JASEM ISSN 1119-8362
All rights reserved

Available Online at
http:// www bioline. org.br/ja

J. Appl. Sci. Environ. Mgt. 2005
Vol. 9(3) 87 - 89

Algorithm for Output of Floating-Point Numbers in Fixed-Point Form

NDEEKOR, CB

Maths /statistics/Computer Science Department, Faculty of Science, University of Port Harcourt
Nigeria. E-mail: clemtoes@yahoo.com

ABSTRACT: Input/output of data irems and information are very common operations performed on computer
systems. Various data types require special ways to perform these operations on them. Floating-point numbers are no
exceptions, Presented in this paper is an algorithm with which floating-point numbers can be converted to their
American Standard Code for Information Interchange (ASCII) equivalents in fixed-point form ready for output. The
algorithm is so written that it can be implemented easily and requires just the address of the buffer to contain the
ASCII equivalent and the number of fractional digits desired in the result. @JASEM

Input/output of data and results into/from the
computer system are very important operations that
are performed in most programs. The program
written in high level programming language
indirectly calls up input/output routines through
appropriate input/output statements to perform these
operations. The programmer in assembly language
has to directly call up routines to perform
input/output or writes his own routines (Brey, 1998;
Detmer, 1990 and Sanchez, 1990).

The algorithm presented enables the conversion of a
tloating-point number (in its internal form) to a string
of American Standard Code for Information
Interchange (ASCII) in fixed-point form ready for
output. The output may be done with an appropriate
service function (Norton, 1995). The user decides the
_number of fractional digits to appear in the result and
s provides a buffer that will hold the ASCII string. This
contrasts with what is obtained in existing output
routines where the user must specify the width as
well as number of fractional digits desired, if the
output is formatted. Invariably, the user is forced to
provide the number of positions for the whole-
number part of the output; but this is unnecessary
since the number of digits that make up the whole
number part of a floating-point number in fixed-point
form is always fixed.

The output from this algorithm is in the form
described by the Extended Backus Naur Form
(EBNF):

FP = [*-“]{Digit}".”{ Digit}.
Digit = ‘GO’?/?’117/"27’/73377/??4'?/77577/”6‘7/7,77’/7‘8'“/7‘,9?5.

where the minus sign is optional (appears for a
negative number). The first recurring Digit
represents the whole number part of the floating-
point number while the second represents the
fractional part. The number of digits that can appear
in the whole number as well as the fractional parts

*Corresponding: E-mail: clemtoes@yahoo.com

MATERIALS AND METHODS
Below is an algorithm that achieves the aims stated in
the introduction above.

Step!: Initialize appropriate variables

NDORM =0 -

ROUNDER =0.5
STRING_POINTER = First byte of Output Buffer
N = Supplied number of fractional digits desired
VALUE = Number to be converted to ASCII
characters
Step 2: Divide ROUNDER by 10.0 (N) times.
Step 3: Compare VALUE with 0.0

If (VALUE < 0.0) then

Output minus ‘-’ sign to bufter

Increment STRING-POINTER

Negate VALUE

Elseif (VALUE = 0.0) then

Go to step 6
Endif

Step 4: Add ROUNDER to VALUE

Step 5: Compare VALUE with 10.0
If (VALUE > = 10.0) then
Whilte (VALUE > = 10.0) do
Divide VALUE by 10.0
Increment NDORM
Endwhile
Elseif (VALUE < 1.0) then
While (VALUE < 1.0) do
Multiply VALUE by 10.0
Decrement NDORM
Endwhile
Endif.

Step 6: Compare NDORM and 0
If (NDORM < 0) then
Output ‘0’ to output buffer
Increment STRING-POINTER
Output *. to output buffer
Increment STRING-POINTER

are limited by restrictions in the floating-point
number data format adopted.

Algorithm for Output of Floating-Point .. 88

If (NDORM = -1)then

Negate NDORM

Decrement NDORM

Repeat untit NDORM is 0
Output ‘0" to output buffer

[ncrement STRING-POINTER
Decrement NDORM

End repeat

Else
Nagate NDORM

Endif

Repeat until N is 0

Obtain integer part (INT_PART) of VALUE
Convert INT_PART to ASCII equivalent
Store ASCII equivalent in output buffer
Increment STRING-POINTER

Subtract INT-PART from VALUE
‘Multiply VALUE by 10.0

Decrement N

End repeat
Else
COUNTERL =1

COUNTER2 = (N + NDORM + 1)
Repeat until COUNTER2 =0

o

If (COUNTER1 = NDORM + 2) then
Store *.” in output buffer
Increment STRING-POINTER
Endif
Obtain INT_PART of VALUE
Convert INT_PART to ASCII equivalent
Store ASCII equivalent in output buffer -
Increment STRING_POINTER
Subtract INT-PART from VALUE
Multiply VALUE by 10.0
Increment COUNTER1
Decrement COUNTER2
Endif
Step 7. Store terminating character ($) in bufter
Step 8: Stop.

RESULTS AND DISCUSSION

In the above algorithm, a ROUNDER is used to take
care of rounding error. The final value of
ROUNDER (originally set to 0.5) is determined by
the number of fractional digits desired by the user.

Step I initializes some variables. These variables and what they stand for are:

Number of divisions or multiplications done on the floating-point number

to be converted to make it have only one digit (that is non-zero) before

NDORM:
decimal point.
COUNTERI:
COUNTER2:
ROUNDER: As explained above.

STRING_POINTER:

Used in determining the position o f decimal point in the result.
Used in determining number of digits to be in the output.

-

A pointer to the buffer that will eontain the output.

N: This stands for the supplied desired number of fractional digits.

VALUE:

Step 2 divides ROUNDER by 10.0 as many times as
the number of fractional digits desired in the result.
This gives the eventual value of ROUNDER that is
used to round off the floating-point number to be
displayed.

In step 3, the floating-point number to be converted is
checked against 0.0 to know if it is a negative or
positive number. [f negative, minus sign is output to
the output butfer, STRING_POINTER incremented
and the original VALUE negated. However, if the
floating-point number is zero, control goes to step 6.

Step 4 adds ROUNDER to the floating-point number.

Step 5 compares VALUE (floating-point number to
be converted) against 10.0. If it is greater than or
equal to 10.0, it is repeatedly divided by 10.0 until
VALUE is less than 10.0. At each division, NDORM
is incremented by 1. However, if VALUE is not
greater than or equal to 10.0 and it is less than 0.1, it

Ndeekor, C B

The floating-point number to be converted

is repeatedly multiplied by 10.0 until it is greater than
or equal to 1.0. At each multiplication, NDORM is
decremented by 1 (Detmer, 1990).

In step 6, the digits of the floating-point number are
outputted to the output buffer. The value of NDORM
is tested against 0 to know if it is greater than or
equal to it. If it is not, the implication is that the
original floating-point number had leading zero digits
before and after decimal point (recall the continuous
multiplication by 10.0 in step 5). So the leading ‘0
is output to the output buffer followed by a point
(¢.). The next test and the actions that follow
(NDORM tested against -1) determine the number of
‘0’s” to be output before the first non-zero digit.
When NDORM is equal to -1, there will be no
leading non-zero digit after decimal point but if
NDORM is less than -1, then there will be as many as
(-NDORM -1) leading “0’s’ before the first non-zero
digit. After storing the leading zeros, other digits are

Algorithm for Output of Floating-Point... 89

stored according to the desired number of fractional
digits.

If NDORM is not less than 0, then the floating-point
number is output containing (NDORM + N + 1)
ASCII characters. The position of decimal point is at
(NDORM +2).

Step 7 stores the terminating character ($) while step
8 ends the algorithm.

Conclusion: In this work, an algorithm with which an
internal floating-point number can be converted to
fixed-point form requiring just the desired number of
fractional digits and the output buffer is developed.
The algorithm can be used to converted floating-point
numbers declared with the Institute of Electrical and
Electronic Engineers (IEEE) floating-point data
formats or any possible data format adopted. The
algorithm can also be implemented for customized
applications. The dollar sign is used to terminate the
obtained ASCII string.

Ndeekor, C B

Acknowlecigement: 1 am indepted to Dr O Owolabi
and Dr [. U. Mbeledogu for their contributions to the
research work that lead to this paper.

REFERENCES

Sanchez, J [1990}: Assembly language Tools And
Techniques For The IBM Microcomputers.
Prentice-Hall, Inc., New Jersey.

Detmer R C [1990]: Fundamentals Of Assembly
Language Programming Using The IBM PC And
Compatibles. D. C. Heath And Company,
Massachusetts.

Norton P [1993]: Programmer’s Guide To The IBM
PC. Microsoft Press, USA.

Brey B B {1998]: Embedded Controllers 80186,

80188, And 80386EX. Prentice-Hall, Inc., New

Jersey.

