and they are given as  �∗∗ = %H�∗∗!&   ��	     
�∗∗ =H�∗∗I∗∗&!F��. So we have  �∗∗ = �∗∗ + 
�∗∗  JℎLMℎ NLO). �∗∗
= Λ(� + 	�� + ��∗∗)(� + 	��)(� + ��∗∗) 

Now ��∗∗ = ����∗∗�∗∗ =   �� − � − 	�� after substituting 
�∗∗  and  �∗∗ 

Therefore we have ��∗∗ + (� + 	��),1 − G�- = 0 

If RH> 1, then (µ + dH1)[1-RH] < 0. So, the system (1) 

has a unique endemic equilibrium if  

RH > 1. Also, for the case where dH1 = 0 and � = %&, 

we have ��∗∗ + �(1 − G�) 

We also have that a unique EEP exists for RH> 1; and 

if RH < 1, then only the DFE exists. 

 

Local Asymptotic Stability of EEP 

Jacobian of the system (1) evaluated at the EEP is given as PQB(�,�)R = S− ����∗∗T
�∗∗T − � − ��I∗∗T

�∗∗T
����∗∗T

�∗∗T ��I∗∗T
�∗∗T − � − 	��

U 

The determinant of PQB(�,�)R is given as �)� = &����∗∗T
�∗∗T + F������∗∗T

�∗∗T − &��I∗∗T
�∗∗T + �" + �	�� 

�)� = ��
�∗∗T
�∗∗T ,� + 	��- + �" + �	�� − ����∗∗T�∗∗T  

Using �∗∗ = �∗∗V�  we have that  �)� = ����∗∗T
�∗∗T ,� + 	��- + � ��V� W1 − �V�X 

Det> 0 if RH> 1 

Trace is given as follows  YZ =  − ����∗∗T
�∗∗T − � + ��I∗∗T

�∗∗T − � − 	�� 

With �∗∗ = �∗∗ + 
�∗∗, G� = ��&!F��   ��	 �∗∗ = �∗∗V� . We have YZ = −� − ��V� ,G� − 1- 
Trace < 0 if RH> 1 since all the parameters are positive. So we have that the EEP is locally asymptotically stable 

if RH> 1 

 

Global Stability of the DFE and EEP 
Global Stability of DFE: We can use the Lyapunov function approach to provide a sufficient condition for the 

global stability of the DFE when G� ≤ 1.  considering the model (1), we can claim the following 

Theorem 1: The DFE of the model (1) is globally asymptotically stable (GAS) in D1 whenever RH< 1 

Proof: Consider the Lyapunov function  D = 
� 

Clearly, V>0 except at the DFE. Differentiating V with respect to time, we have 
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 D� = 
�� = 
� [��I� − (� + 	��)\.  On �� , � ≤ � ≤ %&  ℎ)�M), I� ≤ 1. So we have    D� ≤ 
�(� + 	��)(G� − 1) 

with the equality only at the DFE. For G� ≤ 1, we have that D� ≤ 0 with that equality sign only limit set of each 

solution is contained in the largest invariant set for which 
� = 0, which is the singleton DFE. 

 

Global Stability of EEP 

Theorem 2: The unique endemic equilibrium of the model (1) is GAS in D1 whenever  RH> 1 

Proof: Consider the non-linear Lyapunov function (of the Goh-Volterra type) 7 = � − �∗∗ − �∗∗ ln ��∗∗ + 
� − 
�∗∗ − 
�∗∗ ln 
�
�∗∗ 7� = �� − �∗∗� �� + 
�� − 
�∗∗
� 
�� 

With � = %& , �� = �� ���  �)M_`). �a� = �� %& 
� = �b�
� Jℎ)Z) �b� = �� %& we have 

It can be shown from (1) that at steady state, Λ = �b�
�∗∗�∗∗ + ��∗∗ ��	 � + 	�� = �b��∗∗ 

After some rigorous arithmetic we have 7� = ��∗∗ [2 − �∗∗� − ��∗∗\ + �b�
�∗∗�∗∗ [2 − �∗∗� − ��∗∗\ 

Since arithmetic mean exceeds geometric mean, the following inequality  2 − I∗∗I − II∗∗ ≤ 0 will hold. 

Thus, we have that 7� ≤ 0 d_Z G� > 1.  Hence; F is a Lyapunov function in �� 

 

RESULTS AND DISCUSSION 
A mathematical model for the transmission dynamics 

of Human Immunodeficiency Virus (HIV) in a 

human population is designed and used to assess the 

impact of control strategies on the cases. The Disease 

free equilibrium and Endemic equilibrium point of 

the model (1) was seen to be both locally and 

globally asymptotically stable. 

 

Conclusions: Almost all population in the world is 

concerned about the rising prevalence of HIV which 

causes a lot of deaths in different communities. It still 

remains that there is no cure, neither a vaccine to 

control this epidemic. Almost all countries have 

increasingly recognized the need to find effective 

prevention and control strategies for the diseases and 

this is especially true in developing countries where 

treatment of HIV is almost always not available. This 

research work suggests the use of protection during 

sexual intercourse especially in active sexual 

population which will help reduce the number of 

cases. 
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