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ABSTRACT: The global stability analysis represents a compound failure, mechanism which provides lower 

calculated factors of safety. In this research, the global stability analysis was used to propose a mathematically model 

of the transmission dynamics and control of Trypanosomiasis, known as African sleeping sickness. We obtained the 

Disease-free equilibrium state and present graphical profile of some of the compartments. 
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African Trypanosomiasis (AT) commonly called 

sleeping sickness is an infectious disease of both 

human beings and animals. It is a vector–borne 

parasitic disease caused by an extracellular protozoa 

belonging to the genus, trypanosome, species brucei. 

The parasites are transmitted to humans by tsetse fly 

(Glossina genus) bite which have acquired their 

infection from human beings or animals harboring 

the pathogenic parasite. World Health Organization 

(2013, 2015) reported that approximately 60 million 

people and 48 million cattle out of the estimated 172 

million cattle are at risk of sleeping sickness in 36 

countries in sub-Saharan Africa, In 1998 almost 

40,000 cases were reported, but estimates were that 

between 300,000 to 500,000 were undiagnosed and 

therefore not treated.17, 600 cases were reported in 

2004, below 10,000 cases in 2009, and it dropped to 

6,314 cases in 2012.The disease ranked 3rd  in 

economic importance (after malaria and 

schistosomiasis) of all vector-borne human diseases 

and it is also the second greatest cause of mortality in 

affected communities, countries such as Angola, the 

Democratic Republic of Congo and Sudan had 50 

percent occurrence in several of their villages. A 

number of mathematical models both simulation and 

analytical have been proposed to describe infectious 

diseases and African Trypanosomiasis. Otieno et al., 

(2014) describes an analytical model for 

trypanosomiasis in a cattle population. Damian et al., 

(2014) model the use of insecticide-treated cattle to 

control tsetse and trypanosome bruceirhodesiense, 

Madsen et al., (2012) described the effect of seasonal 

fluctuation in tsetse fly population and human 

African Trypanosomiasis, John et al.,(2012), model 

the Control of Trypanosomiasis using Trypanocides 

or Insecticide-Treated Livestock, Nannyonga et al., 

(2010) model on co-infection of malaria and 

trypanosomiasis. Akinwande (1995), Diekman (1990, 

2000), Abdulrahman (2014) formulated models on 

infectious diseases. In this study, we describe a 

model for trypanosomiasis in human and cattle 

populations, which incorporates stage progression, 

screening and treatment of the population. 

 

MODEL FORMULATION 

A mathematical model of the dynamics of 

Trypanosomiasis incorporating stage progression, 

screening and treatment of the population, as control 

strategies was formulated. The model involved three 

interacting populations, humans, vectors and 

livestock. The total populations are 

compartmentalized intonine epidemiological classes, 

with the following variables: Sh (t) = Susceptible 

humans at time t; Ih (t) = Infected humans first stage 

at time t; Im (t) = Infected humans second stage at 

time t; Rh (t) = Recovered humans at time t; Nv (t) = 

Non-carrier vectors at time t; Cv (t) = Carrier vectors 

at time t; Sl (t) = Susceptible livestock at time t; Il (t) 
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= Infected livestock at time t, and Rl (t) = Recovered 

livestock at time t. 

 

 
Fig 1: Schematic diagram of AT transmission dynamics and 

control. 

 

The mathematical equations of the model can be 

described by a system of ordinary differential 

equations given below; 

 

 
Where 

 
 

            
So that 

 
In a biological region-feasible region 

       
Where the parameters 

hΛ , vΛ and lΛ are the daily recruitment rates of 

human, vector and livestock respectively into  the  

susceptible population. α , 1αη , 2αη  and 3αη  are 

the effective transmission rates of AT from vector to 

human, human to vector, vector to livestock and 

livestock to vector while hµ , lµ and vµ , hδ , lδ  

and vδ  are the  natural and induced death rates for 

human, livestock and vector populations. hγ is 

recovery rate of human due to natural healing, mτ and 

lτ are treatment rates of infected human and infected 

livestock respectively. hω , lω -waning rate of 

temporal immunity for human and livestock, pε  is 

the efficacy of protective clothing, fε  efficacy of 

fumigation, pϕ human compliance with protective 

clothing and fϕ  rate of usage of fumigation. .
 

 

Disease-free Equilibrium E0: At disease –free 

equilibrium state there is no disease. Hence, the 

infected classes are zero. From (1-9) 

 

2 0h mI K Iσ ∗ ∗− =
  15

 
3 0h h m m hI I K Rγ τ∗ ∗ ∗+ − =          16
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3
5

(1 )
0v l

l

l

C S f f
K I

P

αη ε ϕ∗ ∗
∗

∗

−
− =  20 

6 0l l lI K Rτ ∗ ∗− =     21 

 

Where  

From (15),we have 

 

Substituting (23) into (16) yields 

 

Substituting (24) into (13) gives 

 

From (16) , (23)and (24) we have 

 

Let 

1 2 3 2

1 2 3

[ ( )](1 )h h m

h h

A K K K K p p

B K K K P

α ω γ τ σ ε ϕ

µ ∗

= − + − 


=  then, 

 

Put (27) into (24) gives 

 

Also by putting (19) into (17) gives 

 

From (20) 

 

Put (30) into (21) gives 

 

From (30), (19) becomes 
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Similarly substituting (27) into (23) gives  

 

Also (32) into (31) gives 

Also (32) into (30) yields 

Substituting and simplifying (17) 

 

From (18), we have 

 

Thus  

  

[

2 2
1 3 2 2 3 5 6

4

5 3 5 6 5 6

( )
0

( ) [( ) ]

h v l l v

v v l l l v l l
v

K K N K K P N
K

AC B P P K P K K C K K P

α η φσ α η η

αη ω τ µ

∗ ∗ ∗

∗ ∗ ∗ ∗ ∗
∗

Λ + Λ
+ − =

+ − +
    38 

Substituting (37) into (27),(28), (33),(34),(35) we obtain 

        

 0vC
∗ >

 
when 

 

Thus giving two different equilibrium state, DFE state where 

0h m l vI I I C
∗ ∗ ∗ ∗= = = =
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And endemic equilibrium where all the compartments are greater than zero 

Now consider (37), substituting into (13),(17),and (19),we have 

h
h

h

S
µ

∗ Λ
=

,           4

v
vN

K

∗ Λ
=

,         

l
l

l

S
µ

∗ Λ
=

 

Thus a DFE state of the model exists at the point 

 

stable if 1cR <
. 

Effective Reproduction number, Rc: We apply the next generation matrix operator as used by Diekmann and 

Heesterbeek (2000), and improved upon by Van de Driessche and Watmough (2002), we obtained the effective 

reproduction number Rc=FV-1 where F is the matrix of new infection terms and V is the matrix of the 

transmission terms formed from the coefficient of the infected classes (Im,Ih ,Il,Cv). 

1 1 2

3

0 0 (1 ) 0

0 0 0 0

0

0 0 (1 ) 0

p p

F

f f

α ε ϕ

α η φα η α η

α η ε ϕ

− 
 
 =
 
 

− 

and

1

1 2 21

4

5

1
0 0 0

1
0 0

1
0 0 0

1
0 0 0

k

K K K
V

K

K

α

−

 
 
 
 
 
 =
 
 
 
 
 
 

41  

4

1
1 1 1 2

1 1 2 2 5

3

4

(1 )
0 0 0

0 0 0 0

0

(1 )
0 0 0

p p

K

F V

K K K K K

f f

K

α ε ϕ
λ

λ

α η φ σ α η φ α η α η
λ

α η ε ϕ
λ

−

− 
− 

 
− 

 
=  + −
 
 

− −
  

42 

  From which we obtained the effective reproduction number as  

2 2
1 5 2 1 2 2 3

1 2 4 5

(1 )[ ] (1 )
c

K p p K K K f f
R

K K K K

α η ε ϕ φσ α η η ε ϕ− + + −
=

  

Global Stability of Disease-Free equilibrium,E0:  

Theorem 1: The DFE 
o

E of model equation (1) is globally asymptotically stable (GAS) in Ω  if 1cR <  and 

unstable if 1cR >
. 

Proof: - To establish the global stability of the DFE, the two conditions for the global stability of DFE as in 

Castillo-Chavel et al (2002), for Rc<1was used for the equations of model system (1-9). It is possible to re – 

write the model system (1-9) in the following way 

, 1

2

( )
DFE S

s
s i

i
i

dX
A X X A X

dt

dX
A X

dt


= − + 


=


43 
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Where
0 0 0 0 0( , , , , )Ts h h v l lX S R N S R=  denote the different compartments of non – infected individuals, and 

0 0 0 0( , , , )Ti h m v lX I I C I= denotes the compartments of different infected individuals. The disease – free 

equilibrium is denoted as ( , ).o
SE X O
∗= where ( ,0)o o o

S h l vX P P P
∗ = + +  

0 0
1

0 0
3

0
4

0 0

0
6

( ) . .

( , 0 )

h h h h

h h h h

s
s v v

l l l l l

l

R S

R i e K R

dX
F X K N

dt
R k S

K R

ω µ

µ ω

ω

Λ + −

− + −



= = Λ −


Λ + −


−

                         44 

a linear differential equation which on solving gives the following: 

 

0 0
0 0( ) ( )

( ) (0)
th

th h h h h h h
h h

h h

R R e
S t S e

µ
µω ω

µ µ

−
−Λ + Λ +

= − +   45 

0 0 3( ) (0)
k t

h hR t R e
−=                                                                           46 

4
0 0 4( ) (0)

4 4

k t
k tv v

v v
e

N t N e
−

−Λ Λ
= − +                                         47 

0 0
0 0( ) ( )

( ) (0)
k tl

k tl l l l l l l
l l

l l

R R e
S t S e

k k

ω ω −
−Λ + Λ +

= − +          48 

0 0 6( ) (0)
K t

l lR t R e
−=                                                                         49 

   Now from (10) gives 

0 0 0 0 0 0
( ) ( ) ( ) ( ) ( ) ( )h h v l lS t R t N t S t R t N t+ + + + → , as t → 0.regardless of the value of 

( ), ( ), ( ), ( ), ( )
o o o o o
h h v l lS o R o N o S o R o .Thus ( ,0)

o o o
S h l vX P P P
∗ = + + is globally and asymptotically 

stable. 

Next, Ḡ ),( is XX −= iAX  G ),( is XX
, 
 

 
It is obvious that this is an M-matrix (Metzler also called quasi-positive matrix whose diagonal  

Elementsare non-negative). The off diagonal elements of A are non-negative. 
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Then,

 

,

0

0
ˆ ( ) ( , )

0

0

T

s i s s iG X X AX G X X

 
 
 = − =
 
 
 

 52 

i.e. 

 

[ ],
ˆ ( ) 0 0 0 0

T
s iG X X =                   53 

 

Thus, ,
ˆ ( )s iG X X = 0,hence the proof is complete. 

 

Numerical Simulations: We give the numerical 

simulation for the model system (1-9) for the purpose 

of verifying some of the analytic results.  We give the 

numerical simulation for the model system (1) for the 

purpose of verifying some of the analytic results.

 

 

 

Fig 2:  Graph of infected human IA(t) against time t when 

0, 0.25,

0.50, 0.75

0.95

v m l v m l

v m l v m l

v m l

p f p f

p f p f

p f

ϕ ϕ δ τ τ ϕ ϕ δ τ τ

ϕ ϕ δ τ τ ϕ ϕ δ τ τ

ϕ ϕ δ τ τ

= = = = = = = = = =

= = = = = = = = = =

= = = = =

 Conclusion:  In this paper, a non-linear mathematical 

model of AT is developed and analyzed incorporating 

the treatment of the infectious second stage human 

population, basic reproduction number  oR was used 

to establish the conditions for   Global Stability of the 

Disease-Free Equilibrium (DFE) showing that the 

Disease-Free Equilibrium will be logically 

asymptotically stable if Ro < 1. Numerical simulation 

shows that the disease can be eradicated when both
 

preventive and treatment strategies are adopted. 

 

Fig 3: Graph of carrier vector at time t when 

 

 

Fig.4: Graph of infected livestock I(t) against time when  

0, 0.25

0.50, 0.75

v m l v m l

v m l v m l

p f p f

p f p f

ϕ ϕ δ τ τ ϕ ϕ δ τ τ

ϕ ϕ δ τ τ ϕ ϕ δ τ τ

= = = = = = = = = =

= = = = = = = = = =

 

 

Fig 5:  Graph of Carrier vector using combined strategies when 
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0.50, 0.75
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