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ABSTRACT: The bioethanol production from waste is acquiring attraction as a strategy for increasing energy 
security. This study aims to optimize the production of ethanol from cassava peel using Box Bhenken experimental 
design. The total carbohydrate content of about 90% in cassava peel was subjected to enzymatic hydrolysis using 
Alpha-amylase followed by Simultaneous Saccharification and Fermentation (SSF) by Saccharomyces cerevisiae for 
bioethanol production. The production of bioethanol from cassava peels was investigated for 1-4 hours (hydrolysis 
time), 0.5–1.5mg/L (enzyme loading), and 1-5 days (incubation time). A statistical model was developed and validated 
to predict the yield of bioethanol after fermentation, and the Response Surface Methodology (RSM) was used to 
optimize the conditions. The results revealed that the maximum ethanol yield of 1.911% was obtained at the optimum 
hydrolysis time, enzyme loading, and incubation time (i.e. 2.5 hours, 1 mg/L, and 3 days respectively). 
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Cassava (Manihot esculenta Crantz) is a shrubby 
perennial crop in the family of Euphorbiaceae. (Sriroth 
et al., 2012). Cassava is grown for its edible starchy 
tuberous root which contains about 94% carbohydrate 
and 6% containing vitamins and proteins. It is 
extensively produced as an annual crop in tropical 
countries such as Nigeria, Brazil, Thailand, etc. 
(Amenaghawon et al., 2014). World production of 
cassava root was estimated by FAO (2012) to be 230 
million tonnes in 2008 with Nigeria accounting for 
about 54 million tonnes as the world's largest producer 
of cassava. Large tons of cassava wastes are discarded 
annually in Nigeria when cassava is processed into 
various food products (Ozoegwu et al., 2017). These 
cassava wastes are removed to obtain good quality 
food products such as fufu, garri, tapioca macaroni, 
and pudding and also serve as animal feeds. (Bechoff 
et al., 2018). Unfortunately, these wastes often end up 
in open dumps or drainage systems which threatens 
both surface water and general human health 
condition. It is, therefore, necessary to convert these 
wastes to useful end products rather than allowing 
them to become a nuisance to the environment. During 
the processing of the cassava to obtain food, a solid 
waste material known as cassava peels are generated. 
(Amenaghawon et al., 2014), which has been (Prado 
et al., 2005) identified as a high cellulose material 
which makes it a potential substrate for the production 
of value-added products such as organic acids, 
bioethanol, biopolymers, etc. Bioethanol is a principal 

fuel that can be used as a petrol substitute for the 
vehicle. Therefore, this study was initiated to explore 
the possibility of using cassava peels as a substrate for 
producing ethanol. Thus this work tends towards 
investigating the possibility of transforming cassava 
peels (agricultural waste) to bioethanol, thereby 
contributing toward alternative energy supply as well 
as creating employment opportunity. This study is 
aimed at improving the bioethanol yields from cassava 
peels through the optimization of its fermentation 
processes using the Response Surface Methodology 
(RSM).  
 

MATERIALS AND METHODS 
Lignocellulose Feedstock Collection, Preparation, 
and Pretreatment: Cassava peels were procured from 
a local cassava processing plant in Ekosodin, Benin 
City, Edo State, Nigeria. It was sun-dried for three 
days before further drying in a preheated oven at 110 
oC for 6 hours to reduce its moisture content and 
prevent biodeterioration. The dried cassava peels were 
milled into small particles to increase their surface 
area and make the cellulose readily available for 
hydrolysis. The dried bagasse was stored under dry 
conditions before use. Pre-treatment of biomass was 
performed by measuring 40 g of cassava peels which 
were soaked in 0.2M NaOH. The mixture was 
hydrothermally pretreated by heating with an 
autoclave at a temperature of about 120 oC and for 
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about 90 mins. The different pretreated cassava peels 
slurries were obtained and used for further analysis.  
 
Enzymatic Hydrolysis and Fermentation: The 
pretreated cassava peel slurries were allowed to cool 
to room temperature before they were neutralized 
using hydrochloric acid and then, hydrolyzed by 
alpha-amylase. Enzymatic hydrolysis was conducted 
at 55 oC at different hydrolysis time (1-4) hours. The 
buffer for hydrolysis was 0.05M acetate buffer (pH 
4.8). After hydrolysis, the hydrolyzed sampled was 
used for fermentation for ethanol production. The 
medium was maintained at 30 °C inoculated with 5 g/l 
of activated dried yeast (Saccharomyces cerevisiae) at 
different enzymes loading in a flask and incubated at 
room temperature for 1-5 days. The percentage of 
ethanol yield (M) was determined as shown in 
equation (1): 

 � =
�

�
                (1)  

For the percentage of the ethanol measured in the 
sample (N), a refractometer will be used to determine 

the amount (%) of ethanol concentration (P) present in 
the sample, given in equation (2) (Nutawan et al., 
2010): 
 

P = R x 0.5          (2) 
 
Where R is the amount of initial sugar concentration 
in fermentation solution (%)  
 
Experimental Design for Bioethanol Production: A 
three-variable Box-Behnken Design (BBD) for 
RSM was used to develop a statistical model for the 
fermentation process. This is because there was a 
need to determine the optimum variable 
combination that could give the desired output with 
a minimum number of the experiment, without the 
need for studying all possible combination 
experimentally. The less number of experimental 
design points reduced the cost of experiment and 
optimization processes. The levels of variables 
optimized are shown in Table 1. 

 
Table 1: Coded and actual levels of the factors for four-factor Box-Behnken Design 

Variables Units Symbols Coded and actual levels 
-1 0 +1 

Hydrolysis time Hours X1 1 2.5 4 
Enzymes Loading mg/L X2 0.5 1.0 1.5 
Fermentation Time Days X3 1 3 5 

 
This design is suitable for exploring quadratic 
response surfaces and construction of a second-
order polynomial model (Amenaghawon et al., 
2014), the response of the surface to the various 
variables was used in optimizing the process using 
several experimental runs. The number of 
experimental runs is given by equation (3): 
 

� =  �� + � + ��        (3) 
 
Where K is the factor number and cp replicate the 
number of the central point. Design Expert® 7.0.0 
(Stat-ease, Inc. Minneapolis, USA), statistical 
software used to develop the experimental design. The 
coded and actual values of the independent 
variables were calculated as shown in equation (4): 
 

�� =
�� − ��

∆��

              (4) 

 
Where xi and Xi are the coded and actual values of the 
independent variable respectively. Xo is the actual 
value of the independent variable at the center point 
and ∆Xi is the step-change in the actual value of the 
independent variable. The generalised second-order 
polynomial equation as shown in equation (5), was 

adopted as a statistical model to estimate the response 
of the dependent variable (i.e. ethanol yields are 
obtained). This is because a linear model is insufficient 
for a mathematical description with adequate 
precision. That is, a linear model is prone to showing 
a high error value. 
 

�� = �� + ∑ ���� +  ∑ ������� + ∑ ��� ��
�

+ ��      (5) 
 
Where Bi is the linear coefficient, Bii is the quadratic 
coefficient, Bij is the second-order term, Yi is the 
predicted response or dependent variable, Xi and Xj are 
the independent variables, bo is the offset term, bi and 
bij are the single and interaction effect coefficients and 
ei is the experimental error term (Amenaghawon et al., 
2013). 

 

RESULTS AND DISCUSSION 
Modelling and Optimization of Response: The coded 
and actual value of the factors X1 (Hydrolysis time, 
hours.), X2 (Enzymes Loading, mg/L) and X3 
(Incubation time, days) as designed by design expert 
7.0 and their corresponding responses are shown in 
Table 2: 
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Table 2: Three-level factorial Box-Behnken design and experimental responses of the dependent variable Y (Ethanol yield, %), RSM 
predicated responses 

Run 
No. 

Coded values of 
factors 

Actual values of 
factors 

Responses (%) 

X1 X2 X3 X1 X2 X3 Actual RSM predicated 
1 0 0 0 2.5 1.0 3.0 1.899 1.78 
2 1 -1 0 4.0 0.5 3.0 1.764 1.78 
3 1 1 0 4.0 1.5 3.0 1.799 1.85 
4 0 -1 1 2.5 0.5 5.0 1.701 1.83 
5 0 -1 -1 2.5 0.5 1.0 1.399 1.41 
6 0 0 0 2.5 1.0 3.0 1.851 1.39 
7 0 0 0 2.5 1.0 3.0 1.899 1.73 
8 0 1 1 2.5 1.5 5.0 1.799 1.71 
9 1 0 -1 4.0 1.0 1.0 1.421 1.41 
10 -1 0 -1 1.0 1.0 1.0 1.399 1.45 
11 -1 0 1 1.0 1.0 5.0 1.699 1.70 
12 -1 1 0 1.0 1.5 3.0 1.867 1.79 
13 0 0 0 2.5 1.0 3.0 1.901 1.89 
14 0 1 -1 2.5 1.5 1.0 1.45 1.89 
15 1 0 1 4.0 1.0 5.0 1.72 1.89 
16 0 0 0 2.5 1.0 3.0 1.911 1.89 
17 -1 -1 0 1.0 0.5 3.0 1.811 1.89 

 
Table 2 shows the observed value of the experiment. 
It can be seen that maximum ethanol yield was 1.911% 
and was observed at hydrolysis time of 2.5 hours, 
enzyme loading of 1.0 mg/L, and an incubation time 
of 3 days. 
 
Determination of Appropriate Model: The 
investigation was carried out on linear, cubic, two-
factor interaction, and quadratic models to determine 
the best model that is statistically significant and 

best describes the relationship between the response 
and the inputs (independent variables). From the 
model summary statistics shown in Table 3, it is 
seen that the quadratic model has the maximum 

predicted and adjusted R2 value. Thus, it can be 
concluded that the quadratic model bests describe 
the relationship between the response and the 
independent variables. 

 
Table 3: Model summary statistics. 

Source Std. Dev. R-squared Adjusted 
R-squared 

Predicted 
R-squared 

Press 

Linear 0.17 0.3603 0.2127 -0.0902 0.61 
2FI 0.19 0.3615 -0.0216 -1.2462 1.27 
Quadratic* 0.030 0.9892 0.9753 0.8838 0.066 
Cubic 0.024 0.9961 0.9842  + 

 
Analysis of Variance (ANOVA): Regression analysis 
was performed to fit the response. The model 

developed represents ethanol yield (Y) as a function of 

hydrolysis time (X1), enzyme loading (X2), and 
incubation time (X3). The model is given by equation 
(6) in terms of the actual factors. 

 
� = 074415 + 0.12286�� + 0.26005�� + 0.48317�� − 0.0073���� − 0.00833���� + 0.011750���� − 0.024322��

� − 0.10890��
�

− 0.069431��
�                                                         (6) 

 
The second-order polynomial (equation 6) was used 
to calculate the predicted responses presented in 
Table 2. A comparison of the predicted values with 
the responses obtained from the experiment shows a 
little deviation which mean that there is high extent 
of correspondence. The significance of fit for the 
second-order polynomial for the ethanol yield was 
investigated by carrying out an analysis of variance 
(ANOVA) as shown in Tables 4 and 5. The model F 
value of 71.12 and very low p-value (<0.0001) implies 
that the investigated process variables significantly 
influenced the output. Since all the terms in a 
regression model aren’t equally important, the p-value 

is used to check the significance of each coefficient. 
The "lack of fit" F value of 2.329 implies that there 
was an insignificant lack of fit. The authenticity of the 
model was assessed through the lack of fit test. The P-
values for the lack of fit test was not significant 
(P>0.05) demonstrating that the model was fit for 
predicting the ethanol yield. The coefficient of 
variation (CV) obtained was 1.71% (Table 5). This 
value indicates the degree of precision with which the 
treatments were compared (Qi et al., 2009). The 
relatively low value of CV obtained showed that the 
treatments were carried out with high precision and 
reliability (Montgomery, 2005; Mason et al., 1989).  
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Table 4: Analysis of variance for response surface quadratic model 

Source 
Sum of 
Squares 

Df 
Mean 
Square 

F 
Value 

p-value 
Prob > F  

 
Model 0.5577 9 0.062 71.12 < 0.0001 Significant 
X1 0.0006 1 0.0006 0.744 0.4171  
X2 0.0072 1 0.0072 8.263 0.0238  
X3 0.1953 1 0.1953 224.1 < 0.0001  
X1X2 0.0001 1 0.0001 0.127 0.7325  
X1X3 2E-07 1 2E-07 3E-04 0.987  
X2X3 0.0006 1 0.0006 0.634 0.4521  
X1

2 0.0126 1 0.0126 14.47 0.0067  
X2

2 0.0031 1 0.0031 3.581 0.1003  
X3

2 0.3248 1 0.3248 372.7 < 0.0001  
Residual 0.0061 7 0.0009    

Lack of Fit 0.0039 3 0.0013 2.329 0.2159 
not 
significant 

Pure Error 0.0022 4 0.0006    
Cor Total 0.5638 16     

 

An Adequate precision value of 21.97 was obtained. 
Cao et al. (2009) reported that adequate precision 
gives an indication of the signal-to-noise ratio and 
suggested that a value greater than 4 is generally 
desired. The value of 21.97 obtained indicates an 
adequate signal and the model can be used to navigate 
the design space. The coefficient of determination (R2) 
was obtained as 0.989. This indicated that the model 
satisfactorily represents the relationship between the 
independent variables (hydrolysis time, enzyme 
loading, and incubation time) and the response 
(ethanol yield). The R2 value indicates that 98.9% of 
the variability in the response could be explained by 
the statistical model, while 1.1% could not be 
accounted for by the independent variables 
(Amenaghawon et al., 2014). The R2 value indicates 
the degree to which the model was able to predict the 
response. The closer the R2 value is unity, the better 
the model can predict the response (Qi et al., 2009). 
The "Predicated R-Squared" of 0.8838 is in reasonable 
agreement with the "Adjusted R-Squared" of 0.9753,  
that is, the difference is less than 0.2. 
 

Table 5: Statistical information for ANOVA 

Parameter Value 
Standard deviation 0.03 
Mean 1.723 
C.V. % 1.71 
PRESS 0.07 
R-Squared 0.989 
Adj R-Squared 0.975 
Pred R-Squared 0.884 
Adeq Precision 21.97 

 
Parity Plot: The actual and predicted responses 
shown in Table 2 were plotted to analyze the 
correlation between them as shown in Figure 1. It is 
observed from the plot that the data points are 
distributed near the straight line. This further 
indicates that the quadratic model could be 

employed as a significant model for predicting 
response over the independent input variables. 
 
Optimization of Ethanol Fermentation of Cassava 
Peels: Response surface curves were plotted to 
examine the effect of the interaction between the 
independent variables and to determine the optimum 
levels of the variables. To determine the optimal 
levels of the independent variables affecting the 
ethanol yield from cassava peels, three-dimensional 
(3D) response surface and contour plots were 
constructed according to the regression model. The 
3D plots were generated by keeping two factors at 
their optimum point and varying the other two 
factors within their experimental ranges. The plots 
show how hydrolysis time, enzyme loading, 
incubation time affects the ethanol yield. The 
contour plot may be rising ridges, saddle point, 
elliptical or circular plot. A circular or elliptical plot 
indicates that there exists a significant interaction 
between the operating parameters (Kanmani et al., 
2013). 

 
Fig 1: Parity plot of predicted values against actual values of 

ethanol yield 
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Analysis of Response Surface Plots. A. Interaction 
between hydrolysis time, enzymes loading, and 
ethanol yield: The effect of hydrolysis time and 
enzyme loading on the ethanol yield is shown in 
Figure 2. It was observed that an increase in hydrolysis 
time and also an increase in enzyme loading, increased 
ethanol yield. The plot showed that the enzyme 
loading had a significant effect on the ethanol yield 
within the range of hydrolysis time investigated (1-4 
hours). If the enzyme loading is too high, a problem 
with enzyme accessibility could inhibit the conversion 
of cellulose. The increasing of viscosity material could 
also affect to reduce enzyme mobility. The longer the 
hydrolysis time, the more cellulose is converted into 
simple glucose so that when a lot of simple glucose 
fermentation process can be converted by 

saccharomyces cerevisiae into bioethanol, but an 
extension of the hydrolysis time, (> 2.5 hours.) can 
negatively affect the degree of saccharification, 
probably due to enzymes denaturation. The maximum 
ethanol yield was obtained at an enzyme loading of 1.0 
mg/L and a time of about 3 hours hydrolysis time. It 
can be observed that any further increase in time leads 
to a decrease in the ethanol yield. A similar result was 
reported by (Betiku and Taiwo, 2015) who reported 
optimum enzyme loading is a ratio of 1.0 mg/L for the 
production of ethanol from breadfruit starch 
hydrolysate. Similarly, (Hajar et al., 2012) reported an 
optimum enzyme loading of 1.5 mg/L during a 
hydrolysis time of 2.5 hours to obtain an ethanol yield 
of 1.93% from pineapple peel extract. 

 

 
Fig 2: Response surface plot and corresponding contour plot of the simultaneous effect of hydrolysis time and enzyme loading on the 

ethanol yield. 

 
B. Interaction between hydrolysis time, incubation 
time, and ethanol yield: Figure 3 shows the 
interactive effect of hydrolysis time and incubation 
time. It was observed that an increase in incubation 
time and hydrolysis time leads to an increase in 
ethanol yield. The production of ethanol starts after 
the lag phase of about 1 hour and reached a maximum 
of about 3 hours. As the fermentation keeps on going 
longer, the ethanol production became stagnant or 
even decreased. This might be caused by the formation 
of inhibitory compounds, such as furfural, acetic acid, 
and phenolic. Phenolic compounds are produced from 
partial lignin damage, which could occur during a 
pretreatment process. This corresponds to the low 
delignification degree, hence the remains of the 
pretreatment process caused inhibition. During 
fermentation, a decrease in ethanol could also be 
caused by the composition of the substrate, reduction 
of the enzyme’s active sides, and the inefficiency of 
mass transfer. A similar result was reported in a 
previous study (Nanssou et al., 2016) who reported an 

optimum incubation time of 3 hours was observed for 
the production of ethanol from plantain peel.  
 
C. Interaction between enzymes loading, incubation 
time, and ethanol yield: Figure 4 illustrates the effect 
of enzyme loading and incubation time on ethanol 
yield. It was observed that an increase in enzyme 
loading, increase in incubation time leads to an 
increase in ethanol yield. At low incubation times, the 
ethanol yield increased slowly with an increase in 
enzyme loading from 0.5 mg/L to 1.5 mg/L. For the 
range of enzyme loading investigated, intermediate 
levels of the time were needed to obtain a high ethanol 
yield, and any further increase in time resulted in a 
decrease in ethanol yield. The maximum ethanol yield 
of about 1.911% was obtained at an incubation time of 
about 3days and enzyme loading of about 1.0 mg/L. 
Shanavas et al. (2011) reported the optimum yield of 
ethanol from cassava starch was 2.0% using an 
enzyme loading of 1.0 mg/L and a reaction time of 180 
mins.  
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Fig 3: Response surface plot and corresponding contour plot of the simultaneous effect of hydrolysis time and incubation time on the 

ethanol yield 

 
Fig 4: Response surface plot and corresponding contour plot of the simultaneous effect of enzymes loading and incubation time on the 

ethanol yield 

 
Numerical Optimization: Figure 5 below, shows that 
hydrolysis time, enzyme loading, and incubation time 
were optimized based on the model developed by each 
response. The maximum ethanol yield from cassava 

predicted by the model was 1.913%. The optimal 
hydrolysis time, enzymes loading and incubation time 
were 2.9 hours, 1.42 mg/L, and 3.58 days respectively. 

 
Fig 4: Ramp numerical optimization of response 

 
Validation of Statistical Model: To confirm the 
validity of the statistical model, three confirmation 
experimental runs were performed at the chosen 
optimum fermentation conditions. The result shows 
that the maximum experimental ethanol yield of 
1.911% obtained was close to the predicted value of 
1.913%. The excellent correlation between the 

predicted and measured values of these experiments 
shows the validity of the statistical model. 
 
Conclusions: This study investigated the performance 
of RSM on the modeling and optimization of the 
three variables (hydrolysis time, enzyme loading, 
and incubation time) on ethanol production from 
cassava peels. A significant quadratic model 
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(p<0.05) has been obtained to predict the 
concentration of ethanol yield as a function of the 
three input factors using RSM. Further investigation 
into the use of cassava peels for bioethanol 
production is required. Also, more agro-waste 
products are needed to check for their usability for 
producing value-added products. 
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