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ABSTRACT. A malaria model with isolated drug resistant population after the first line of treatment is presented 
using six systems of first order nonlinear differential equations. The disease free equilibrium point and the basic 
reproduction number are determined. Local stability of the disease free equilibrium is determined and the conditions 
for the existence of endemic equilibrium. Bifurcation analysis reveals the existence of backward bifurcation. Sensitivity 
analysis is used to determine the impact of the model parameter on the basic reproduction number.  Early detection and 
using correct dosage will go a long way to prevent drug resistance. 
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Malaria is caused by the protozoan parasites of genus 
Plasmodium. In humans it is caused by Plasmodium 
falciparum, Plasmodium malariae, Plasmodium ovale, 
and Plasmodium vivax. Of these, P.falciparum is the 
most common cause of infection in Africa and South 
East Asia (Mandal et al., 2011). The symptoms of 
malaria includes chills, fever, vomiting and headache. 
The first mathematical model of malaria was 
developed by Sir Ronald Ross, while serving at the 
Indian Medical Service in 1890’s. He developed a 
simple mathematical model now known as the 
classical “Ross model” which explained the 
relationship between the number of mosquitoes and 
incidence of malaria in humans. Over the years, 
various mathematical models have developed to 
effectively understand the dynamics of malaria 
(Olaniyi et al., 2014 and Ngwa et al., 2000). Drug 
resistance occurs due to genetic mutation that allows 
the organism to survive treatment. As a result, the drug 
becomes less effective and infections persist in the 
body, increasing the risk of spread to others. Improper 
use of drugs and taking smaller than recommended 
doses are among the major causes of drug resistance. 
According to the world health organization, 
coordinated action is needed to reduce the emergence 
and spread of antimicrobial resistance. 
 
Most research work on this subject involves non 
isolated drug resistant population (Okosun et al., 2011, 
Cai et al., 2013 and Ronoh et al., 2016). Here, we 
propose a model where those with initial drug 

resistance are isolated and cannot transmit the disease 
during this period until they are effectively treated. 
 

MATERIALS AND METHOD 
The model divides the total human population into 
susceptible humans S�, infected humans I�, isolated 
drug resistant humans  R�, and recovered humans R�. 
The vector population is divided into susceptible 
mosquitoes S�,  and infected mosquitoes R�. The 
exposed stage is omitted in both human and vector 
population because we assumed that they will progress 
to the infectious stage. The dynamics of the model is 
such that susceptible individual are recruited into the 
human population at input rate Λ�. Every class of 
human population is decreased by natural death �� 
except for the infectious class and isolated drug 
resistant class which has a per capita disease induced 
death rate �� and ��  respectively . A susceptible 
human becomes infected after being bitten by an 
infectious mosquito with contact rate � and 
transmission rate ��. After the first line of treatment, 
those that respond to treatment move to the recovered 
class while the ones who do not respond move to the 
isolated drug resistant class for further treatment. 
However, the recovered humans develop a temporary 
acquired immunity against the disease and later loses 
this immunity to become susceptible again at per 
capita rate c. Mosquitoes are recruited into the 
population at rate Λ� but decreased through 
interaction with infectious humans with transmission 
rate ��. Both the susceptible and infectious 
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mosquitoes are decreased by natural death  �� while 
the infectious mosquitoes are further reduced as a 
result of the parasite at rate ��. The following systems 
of first order differential equations describe the  
model. 
 

��
� = Λ� −

�������

��
− ���� + ���          (1) 

 

��
� =

�������

��
− (�� + � + � + ��)��      (2) 

 
��
� = σI� − (�� + � + ��)��                 (3) 

 
��
� = aI� − (�� + �)�� + ���              (4) 

 

��
� = Λ� −

�������

��
− ����               (5) 

 

��
� =

�������

��
− (�� + ��)��              (6) 

 
Table 1. The description of the state variables and parameters of the 
model. 

Definition Symbol 

Recruitment term of the susceptible humans Λ� 
Recruitment term of the susceptible mosquitoes Λ� 
Transmission probability from mosquito to human β� 
Transmission probability from human to mosquito β� 
Effective treatment rate of drug resistant humans b 
Effective treatment rate of infectious humans a 
Disease induced death due of infectious humans δ� 
Disease induced death due of drug resistance humans δ� 
Disease induced death of mosquitoes δ� 
Progression rate of infectious human to 
drug resistant humans 

� 

Per capita transition rate of recovered humans c 
Natural death rate of humans μ� 
Natural death rate of mosquitoes μ� 
Biting rate d 

 

 RESULTS AND DISCUSSIONS 
Theorem 1: (Invariant region). The feasible region ℛ 

defined by ���(�), ��(�), ��(�), ��(�), ��(�), ��(�), ∈

��
� ∶ ��(0) ≤ ��(�) ≤

�

�
, ��(0) ≤ ��(�) ≤

��

��
� 

with initial conditions ��(0) ≥ 0, ��(0) ≥ 0, ��(0) ≥
0, ��(0) ≥ 0, ��(0) ≥ 0, ��(0) ≥ 0 is positive 
invariant for system (1) − (6). 
 
Proof: The total human population size is given by 
 
��(�) = ��(�) + ��(�) + ��(�) + ��(�).  
 

��� 
��

= �� − ���� − ����−���� 

 
��� 
��

 ≤ �� − ���� 

 

Solving above gives 0 ≤ ��(�) ≤

���(0)�
���� +

��

��
 (1 − �����)� 

 

 As � → ∞, 0 ≤ �� ≤
��

��
, If �(0) ≤

��

��
then �(�) ≤

�

�
.  Hence, 

��(0) ≤ ��(�) ≤
Λ�
��

 

 
Using similar argument, 

��(0) ≤ ��(�) ≤
��

��
  

 
Thus, ℛ is a positivity invariant set under the model. 
Hence it is sufficient to consider the dynamics of 
model (1) − (6)  in region ℛ.  
 
Disease-free equilibrium point: The disease-free 
equilibrium points of system (1) − (6)  is given by, 
 

�� = �
��

��
, 0,0,0,

��

��
, 0�                         (7) 

 
Basic reproduction number: The next generation 
matrix approach by Driessche and Watmough (2002) 
is applied to obtain the basic reproduction number. 
 
The nonlinear terms with the new infection ℱ and the 
outflow term � of system (1) − (6)  are given by 

ℱ =

⎝

⎛

�������

��

0
�������

�� ⎠

⎞                                      (8) 

   � = �

(�� + � + � + ��)��
−���� + (�� + � + ��)��

(�� + ��)��

�        (9) 

 
The linearized matrices F and V, computed at the 
disease-free equilibrium from (8) and (9) above give 
 

F = �
0 0 ���
0 0 0

��� 0 0
�  

 
And 
 

� = �

(�� + � + � + ��) 0 0

−�� (�� + b + ��) 0
0 0 (�� + ��)

� 

 
The basic reproduction ��is given by �(����) where 
� is the spectral radius. Thus, 
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�� = �
������

(���������)(�����)
 (10) 

 
Local stability of disease-free equilibrium: One of the 
most important concerns in the analysis of 
epidemiological models is the determination of the 
asymptomatic behaviour of their solutions which is 

usually based on the stability of the associated 
equilibrium. 
 
Theorem 2: (Local stability of disease-free 
equilibrium). The disease-free equilibrium for the 
system (1) − (6)  is locally asymptomatically stable 
if �� < 1 and unstable otherwise. 
Proof: The Jacobian matrix evaluated at the disease-
free is given by 

 

 �(��) =

⎝

⎜
⎜
⎛
 

−��
0
0
0
0
0

    

0
−(�� + � + � + ��)

�
�

−���
���

   

0
0

−(�� + � + ��)

�
0
0

   

�
0
0

−(�� + �)
0
0

      

0
0
0
0

−��
0

   

−���
���
0
0
0

−(�� + ��)⎠

⎟
⎟
⎞

 

 
Some of the roots of the characteristic equation are 
−��, −�� , −(��+ c) and −(�� + � + ��). The other 
roots can be obtained from the sub matrix given below. 
 

��(��) = �
−(�� + � + � + ��) ���

��� −(�� + ��)
� 

 
The remaining roots are the solution to the following 
equations 
 

�
−(�� + � + � + ��) ���

��� −(�� + ��)
� = 0 

 
 
This leads to the characteristic equation: (�� + � +
� + ��)(�� + ��) − ������ = 0. It is obvious from 
the equation that two negative real roots or two 
conjugate complex roots with negative real roots can 
be obtained if �� < 1. 
 
Theorem 3: (Existence of endemic equilibrium). The 
model under consideration has an endemic 
equilibrium when �� > 1 and � < 1 or  �� < 1 and 
� > 1 
 
Proof: Let ��

∗ = (��
∗, ��

∗, ��
∗, ��

∗ , ��
∗ , ��

∗ ) be a 
equilibrium of the model (1) − (6). The model at 
steady state becomes 
 

��
∗ =

(�����
∗���)��

������
�   

 

��
∗ =

���
∗

(����)
  

 

��
∗ =

[�(�������)���]��
∗

(�������)(����)
  

 

��
∗ =

��
�

�����
∗�������

  

��
∗ =

�������
∗

�����
∗���

  

 

��
∗ =

(��� �)(�������)����(����
�)

�
  

 
Where 
 

��� =
���

�� + ��
, 

 
� = �Λ���

�[�(�� + �) + ��]
− �(�� +  c)(�� + �)Λ������
+ Λ��� 

 
This shows the possibility of an existence of backward 
bifurcation. 
 
Bifurcation Analysis: To demonstrate the possibility 
of the co-existence of the equilibria of the model (1) −
(6) at �� < 1 but near �� = 1, the centre manifold 
theory described in (Chavez et al., 2004) is applied. 
This theory can be used to establish the local stability 
of the endemic equilibrium near the threshold 
parameter �� = 1. Model (1) − (6) can be written in 

the vector form as   
��

��
= �(�) 

 

Where � = ���,��,��,��,��,���
�

and  

 

� = (��, ��, ��, ��, ��, ��)
�  

 
So that 
 

 �� = ��, �� = ��, �� = ��, 
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�� = ��, �� = �� and �� = ��. The model (1) − (6) 
becomes 
 

��
� = Λ� −

�������

��
− ���� + ���        (11) 

 

��
� =

�������

��
− (�� + � + � + ��)��  (12) 

 
��
� = ��� − (�� + � + ��)��                 (13)         

         
��
� = ��� − (�� + �)�� + ���             (14) 

 

��
� = Λ� −

�������

��
− ����                (15) 

��
� =

�������

��
− (�� + ��)��             (16) 

 
Let �� be a bifurcation parameter such that �� = ��

∗ 
when �� = 1.Then ��

∗ can be obtained from (10) as 
 

�� =
(�� + � + � + ��)(�� + ��)

������
 

 
The Jacobian matrix of (11) − (16) evaluated at 
disease-free equilibrium is 

 

⎝

⎜
⎜
⎛
 

−��
0
0
0
0
0

    

0
−(�� + � + � + ��)

�
�

−���
���

   

0
0

−(�� + � + ��)

�
0
0

   

�
0
0

−(�� + �)
0
0

      

0
0
0
0

−��
0

   

−���
∗

���
∗

0
0
0

−(�� + ��)⎠

⎟
⎟
⎞

 

 
The linearized system has a simple zero eigenvalue 
and all other eigenvalues have negative real parts. 
Hence, the center manifold theory can be applied to 
the model. The component of the right eigenvector is 
given as � = [��, ��, ��, ��, ��, ��]

�  and 
 

�� =
(�� + ��)

�����
�

�

(�� + �)(�� + � + ��)
[�(�� + �

+ ��) + ��]−(�� + � + �

+ ��)��� 

 

�� =
(�� + ��)��

(�� + � + � + ��)
 

 

�� =
�(�� + ��)��

�(�� + � + ��)
 

 

�� =
(�� + ��)

���(�� + �)(�� + � + ��)
[�(�� + � + ��)

+ ��]�� 
 

�� = −
(�� + ��)��

��
 

 
The component of the left eigenvector is given as � =
[��, ��, ��, ��, ��, ��]

�  and 
 

�� = 0, �� =
�����

(�� + � + � + ��)
, �� = 0, �� = 0, ��

= 0. 
 

All the second order partial derivative at �� and ��
∗ are 

zero except for 
����

������
=

����

������
=

����

������
=

����

������
=

����

������
= 

����

������
= −

�����

��
 

 
����

������
=

����

������
= −

�����

��
 and 

����

������
= � 

 
Using the definition of  �� and �� from (Chavez et al., 
2004) and solving gives �� < 0 and �� > 0.  
 
We conclude that the model (1) − (6) exhibits a 
backward bifurcation (Chavez et al., 2004). 
 
Sensitivity analysis: Sensitivity analysis is used to 
determine dependencies between input parameters and 
results of the model. The normalised forward 
sensitivity index of a variable,�, that depends on a 
parameter, q, is defined as: 
 

Γ�
� =

��

��
×
�

�
 

Sensitivity index of the basic reproduction number of 
the basic reproduction number with respect to the 
model parameters are computed below: 
 

Table 2. Sensitivity index 

Parameter Γ���������
��  

�                1 
�� 1

2
 

�� 1

2
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�� −��
2(�� + � + � + ��)

 

� �

2(�� + � + � + ��)
 

�� −��
2(�� + ��)

 

�� −��
2(�� + ��)

 

 
Γ��
� = 1 revealed that a 10 percent in transmission rate 

corresponds to 10 percent increase in the basic 
reproduction number. The negative sign of the 
sensitivity analysis shows inverse proportionality 
between the parameter and the basic reproduction 
number. 
 
Conclusion: We present a mathematical model for 
malaria dynamics with isolated drug resistant 
population after the first line of treatment. The basic 
reproduction number of the model and the local 
stability of the disease free equilibrium are 
determined. The model is found to exhibit a backward 
bifurcation which implies that keeping the basic 
reproduction number below unity is not sufficient for 
the eradication of the disease. The contribution of the 
model parameters on the basic reproduction number 
were also highlighted through sensitivity analysis. 
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