

Full-text Available Online at https://www.ajol.info/index.php/jasem http://ww.bioline.org.br/ja

Characterization and Assessment of the Photo-catalytic Efficiency of Palladium/Silver Doped TiO₂Nanoparticles

¹AROH, AO; ¹GIMBA, CE; *¹OMONIYI, KI; ¹ABBA, H; ²YILLENG, MT

¹Department of Chemistry, AhmaduBello University, Zaria, Nigeria ²Department of Chemistry, Kaduna State University, Kaduna, Nigeria *Corresponding Author Email: israelflourish@yahoo.com

ABSTRACT: The effect of modified TiO₂with palladium, silver and co-dopant of palladium and silver on TiO₂with its photocatalytic efficiency were studied using X-ray diffraction (XRD) and Brunauer-Emmet –Teller (BET). The photocatalysts were prepared by sol immobilization method and characterized using XRD and BET techniques. The X-ray diffraction patterns of the dopants were found to be uniform with the standard P25 degussa TiO₂. From the peak formation of anatase and rutile phases, it was found that the Pd/TiO₂formed uniform matrix of anatase and rutile indicating that palladium ion disperses evenly on P25 degussa TiO₂. The peak formation on Ag/TiO₂ and Pd/AgTiO₂shows the same uniform distribution of silver and palladium ion, only that foreign peak were observed on the formation of anatase and rutile because of impurity on silver. The crystalline size of the catalyst and full width at half maximum (FWHM) were also calculated at different angles of diffraction. The BET shows that the photocatalystic swere mesoporous and is type IV isotherm. The high mesopore of the catalyst increases its photocatalytic activity, so also type IV isotherm. The BET analysis shows that the pore size distribution of the catalyst is between 2nm and 50nm which shows that the catalyst is mesoporous. It also gives high surface area with high volume and low pore size (crystalline size) which increases the photocatalytic efficiency. So co-doping of palladium and silver on TiO₂ can serve as a strategy for design of high performance photocalysts for environmental benefits.

DOI: https://dx.doi.org/10.4314/jasem.v22i9.01

Copyright: *Copyright* © 2018 Aroh *et al.* This is an open access article distributed under the Creative Commons Attribution License (CCL), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Dates: Received: 07 July 2018; Revised: 25August: 2018; Accepted: 23September 2018

Keywords: Brunauer-Emmet -Teller; co-doping; mesoporous; Pd/AgTiO2

A photo-catalyst is defined as a substance that is activated by the absorption of photon and helps to accelerate a reaction without being consumed(Abhang et al., 2011). Titanium (IV) oxide photo-catalyst is one of the revolutionized technologies in the field of environmental purification and energy generation, and has found extensive application in heterogeneous photo-catalysis for removing organic pollutants from air, water, soil and also in hydrogen production from photocatalytic water-splitting. Its use is popular because of its low cost, low toxicity, high chemical and thermal stability (Shon et al., 2007). The standard P25 degussa (Evonik) Aeroxide is a widely used titaniaphotocatalyst because of its relatively high levels of activity in many photo- catalytic reaction systems. It is not easy to find a photocatalyst showing activity higher than that of P25degusaTiO2 (Ohtani et al., 2010).

In recent years, photocatalytic degradation of organic compounds has been widely studied. One of the most important photocatalyst being frequently employed in this process is titania.TiO₂ occurs in three polymorphous states: anatase, rutile and brookite

(Jakub *et al.*, 2012). Unfortunately, only the anatase and to a lesser extent, rutile TiO_2 exhibit noticeable photo-activity under UV light. Anatase-titania is usually considered to be more active that rutile. Though, the latter is a thermodynamically stable phase, and reveals a lower band gap than the anatase (Silva *et al.*, 2009).

In addition, research on TiO₂ has attracted extensive interest because of its potential applications to photocatalysis, chemical sensors, solar cell electrodes and hydrogen storage materials (Kunst *et al.*, 2006). Notwithstanding, TiO₂photocatalyst is known to have some shortcomings in practical applications. One of these is that TiO₂ has activity when it is only under light of wavelength shorter than 388nm, because of its wide band gap (3.2eV) (Ge and Xu, 2006). The wide band gap limits the use of sunlight as excitation energy and the high rate of recombination of photo-generated electron hole pairs inTiO₂ results in low photocatalytic efficiency (Ahmed *et al.*, 2013).

Therefore, in order to surmount these two problems, many efforts have been made to modify TiO_2

nanoparticles. One of the promising approaches is based on the metal loading. Various metals such as Pt, Au, Pd, Rb and Ag have been used as electron acceptors to separate the photo-induced hole/electron pair and promote interfacial charge-transfer process (Wu and Chen, 2004).

Moreover, to achieve high photocatalytic degradation efficiency, nano-TiO₂ should be mesoporous and should exhibit high crystallinity and high specific area (Young *et al.*, 2018). The formation of a high percentage of the anatase phase, small crystallite size and high specific surface area of nano-doped-TiO₂ increases the photo catalytic efficiency (Yu *et al.*, 2007).

Shon *et al.* (2007) reported that doping of Ag with $TiO_2(600^{\circ}C)$ led to decreased photocatalytic size from 37nm to 19nm, while the specific surface area increased from $45m^2/g$ to $63m^2/g$ and the photocatalytic activity increased by 18%. In addition, optical characterization of Au doped TiO₂using UV-visible spectrophotometry showed a shift in optical absorption wavelength to visible region which may be attributed to the incorporation of gold nanoparticles (1-2%) into TiO₂ structure (Shon *et al.*, 2007). The kinetic study indicated that the rate of decomposition of phenol by Au/TiO₂ photocatalyst was improved by 2-2.3 times compared to the undoped TiO₂.

Au doped TiO₂ showed higher activity for the removal of dibenzothiophene (DBT) compared to pure titania, with the optimum Au loading being 1.5 wt % Au. The Au nanoparticles act as electron sink to enhance e/h^+ charge separation and produce number of oxidizing species, thereby increasing the reaction rate (Suzan and Selva, 2008).

Therefore, the aim of this work is to assess the effect of palladium and silver dopants on TiO_2 , and to compare the effects of mono- and bi-metal dopant on the photocatalytic efficiency of TiO_2 P25 Degussa.

MATERIALS AND METHOD

*Preparation of Ag/TiO*² *and Pd/TiO*²*catalyst:* The catalysts used were prepared using sol immobilization method as reported by Moses (2014), with a few modifications. Standard sol-immobilization method was utilized to prepare the Ag, Pd, Ag-Pd nano particles supported on TiO₂.The supported silver and silver-palladium colloids were prepared by using Poly vinyl alcohol(PVA) as protective ligand, aqueous solutions of 0.005mol/dm³PdCl₂ and 0.006mol/dm³ AgNO₃were prepared. A 1wt % aqueous PVA, (Aldrich, MW = 10000, 80% hydrolyzed) solution was freshly prepared just prior to synthesis of the metal

colloid. A representative protocol for preparing a catalyst comprising Ag-Pd nano-particles with 1 wt% total metal loading on a TiO₂was carried out as follows: To an aqueous $0.005 \text{mol/dm}^3\text{PdCl}_2$ and $0.006 \text{mol/dm}^3\text{AgNO}_3$ solution, 100 cm³ of PVA solution (1 wt%) was added (PVA/ (Ag and Pd)(w/w) = 1.2); a freshly prepared solution of NaBH₄ (0.1 M, NaBH₄/ (Ag andPd)(mol/mol) = 5) was then added to form a dark brown sol.

After 30 min of sol generation, the colloid was immobilized by adding TiO₂ (acidified to pH 1-2 by using tetraoxosulphate (VI) acid with vigorous stirring with a glass rod. The amount of support material required was calculated to have a total final metal loading of 1 wt %. After 2 h, the slurry was filtered and the catalyst washed thoroughly with distilled water (neutral mother liquors) and dried at 120°C overnight in an oven. Sol immobilized mono-metallic silver and palladium catalysts were prepared using similar procedure.

Characterization of Catalyst(Ge and Xu (2006): Xray diffraction measurement of Ag/TiO₂, Pd/TiO₂ and Ag/Pd-TiO₂ was performed at room temperature using a Rigakuutima IV X-ray diffraction meter with CU-K α & radiation (Philips) in England. The diffraction meter was operated at 40kn and 44 MA, scanned with a step size of 0.02° and a count time of 1°/min in the range of 2 θ from 10° to 80°.

The textural properties such as surface area pore size distribution of Ag/TiO₂, Pd/TiO₂ and Ag/Pd-TiO₂ were analyzed by using N₂physisorption using a NOVA 2200e (Quantachrome instrument, England) surface area and pore size analyzer. After the Ag/TiO₂, Pd/TiO₂ and Ag/Pd-TiO₂ were dried, they were degassed extensively at 100°C prior to the adsorption measurements, then the N₂ isotherm were obtained at 196°C.

The surface area of the synthesized materials was calculated by using the Brunaer-Emmett-Teller (BET) equation with a relative pressure ${}^{P}/{}_{P^{0}}$ range of 0.05-0.30. The pore volume was determined from the amount of N₂ adsorbed at the highest relative pressure ${}^{P}/{}_{P^{0}} = 0.99$, then the diameter and pore size distribution plots were designed by applying the Barrett-Joyner Halenda (BJH) model.

RESULTS AND DISCUSSION

X-Ray Diffractometer (XRD) spectra of P25 Degussa and 0.5%Pd/TiO₂ catalyst: From the result of the XRD spectra of the catalyst prepared using micro-emulsion (Figure 1 and 2). The XRD pattern of P25 degussa TiO₂ indicated that Pd loaded on TiO₂ surface almost has no influence on the crystalline structure of TiO₂when compared to the P25 Degussa TiO₂. Pd phase was not detected in the XRD pattern of Pd/TiO₂ powders, possibly because the Pd content in the TiO₂ surface is not enough to form clearly crystalline structure. The peak distribution of P25 Degussa TiO₂ standard and doped Pd/TiO2 showed the same peak formation. The shape of diffraction peaks of the crystal plane of P25 Degussa standard is quiet similar to those of Pd/TiO₂, the peak obtained for the two sample is similar to that of predominant formation of anatase reflex at $2\theta = 25.3^{\circ}$ with uniform distribution of anatase and rutile with more of sharp peak of anatase reported by Ohtani et al. (2010) [3]. Also, 0.5% Pd/TiO₂ had sharp peak at $2\theta = 25.3^{\circ}$ and P25 degussa has sharp peak at $2\theta = 25.3^{\circ}$ for anatase and the sharp peaks formation for P25 degussa and Pd/TiO₂ is $2\theta = 27.4^{\circ}$ for rutile indicating that there is uniform distribution of Pd ion on the catalyst (TiO₂). Amano *et al.* (2009) used pt deposited on p25 TiO₂ they found out that the peak formation of the anatase and rutile was the same with sharp peak formation of $2\theta = 25.3^{\circ}$ and 27.4° for anatase and rutile respectively.

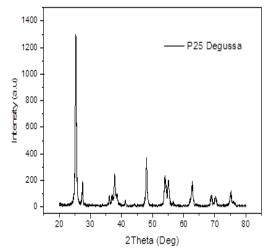
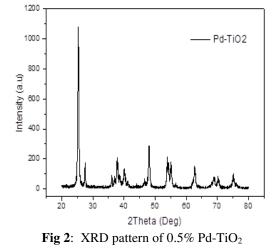
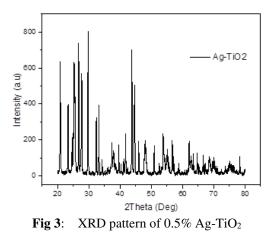




Fig 1: The XRD pattern of P25 degussa standard

Ahmed *et al.* (2013) prepared 0.05%, 0.1% and 0.3% of doped Pd on TiO₂ and compared it with the undopedTiO₂. He found out that XRD pattern of 0.05% and 0.1% palladium doped TiO₂ did not show any Pd phase even for 0.3% Pd doped TiO₂. This may reveal that Pd ions are uniformly dispersed in TiO₂ matrix. In the region of $2\theta^0 = 10^{0}$ -80° the shape of diffraction peaks of the crystal planes of pure TiO₂ is quite similar to those of Pd/TiO₂ of different Pd concentration. The anatase and rutile formation was at $2\theta = 25.3^{\circ}$ and 27.4° respectively.

X-Ray Diffractometer (XRD) spectra of 0.5%Ag/TiO₂ catalyst: From the result of the XRD spectra of catalyst prepared using micro-emulsion, shown in Figure 3, the XRD spectra of Ag/TiO_2 was accompanied with some foreign peaks that can be ascribed to the impure nature of the AgNO₃ precursor used for Ag. For Ag/TiO₂, the peak formation is $2\theta =$ 25.3[°] and 27.4[°] respectively for anatase and rutile phase only that you have to look very closely in order to read out the peak because of the foreign peak formed. The result also reveals that Ag ions are uniformly dispersed in TiO2. The obtained peak is similar result of predominantly formation of anatase reflex at $2\theta = 25.3^{\circ}$ with uniform distribution of anatase and rutile 27.4⁰ with more of sharp peak of anatase reported by Ohtani et al. (2010). This study supports the report that P25 Degussa TiO₂ is composed of anatase and rutile crystallites, the ratio being typically 70:30 or 80:20 (Ohtani et al., 2010).

X-Ray diffractometer (XRD) spectra of 0.5%Pd/Ag-TiO₂ catalyst: The XRD spectra of the photocatalyst prepared using micro-emulsion (Figure 4), has peak

AROH, AO; GIMBA, CE; OMONIYI, KI; ABBA, H; YILLENG, MT

similar to that of the mono metal Ag/TiO₂ with $2\theta = 25.3^{\circ}$ and 27.4° for anatase and rutile respectively. Contamination found in Ag/TiO₂ affects the peak formation of Pd/Ag- TiO₂, making it to give more foreign peaks. The result obtained is similar to that of predominant formation of anatase reflex at 20=25.3° with uniform distribution of anatase and rutile, though with more sharp peak of anatase. XRD pattern of Pd/TiO₂, Ag/TiO₂ and Ag/Pd -TiO₂ compared to P25 degussa TiO₂ standard indicated that the peak formation of the anatase and rutile were uniformly distributed. Peak formation of the anatase and rutile phase increases the photo- catalytic efficiency of doped Pd/TiO₂, Ag/TiO₂ and Ag/Pd -TiO₂ as more of anatase is formed, which is the reactive phase.

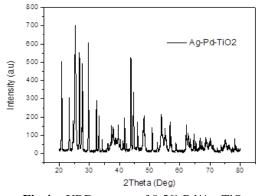


Fig 4: XRD pattern of 0.5% Pd/Ag-TiO₂

Table 1:XRD pattern of the crystalline size and full width at halfmaximum (FWHM) under different angles of diffraction for 0.5%Pd/TiO2

2 0	Crystalline size	FWHM
25.40	23.50	0.362
27.46	49.39	0.173
36.12	61.49	0.142
37.84	24.93	0.352
48.06	23.19	0.392
52.92	21.76	0.428
62.70	22.04	0.441

Table 2: XRD pattern of the crystalline size and full width at half maximum (FWHM) under different angles of diffraction for 0.5% Ag/TiO₂

2 0	Crystalline size	FWHM
25.207	20.85	0.408
31.97	24.62	0.352
37.78	16.78	0.523
48.01	28.05	0.324
57.77	31.66	0.294

Table 3:XRD pattern of the crystalline size and full width at halfmaximum (FWHM) under different angles of diffraction for 5%Pd/Ag-TiO2

20	Crystalline size	FWHM
23.23	75.13	0.113
32.357	86.43	0.100
43.77	76.46	0.117
44.60	51.27	0.175
62.16	52.68	0.184

From Tables 1, 2 and 3, the full width at half maximum (FWHM) was calculated using the formula shown in Figure 5. From the calculation, $Pd/Ag-TiO_2$ gives smaller crystalline size, so this supports its high photocatalytic activity.

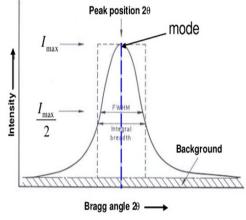


Fig 5: Full width at half maximum

BET Analysis Result: S_{BET}^{a} -surface area determined by applying Brunauer-Emmett-Teller (BET) equation to a relative pressure (P/P₀) range of 0.05 – 0.35 of the adsorption isotherm. PD^b-pore diameter was calculated from the Barrett-Joyner-Halenda (BJH) equation using the desorption isotherm.

Table 4: Textural properties of Ag-Pd-TiO₂ composite materials

(±1nm)
32.32
24.39
68.39

Brunauer-Emmett-Teller (BET) of 5% Pd-TiO₂ catalyst: Table 4 shows that Pd/Ag-TiO₂ has the highest surface area (52.85 m² g⁻¹), higher pore volume $(1.749 \text{ cm}^3\text{g}^{-1})$ and smallest pore diameter (1.322 nm)which favours high photocatalytic activities. From Figure 6 and 7, the pore size distribution of Pd/TiO₂, has the width to be between 2 nm and 50 nm. Therefore, this implies that Pd/TiO₂ is mesoporous, so the physisorption isotherm is type IV isotherm which favours high photocatalytic activity (Sing et al., 1984). Pd/TiO₂ has surface area of 49.66 m^2/g pore volume of 17.7m³/g and pore size of 13.8 nm signifying high surface area, high pore volume and small pore size implies high photocatalytic efficiency. In conformity with some other work, doping techniques promote the production of smaller crystallite nano-doped TiO₂

with resultant larger surface area, so as to prevent the problem of particle agglomeration (Asilturk *et al.*, 2009).

Brunauer-Emmett-Teller (BET) of 5% Pd/Ag-TiO₂ catalyst: Furthermore, Figure 8,9,10, and 11 indicated thatAg-TiO₂ and Pd/Ag-TiO₂ are mesoporous and is type IV isotherm. According to Sing et al. (1984), the pore widths of between 2 nm and 50 nm is called mesopores. From the plot of pore size distribution, the pore size declined between the ranges of 2 nm to 50 nm, whereas cluster in the plot indicated the pore size. According to Wu et al, (2004), transition metals dopants such as palladium, chromium and silver enhance the photo catalytic performance of nanodoped TiO₂. Among the transition metals used as dopants, Pd ion showed the strongest interaction with nano-TiO₂and improved its morphology most effectively.

From this study, when Ag is co-doped to form Pd/Ag TiO₂, this better improved the photocatalytic property to give larger surface area, high pore volume and small pore size which favours photo catalytic efficiency of the prepared catalyst Pd/Ag-TiO₂. Shon *et al.* (2007) reported that doping silver on TiO₂ decreases its crystalline size from 37 nm to 19 nm and specify surface area increased from 45 m²/g to 63 m²/g, thereby increasing its photocatalytic efficiency. The report of this study is similar to that of Kirilov *et al.*(2006) in which 0.5% Ag/TiO₂ has specific surface area of $47m^2/g$ and 0.5% Pd/TiO₂ has specific surface area of $51m^2/g$ showing that doped Pd/TiO₂.

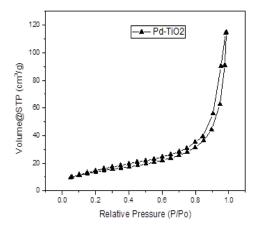


Fig 6: The Nitrogen adsorption-desorption Isotherm for 0.5% Pd/TiO₂

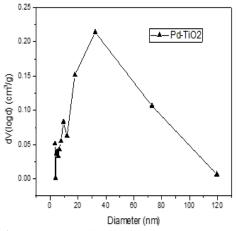


Fig 7: Pore size distribution for 0.5% Pd/TiO₂

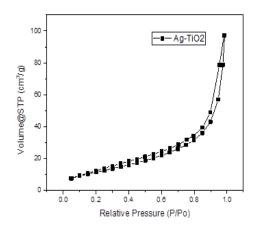


Fig 8: The Nitrogen adsorption-desorption Isotherm for 0.5% Ag/TiO₂

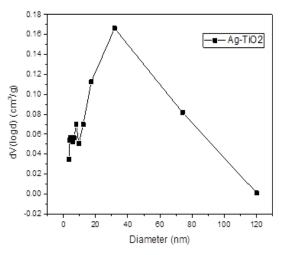


Fig 9: Pore size distribution for 0.5% Ag/TiO₂

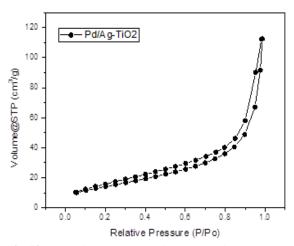


Fig 10: The Nitrogen adsorption-desorption Isotherm for 0.5% Pd/Ag-TiO_2 $\,$

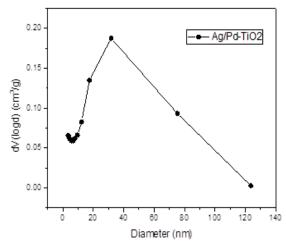


Fig 11: Pore size distribution for 0.5% Pd/Ag-TiO₂

Conclusion: The doping and codoping of Pd/TiO₂, Ag/TiO₂ and Ag/Pd/TiO₂ improve the photocatalytic activity of P25 degusa TiO₂ by production of more active phase (anatase) which favours photocatalysis. The BET analysis indicates that doping also helps to increase surface area of the catalyst, the pore volume and reduces the pore size thereby increasing photo catalytic activity. The XRD of Pd/TiO₂, Ag/TiO₂ and Ag/Pd/TiO₂ shows uniform dispersion of the transition metal dopants on TiO₂ matrix. There was high reactive phase of anatase and improvement in surface area, pore volume and crystalline size of doped TiO₂ for enhanced photocatalytic.

REFERENCES

Abhang, RM; Deepak, K; Karackar, SV (2011).Design of photocatalytic reactor for degradation of phenol in wastewater. *Intern. J. of Chem. Eng.* 2 (5): 116 -119.

- Ahmed, A; Abd, E; Mahmmoud, S; Abd El, S; Mohamed, M; El Sayed, B; Fawzy, HA (2013). Characterization and photo catalytic efficiency of palladium doped - TiO₂ nanoparticles. *Scientific Res.*, 4: 3-23.
- Amano, O; Prieto-Mahaney, OO; Terada, Y;
 Yasumoto, T; Shibayama, T; Ohtani, B (2009).
 Decahedral single crystalline particle of anatase TiO₂ with high photocatalytic activity. Chem. Matter, 21: 2601.
- Asilturk, M; Sayiikan, F; Arpa, and CE (2009). Effect of Fe³⁺ on doping to TiO₂ on the photocatalytic degradation of malachite green dye under UV and Vis Irradiation. *J. Photochem. Photobiol.* A 203 (1): 64-71.
- Ge, L; Xu, MX (2006). Influences of Pd doping on the visible light photo catalytic activities of LnVO₄-TiO₂ thin films. *Mat. Sc. and Eng.*, 3(3): 222-229.
- Jakub, O; Beata, T; Janusz, Z; Antoni, WM; Jacekprzepiorski, R (2012). A new method for preparation of rutile phase titania photoactive under visible light. *Catalysis Communic*.24: 5-10.
- Kirilov, M; Koumanova, B; Spasor, B; Petrov, L (2006). Effects of Ag and Pd modifications of TiO₂ on the photocatalytic degradation of P-Chlorophenol in aqueous solution. J. Univ. Chem. Tech. and Metall., 41 (3): 343 – 348.
- Kunst, M; Mochi, T; Wunsch, F; Tributsch, H (2006). Opto electronic properties of SNO₂/TiO₂ Junction. *Super Lattice Microstructure*, 39(4): 376-380.
- Moses, TY (2014). Strategies for photo chemical oxidation of phenol contaminated wastewater using TiO₂ based catalyst. Ph.D. Dissertation Submitted to the School of Post Graduate Studies, Ahmadu Bello University, Zaria, 2014.
- Ohtani, B; Prieto- Mahaney, OO; Li. D; Abe, R (2010). What is Degussa (Evonik) P25? Crystalline composition analysis reconstruction from isolated pure particles and photo catalytic activity test. J. Photo Chem. and Photo Biol., A: 179-182.
- Shon, HK; Phuntsho, S; Okour, Y; Cho, DL; Kim, JB; Na, S; Kim, JH (2007). Visible light responsive titanium dioxide (TiO₂). A review presented at the Faculty of Engineering University of Technology, Sydney, 500-757.

AROH, AO; GIMBA, CE; OMONIYI, KI; ABBA, H; YILLENG, MT

- Sing, KSW; Everett, DH; Haul, RAW; Moscow, L; Pierott, RA; Rouguerol, J; Siemenewska, T (1984). Catalysis. Int. Union of pure and Applied Chem.: Commission on Colloid and Surface Chemistry including Catalysis, 612: 600-678
- Silva, CG; Faria, JL (2009). Phtocatalysis. *Photo Chemical and Photo-Biological Sc.*, 8: 705-711.
- Suzan, K; Selva, RL; (2008). Photocatalytic degradation of benzothiophene and dibenzothiophene using supported gold nanoparticle. J. Saudi Chem. Soc., 21(3): 349-357.
- Wu, JCS; Chen, CH (2004). A visible light response vanadium doped titaniananocatalyst by sol gel

method. J. Photochem. And Photobiol. A163 (3): 509-515.

- Young, NT; Chung, LW; Abdurrahman, M (2018). An overview of the photo catalytic activity of nanodoped TiO₂in the degradation of organic pollutants. *Int. Scholarly Res. Notices*, available http//dx dio org/105402/2011/261219, accessed23/04/2018.
- Yu, H; Yu, J; Cheng, B; Lin, J (2007). Synthesis, characterization and photo catalytic activity of mesoporous titaniananorod/titanate nanotube composite. J. Hazardous Mat., 147 (2): 581-587.