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ABSTRACT. In this research work, we extend the classical SEIR model to accommodate the effect of zero, 
incomplete and complete treatment on the dynamics of the model. The basic reproduction number (��) of the model 
dynamics is obtained by using the next generation matrix approach. The disease free equilibrium point of the model 
is found to be locally asymptotically stable if �� < 1. A suitable Lyapunov function is constructed to determine the 
global stability of the disease free equilibrium point. Numerical simulation is carried out to determine the effect on 
the compliance to the treatment prescription. 
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The dynamics of infectious disease is best understood 
by their compartment structure (Brauer et al., 2010). 
The basic epidemiological compartment model 
divides the host population into susceptible, infectious 
and recovered population from which it can be 
extended to accommodate other compartments 
depending on the dynamics of the disease in question. 
Other components that can be added includes exposed, 
vaccinated, quarantined etc. Susceptible state is the 
state in which the host is not yet infected. Exposed 
state follows the susceptible state. The host is infected 
but cannot transmit the disease yet. Infectious state is 
the state where the host can transmit the disease while 
recovered state is the state where the host is no longer 
susceptible to the infection (Sangotola et al., 2019). 
The efficacy of treatment is one of the factors that 
determines if a disease will persist in a particular 
population (Okosun et al., 2011 and Zhang et al., 
2014).  Moreover, even with the availability of 
treatment, the attitude of the infectious population to 
the usage of the available treatment has an effect on 
the progression of the disease dynamics. Cai et al., 
(2013) rigorously analyzed a deterministic model with 
variable human population for malaria dynamics 
which allow transmission by recovered humans. The 
model analysis revealed the presence of backward 
bifurcation due to the presence of multiple endemic 
equilibrium. However, the backward bifurcation can 
be removed by replacing the standard incidence 
function with mass action incidence. 

Ronoh et al., (2016) formulated a mathematical model 
for tuberculosis with drug resistance in the first line of 
treatment. They extended the standard SEIRS model 
of tuberculosis to include drug resistance. The basic 
epidemiological quantities were derived. Numerical 
simulation was carried out to determine the extent of 
drug resistance. Fred Brauer (2017) also outlined some 
of the important aspects of the development of 
mathematical epidemiology for present and future 
analysis. 
 
Hence in this research work, we extend the classical 
SEIRS model to accommodate the effect of zero, 
incomplete and complete treatment on the dynamics 
on SEIR model. The basic epidemiological properties 
of the model is also determined.   
 

MATERIALS AND METHOD  
The model is divided into four compartments namely 
susceptible population denoted by �(�), exposed 
population denoted by �(�), infectious population 
denoted by �(�)and recovered population denoted by 
�(�). Susceptible population is increased as a result of 
migration or birth at rate Λ  and loss of immunity from 
recovered class at rate � . The exposed population is 
increased as a result of interaction between susceptible 
and infectious population at rate � and by incomplete 
treatment of infectious population at rate �. There is an 
increase in the infectious population as a result of 
progression from exposed class at rate σ  while the 
recovered class is increased as a result of complete 
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treatment at rate �. Every class is decreased by natural 
death at rate � while the infectious class is further 
decreased as a result of zero treatment or 
complications from the disease at rate �. The 
parameter � = (1 − �)� and � = �� where � is the 
treatment function and � is the probability that the 
treatment is effective. The value of the parameters 
used in the model formulation are approximated from 
most communicable diseases and it is given under the 
model simulation. The resulting system from the 
following assumptions is given as 
 
��

��
= Λ − ��� − �� + ��      (1) 

 
��

��
= ��� − (� + �)� + ��    (2) 

 
��

��
= σ E − (� + � + � + �)�   (3)  

 
��

��
= �� − (� + �)�               (4) 

 

RESULTS AND DISCUSSIONS 
Existence and positivity of solution: The region where 
the model is mathematically and epidemiologically 
and mathematically well posed is established. 
 
Theorem 1: (Existence and positivity of solution). 
The feasible region ℛ  defined by 

��(�), �(�), �(�), �(�) ∈ ��
� ∶  �(0 ) ≤ �(�) ≤

�

�
� 

with initial conditions �(0 ) ≥ 0 , �(0 ) ≥ 0 , �(0 ) ≥
0 , �(0 ) ≥ 0  is positive invariant for system(1) − (4 ). 
 
Proof: The total population size is given by �(�) =
�(�) + �(�) + �(�) + �(�) 
 

�� 

��
= Λ − �� − �� 

 
���  

��
 ≤ Λ − �� 

 
Solving above, we have 

0 ≤ �(�) ≤ � �(0 )� � �� +
Λ

�
 (1 − � � �� )�  

 As � → ∞ , 0 ≤ �(�) ≤
�

�
. If �(0 ) ≤

�

�
 �ℎ ��  �(�) ≤

�

�
. Hence, 

�(0 ) ≤ �(�) ≤
Λ

�
 

 
Thus, ℛ  is a positivity invariant set under the model 
described by (1) − (4 ). 
 

Disease-free equilibrium point: The disease free 
equilibrium point is the point where there is no disease 
in the population. Hence it lies at the point  

� � = �
Λ

�
, 0 ,0 ,0 �  

 
Basic reproduction number: The basic reproductive 
number is the mean number of secondary infections 
caused by an infectious individual in an entirely 
susceptible population. The next generation matrix 
approach by Driessche and Watmough (2002) is 
applied. From the infectious stages � and �, we can 
create a vector ℱ  that represents new infections and �  
that represents outflows from the model equations 
(Padmanabhan et al.,  2017). Hence, 
 

ℱ = �
���

0
�  and   � = �

(� + �)� − ��

(� + � + � + �)�  − σ E
�  

 
Next, we compute the Jacobian F from ℱ  and V from 
�  at the disease free equilibrium point. They are given 
by 
 

F = �
0

��

�

0 0
�  and  V = �

(� + �) − �

− � (� + � + � + �)
�  

 
The basic reproduction ��is given by � (� �� � ) where 
�  is the spectral radius. The basic reproduction number 
is thus given by 
 

�� =
βΛ �

�[(� + �)(� + � + � + �) − ��]
 

 
Theorem 2: (Local stability of disease-free 
equilibrium). The disease-free equilibrium of the 
system (1) − (4 ) is locally asymptotically stable if 
�� < 1.  
 
Proof: The Jacobian matrix evaluated at the disease-
free is given by 
 
�(� �)

=

⎝

⎜
⎜
⎜
⎛

− � 0 −
�Λ

�
�

0 − (� + �)
�Λ

�
+ � 0

0 � − (� + � + � + �) 0

0 0 � − (� + �)⎠

⎟
⎟
⎟
⎞

 

 
There are four roots corresponding to the Jacobian 
above. Two of the roots are − �,  and − (� + �) while 
the other roots can be obtained from the characteristic 
equation of the sub matrix given below. 
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�� (� �) = �
− (� + �)

�Λ

�
+ �

� − (� + � + � + �)

�  

 
The remaining eigenvalues are negative if trace of 
�� (� �) is negative and determinant of �� (� �) is 
positive. Trace of �� (� �) is negative. Hence, the 

determinant is (� + �)(� + � + � + �) − �
� �

�
+ �� � 

which is equivalent to the following equation: 
 

[(� + �)(� + � + � + �) − ��](1 − ��) 
 
The determinant is positive provided that �� < 1. 
 
Hence the disease-free equilibrium of the system 
(1) − (4 ) is locally asymptotically stable if �� < 1.  
 
Theorem 3: (Global stability of disease-free 
equilibrium). The disease-free equilibrium of the 
system (1) − (4 ) is globally asymptotically stable if 
�� < 1.  
 
Proof: Consider the Lyapunov function: 
 
� = �� + (� + �)� 
 

�̇ = ��̇ + ��̇̇  
 

Substituting and simplifying the expressions for �̇ and 
� ̇gives  
 

�̇
= [(� + �)(� + � + � + �)

− ��]� �
�β S

[(� + �)(� + � + � + �) − ��]
− 1� 

 

Since � =
�

�
≤ �, it follows that 

 

�̇ ≤ [(� + �)(� + � + � + �) − ��]�[�� − 1] 
 

Thus �̇ ≤ 0  with equality when � = 0 . Hence by 
LaSlle’s extension to Lyapunov principle, the limit set 
for each solution is contained in the largest invariant 
set for which � = 0 . 
 
Numerical Simulation: Numerical simulation is 
carried out to determine the effect of the treatment on 
the exposed and infectious class. The following 
estimated values which are approximated from most 
communicable diseases are used for model simulation: 
� = 0 .12, Λ = 0 .002 , � = 0 .00005 , � =  0 .5, � =
0 .143 , � = 0 .1, � = 0 .0025 ,�(0 ) = 20  and �(0 ) =
20 , . We can project the dynamics of treatment by 

varying � on the interval (0 ,0 .5) and (0 .5,1). It is 
observed that irrespective of the value of �, there will 
be a rapid increase in both classes but the exposed 
class increased much more. The exposed class reaches 
its peak faster and its curve flattens faster. It is better 
to keep � in the range (0 .5,1) to avoid an epidemic. 

 
Fig 1: Numerical simulation between the exposed and 
infectious class 
 
Conclusion: In this paper, we presented a SEIRS 
mathematical model with varying treatment dynamics. 
The basic reproduction number of the model is 
determined. The local and global stability of the 
disease free equilibrium points are determined. The 
implications of treatment variations is also examined. 
 

REFERENCES 
Brauer, F (2017). Mathematical epidemiology: Past, 

present, and future. Infectious Disease Modelling 
2: 113-127. 

 
Brauer, F; Chavez, C (2010). Mathematical Models in 

Population Biology and Epidemiology, Springer 
New York. 

 
Brauer, F; Chavez, C (2013). Mathematical Models 

for Communicable Diseases, Society for 
Industrial and Applied Mathematics Philadelphia. 

 
Cai, L; Lashari AA; Jung, IH; Okosun, KO; Seo, YI  

(2013). Mathemtical Analysis of a Malaria Model 
with partial immunity to reinfection. Hindawi 
Publishing Corporation Abstract and Applied 
Analysis Article ID 405258: 1-17.  

 
Driessche, P; Watmough, J (2002). Reproduction 

numbers and subthreshold endemic equilibria for 



Classical Evaluation of Zero, Incomplete and Complete Treatment…..                                                           978 

SANGOTOLA, AO; OYEWOLE, O 

compartmental models of disease transmission. 
Math.  Biosci. 180 (1): 29–48. 

 
Ma, Z; Zhou, Y; Wu J (2009). Modelling and 

dynamics of infected disease, World Scientics 
Publishing Co Pte Ltd 5 Toh TuchLink, 
Singapore.  

 
Okosun, KO; Makinde, DO (2011). Modelling the 

impact of drug resistance in malaria transmission 
and its optimal control analysis. International J. 
Phys. Sci. 6 (28): 6479-6487. 

 
Padmanabhan, P; Seshaiyer, P (2017). Computational 

and Mathematical Methods to Estimate the Basic 
Reproduction Number and Final Size for Single-
Stage and Multistage Progression Disease Models 
for Zika with Preventative Measures. Compute. 
Math.  Meth. Med. 25: 1-17. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 

Ronoh, M; Jaroudi, R; Fotso, P; Kamdoum, V; 
Matendecchere, N; Wairimu, J; Auma, R; 
Lugoye, J (2016). A Mathematical Model of 
Tuberculosis with Drug Resistance Effects. 
Applied Mathematics. 7 1303-1316.  

 
Sangotola, AO; Onifade, AA (2019). A Generalized 

SEIR Mathematical Model with Infectivity in 
exposed period. Journal of the Nigerian 
Mathematical Society. 38 (1): 45-54. 

 
Zhang, J; Jia, J; Song, X (2014). Analysis of an SEIR 

Epidemic Model and Saturated Treatment 
Function. Hindawi Publishing Corporation The 
Scientific World Journal Article ID 910421: 1-11.  


