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ABSTRACT: This paper establishes sutlicient conditions for the controllability and null controflability of
lincar systems. "The aim is to use the variation of constant formula to deduce our controllability grammiam, by
cxploiting the propertics of the grammiam and the asymptotic stability of the free system, we achieved our

results. (JASEM

Differential equations, in general, arc an important
tool for harnessing into single system and analyzing
the inter-relationship between different components
which otherwise may continue to remain independent
on each other. It is known in Sebakhy and Bayoumi
(1973) that, in the study of economics, biology and
physiological systems as well as electromagnetic
systems composed of such subsystems interconnected
by hydraulic, mechanical and various other linkages,
one encounters phenomena which cannot be readily

evolution of the system in an indirect manner
(Artstein and Tadmore, 1982), where the decisions in
the control function are shifted, twisted or combined
before affecting the evolution, Models for systems
with delay in the control occur in the study of gas-
pressures bipropellant rocket systems, in population
models and in some complex economic systems efc.

The controllability of systems with delays in the
control has been studied by several authors see
(Balachandran, 1987; Balachandran and Daucr, 1996:

modeled unless relations involving time delays are Chukwu, 1979, Onwuatu, 1989). In  particular
admitted. Models for such systems can be controlled. Manitius and Olbrot (1972) studied the system
A delayed control on such systems will affect the

I P
B =) A,Ox( =)+ D B (u(t =) (1)
pex(} i=0
and gave sufficient conditions for the relative controllability of (1). Our interest, is to integrate the concept of
null controllability into a gencralized system with delay in state and control given by
x(1) = L{t,x,)+ C(OHu(t - h) (2) v
We shall give sufficient conditions for the null controllability with constraint of (2) when relative controllability
is assumed. Our results complement and extend known results.
BASIC NOTATIONS AND PRELIMINARIES

Let mand m be positive integers, £ the real line (—o0,90). We denote by £" the space of real 7- tupples

with the Euclidean norm denoted by H If Jis any interval of £ the usual Lebesgue space of square

integrable  (equivalent  class  of)  functions  from Jto E" will  be  denoted by
Ly(JLE"Y Ly (151, 1, E™) denotes the space of integrable functions from [£,,/,] to " . Let h>0 be
given, for functions x:[t, —h,t;] = E" | te[t,,(,], we use X, to denote the functions on
[—h,0] defined by x, () = x(1 + ) for 5 € [~h,0].

Consider the system

x(1)=L{t,x,)+COult —h)  3)
where

wepy= [ dnesp ) @ .

satisfied almost everywhere on [£,,f,]. The integral is in the Lebesgue- Sticltjes sense with respect
tos. L({,§) is continuous in {, lincar in ¢. 77(2,5) is an #2Xx 7 matrix function measurable in / and of
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bounded variation in ¢ on [—/h,0] for cach [ € [£,,4,]. C{t) isan nx m matrix assumed to be bounded

and measurable on [/,¢,]. The control function u(f) < E™, is assumed to be measurable and bounded on
every finite interval, Throughout the sequel, the controls of interest are,
B=L,([ty,t,,E"),U < L,([ty,t,],E™)a closed and bounded subset of B with zero in the interior

relative to B . ,
If XandY arc lincar spaces is a mapping, we shall use the symbols D(T), R(T)and N(T') to denote the

domain, range and null spaces of 7' respectively,

Definition 1 - The complete state of system (3) at time £ is given by z(1) = {x(¢),x, .1, }

Definition 2 - System (3) is relatively controllable on{¢,,¢,], if for every z(¢,) and every vectorx, € £,
there exist a control 1 € B, such that the corresponding trajectory of system (3) satisfics x(y=x,. If
system (3) is relatively controllable on each intcrval[ro,ll], {, > 1y, we say, system (3) is relatively
controllable. ‘

[y
Definition 3 - System (3) is said to be null controllable at ¢ =f,, if for any initial state {xo,x,“,u,”} on

[¢, = h,t, ], there exists an admissible control u(f) € B defined on [f,,f, — /] such that the response is
brought to the origin of " at ¢ = {,, using the control effort
_ju()y, on 1,1, —h]

uo)= {o , onlt, ki, |
see Scbakhy and Bayoumi (1973). 1t is null controllable - with constraints at { = {,, if for any initial state
(Xg>X,, 51, fon [1; = h,(,], there exists an admissible control u(/) € U, defined on [£y,¢, — ] such that
the response x(/) of system (3) satisfies x(#) = 0, using the control effort

u(tyeU , on|t,,t, —h)
u(t)_{o, on[t, —h,t]

Definition 4 - The domain -D of null controllability of system (33 is the set of all initial points x, € E" for

which the solution x(#) of system (3) with x(t,) = x, satisfies x(¢,) =0 € E" atsome f, using u € U

Definition 5 - An operator 7 : X — Y, where X andY are linear spaces, is said to be closed if for any
sequence ¥, € D(T') such that u, —> uand Tu, — v, ubelongsto D(T) and Tu =v.

The variation of parameter of system (3) for ¢ > 1, -+ h imply the existence of a unique absolutely continuous

solution x(7) of system (3), with initial complete state z(f,) of the form

x(£) = X(t,t5)x(ty) + J-/’ X(,)CSu(s + h)ds  (5)

where X (¢, 5) satisfies the equation
oX(1,s)
ot

almost everywhere

=L{L,X,(8)) t>s
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. 0, s—h<t<s
X(1,8) =
X (t,5) is called the fundamental matrix solution of the system
x(t)y=L(1,x,) (6) '

We now obtain a more convenient form of the solution (3) by expressing (5) as

x(t) = X(t,t, )[x(to) + j ::'_/IX(IO,S +h)C(s + hyu, (.s‘)ds]

I, t=y ([ = Identity matrix)

(N
~h ’
+ [ X (5 + WC(s + Ryu(s)ds
The solution x(¢) of system (3) at £ = ¢, (Klamka, 1980) becames
x(1) = X (1,1, )[x(/“) + j XUy + V(s 4+ by, (s)dsil :
o~h (8)

~h .
+ X5+ WC(s + hu(s)ds
We now define the 72X 12 controllability matrix of system (3), given by
W)= [ "X s+ O DX s+ MCG+ ] ©)

Where 7" denotes transpose

Definition 6 - The reachable set of system (3) at time {, using L, controls is the subsct of " given by
P(t,,t,) = { j " X(t,,s+mC(s +hu(s)ds: u e LZ}

and the constrai‘;ﬂ reachable set of system (3) is given by

R(t,.t,) = { J":' N A s 4+ INCs A+ a(ds u e U

The constraint reachable set with unspecified end time is given by
R(1,) = ’U’ R(1,.1,)
170
Definition 7 - System (3) is said to be proper in £” 0n [£y,1,] if
XU s+C(s+h)]=0
almost everywhere ¢ € [(,,4,], c € E" implies ¢ =0 . If system (3) is proper on [f,,t, + O] for each
0 >0, we say system (3) is proper at time /. If system (3) is proper on each interval [\to,t,] s 4y >, >0,

. . +}
we say the system is proper in £ -

NULL CONTROLLABILITY WITH CONSTRAINED CONTROLS
Lemma [ - The following arc equivalent

(i) W(t,,t,) is non singular for cach ¢
(i) System (3) is proper in I for cach interval [£05¢,]
(i) System (3) is relatively controllable on each interval [15:4/]

Proof - W(1,,1,) is non singular implies W(ty,t,) is pos4iu've definite, that is
"X, s+ C(s+ )] =0

almost everywhere on [lo,tll implies ¢ =0 . Therefore, (i) implies (if).

0y
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To prove the equivalence of (i) and (iii) let ¢ € £, and assume that
¢’ [X(/l 8+ h)C(s + h)] =0
almost everywhere telt,,!] for cach l, then

J“l *hc"'/\’(l. o8+ R)C(s + Mu(s)ds = ¢" ,[,“_h Xltrs +)C(s + Mu(s)ds =0

for u € L,. It follows from this that ¢ is orthogononal to theﬁsgt P(t,,t,). We assume that system (3) is
relatively controllable, then P(f,,t,) = E", so that ¢ = 0 , meaning that (iii) implies (ii). Conversely, assun?é
that system (3) is not controllable, so that P(7,,¢,) < E", for 1, > t,. Then, there exists ¢ # 0, ce E";
such that ¢’ P(t,,t,) = 0.

It follows that for all admissible control u € L2

0=c’ J'l" a (Xt + B)C(s + M) |u(s)ds = J:‘ et [X (1,5 + BYC (s + 1) Ju(s)ds
Hence

¢’ [X(I, ,s+m)C(s + h)] =0, almost everywhere £ € [1,,,], c# 0.
To show that (i) implies (ii)

1 =h -
We define the operator K : L, ([’o 1, £ ) — " by K(u) = L( X(t,s +h)C(s + hu(s)ds

If we assume that W (¢,,¢,) is singular, Then the symmetric operator KK’ = W(t,,t,) is positive definite.

But this holds, if and only if rank W(t,,t,)=n.

Theorem 1 - System (3) is proper on [/y,/, ] ifand only if 0 € int R(¢,,1,).
Proof - If R(f,,1,) is a closed and convex subset of £” (Klamka, 1976), then a point y, on the boundary of
R(#,,ty) implies that, there is a support plane TT of R(Z,,t,) through y,, thatis ¢’ (y — ¥,) <0 for each

Y€ R(t,,t,) where ¢ # 0 is an outward normal to IT. If u, is the control corresponding to y,, we have
\

ol -h gl -h
[ X o + MYC (s + Myu(s)ds < ¢ j X (4,5 + IDC(s + Ryuds
fo Ly
for cach u € U . Since U is a unit sphere, this last inequality holds for each # € U , if and only if
g Pl » f=h . .
" [ Xty s+ (s + myu(s)ds < [ e X8+ MC(s + Ryuds

0

< [ e X 5+ MC(s + ) |ds

fo
and  u,(f) =sgn CT(X(Z',,S+h)C(S+h))as Y, is on the boundary. Since we always have

0€ R(4,,6,). It 0 were not in the interior of R(t,,t,) then O is on the boundary, hence, from the

H-hy . )
foregoing, this implies 0 = J I ]cl X({,,s+h)C(s+ h)lds so that
‘o

¢’ [X(l, 8 +)C(s + h)] = 0 almost everywhere ¢ € [#,,¢,]. This by our definition implies that the system

is not proper since ¢’ #0. This completes the proof.
T

heorem 2 - System (3) is relatively controllable if and only if 0 €1int R(¢,,1,) foreach £, > 1
Proof - By lemma 1, system (3) is relatively controllable on [t()"tl 1.4, > {, il and only if, it s proper on

[¢5.1,]. Therefore, by theorem 1, system (3) is relatively controllable if and only if O e int R(¢,,¢,).

.
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Theorem 3 - If system (3) is relatively controllable on [fo,ll] for each ¢ >, then the domain null

controtlability of system (3) contains zero in its interior i

Proof - Assumc that system (3) is relatively controllable on [/, ], [, >, then by theorem 2,
[N

0 eintR(1,,t,), for each ¢, > ;. Since x =0 is a solution of system (3) with u =0, we have 0 € D.

Hence, If O g int D | then there exists a sequence X, C E" such that X, = 0as m—> o andno X, isin

D, thatis x, # 0. From (5), we have

0% (1) = X (11,10, () + [ X (0, 9)Cs)us + h)ds
) . def
forany £, >, andany u € U . Hence, for u =0, z,, = x(1,) = X(1,,t,)x,,(1,),
is not in R(¢),{,) forany {; > (. Therefore the sequence z, < £" is such that z, &€ R(t,t,),z, #0,

but z, —> 0 as m —> o0 . Therefore, 0 ¢ R(¢,,,) a contradiction. Hence, 0 & int ).

Theorem 4 - Assume
(i) System (3) is relatively controllable on [¢,, ,t,] for each t, > 1,

(i) The zero solution of system (6) is uniformly asyfnptoficajly stable, so that the solution of (6) satisfies
| x(1)] < k| x| e,

constraints.

a>0,k>0 are constants. Then ~ system (3) is null controllable with

Proof - By (i) and theorem 3, the domain D of null controllability of system (3) contains zero in its interior.
Therefore there exists a ball B) such that 0 € B, < D . By (ii), every solution of system (3) (with # = 0)
satisfies x(¢) > 0 as {—> 0. Hence at some £, <o (with # =0) x(tye B, D, for ¢, >1,.
Therefore, using / and x; = x(¢,) at ¥ = 0 as initial data there exists a u € U and some 1, >, such that

the solution x(¢) of system (3) satisfies x(f, ) = 0. Thus proving the theorem,

Lemma 2
System (3) is relatively controllable on [£y,¢, ] if and only if rank W (ly,1,)=n.
The proof is quite standard and simple, for similar proof see Klamka (1976 ).

Theorem 5 - System (3) is null controllable with constraints if
6] Rank W (¢y,t,) =n, for t, > (,
(i) The zero solution of (6) is uniformly asymptotically stable

Proof - Immediately from theorem 4 and lemma 1

Theorem 6 - The system (6) is null controllable with constraints if

® Rank W (1,,4,)=n, for t, >,
(i) I all the characteristics roots have negative real part \
Proof : Immediately. -

Conclusion: In this paper we have developed and proved sufficient conditions for the controllability and null
controllability of liner systems with delay in the state and control. That is, if the uncontrolled system is

asymptotically stable and the controlled system is relatively controllable then, the system is null controllable
with constraints.
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