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ABSTRACT: Riverbank filtration (RBF) is a natural technology that is used for river water treatment. This research
seeks to investigate the effect of pumping rate on the transport of colloids in RBF. However, this work considered
Dissolved Organic Matter (DOM) as a nutrient for bacteria. The mathematical model consists of groundwater flow
equation and colloids concentration equations. The equations were solved analytically using parameter expanding method
and Eigen function expansion techniques. The results obtained are presented graphically and discussed. It was observed
that increase in pumping rate value enhance both the hydraulic head and concentration of colloids which slightly reduces

the quality of pumped water from RBF.
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Riverbank filtration (RBF) can be defined as the
natural or induced transport of water from the river to
the aquifer, through the riverbed. In 1800, this system
was initially reported in United Kingdom, and is now
widely accepted in Europe. In Germany, 63% of fresh
water sources are from groundwater while 15.3% are
from RBF and groundwater recharge. In Netherlands,
39% of surface water is treated using RBF and/or dune
recharge (Ray, 2011). The effectiveness and efficiency
of riverbank filtration largely depend on local
conditions which include the geochemistry of water
(from the aquifer and river), the hydrogeology and
hydrology of the site, the geochemistry of microbial
populations, and associated metabolic activities (Lee
and Lee, 2010). Other factors are soil texture and
quality (Mustafa et al., 2014). The overall design of
RBF systems requires detailed hydrogeological site
investigation, knowledge about the hydrological
characteristics of the catchment as well as defining the
catchment area (Grischek et al., 2002). The effect of
hydraulic  conductivity on one dimensional
contaminant transport in RBF system was investigated
by Mustafa et al. (2018) using Green’s function
approach. The result obtained show that increase in
hydraulic conductivity value led to an increase in
contaminant concentration in pumping well area. Kim
et al. (2003) investigated numerically the effect of
dissolve organic matter and bacteria on contaminant

transport in riverbank filtration. The results show that
contaminant transport is enhanced markedly in the
presence of DOM and bacteria, and the impact of
DOM on contaminant mobility is greater than that of
bacteria under examined conditions. Mustafa et al.
(2014) reviewed that there are few analytical models
of RBF system. From their investigation they
categorized the available models into two: the first
category describes the flow of groundwater induced
from wells near the river. While the second category
describes the pollutants transportation from river to the
well. They also concluded that the analytical model
that simulate the potential of microorganism in RBF
systems are very rear. Shamsuddin et al. (2014)
presented a case study of bank infiltration (BI) method
which evaluates the effects of groundwater pumping
and Bl operation on the installation wells as well
determine the effects of pumping rate on flow paths,
travel time, the size of the pumping and capture zone
delineation. The results indicate that the migration of
river water into the aquifer is generally slow and
depends on the pumping rate and distance from well to
the river. Singh et al. (2011) conducted a comparative
study between Laplace Transform Technique and
Fourier Transform Technique in solving one-
dimensional transport equation along unsteady
groundwater flow in semi-infinite aquifer. Their result
indicates that Fourier Transform Technique is better
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than Laplace Transform Technique in predicting
contaminants concentration along groundwater flow in
semi homogenous aquifer. Aiyesimi and Jimoh (2012)
used computational analysis to study one-dimensional
non-linear reactive contaminant flow with an initial
continuous point source. They discovered that from
the origin, the concentration decreases with increase in
time and distance.  Chattopadhyay and Deo (2018)
discussed various mathematical models involving
water pollutant transport equation in Damoda River,
Bermo Region. The implicit central scheme in space
and a forward difference method in time was also
given to evaluate the generalized transport equation.
Different parameters were varied and they observed a
general decrease in contaminant concentration.
Bohaienko and Bulavatsky (2019) developed a
mathematical model of solutes migration under the
conditions of groundwater filtration with k — Caputo
fractional derivatives. They use finite difference
scheme to simulate the dynamics of anomalous soluble
substance migration under the conditions of two-
dimensional steady-state plane-vertical filtration with
a free surface. The results of numerical experiments on
modeling the dynamics of the considered processes
were presented. Gothwal and Thatikonda (2017)
studied a mathematical model for the transport of
fluoroquinolone and its resistant bacteria in aquatic
environment. The simulation results of the model for
different cases show that the concentration of
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antibiotic, organic matter, segregation rate, and
horizontal transfer rate are the governing factors in the
variation of population density of resistant bacteria. In
this present work, we seek to investigate the effect of
variable dependent pumping rate on the concentration
of the colloids using parameter expanding method and
Eigen function expansion techniques.

Mathematical Formulation: We consider a situation
where contaminants are present together with dissolve
organic matter (DOM), bacteria and virus in an aquifer
under simplistic river bank filtration conditions. The
aquifer is conceptualized as a five-phase system: three
mobile colloidal phases, an aqueous phase and a
stationary solid phase. An analytical approach is used
to describe the interactions of contaminants with
DOM, bacteria, virus and solid matrix. It is assumed
that the aquifer is saturated with dissolve organic
matter and DOM s utilized as a nutrient for bacteria.
The aquifer is unconfined, homogeneous and
isotropic. The pumping rate of the pumping well is
assumed to depend on the space variable X . Based on
the above assumptions, the equations governing the
phenomenon are as follows:

The one-dimensional groundwater flow equation in
aquifer is given as:

€]

The mass balance equation for bacteria (captured and suspended) in the aqueous phase of saturated porous media

may be describe as:
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The mass balance equation for virus (captured and suspended) in the aqueous phase of saturated porous media

may be describe as:
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The mass balance equation for contaminant may be expressed as:
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The mass balance equation for DOM in the aqueous phase may be expressed as:
= aC0 4 P KO 8Co _ ih 8Co — SQ(DO aCo _ #maxco KZCCO éCb (5)
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Where:

h(X, t)is the hydraulic head, H is the head value at

t=0, Q = %CC is the volumetric flux per unit

volume representing source or sink terms/reaction rate
(concentration of contaminant) in the source or sink,

3 is the biological processes at the riverbed, RC is the
retardation factor, ] is the stream depletion flow rate,

SS is the specific storage coefficient, K is the

hydraulic conductivities,
m,(X, t) is the concentration of contaminant

measured at the pumping well, Q0 is the pumping rate,
L is the distance of the pumping well from the river,

Cb, CV, Cc & CO are the concentration of the

bacteria, virus, contaminant and DOM suspended in
the aqueous phase respectively, ¢ is the water content,

Vp is the pore water velocity, D ' D\,, DC & Do

are the hydrodynamic dispersion coefficient of
bacteria, virus, contaminant and DOM respectively,

Jo & P, are the density of bacteria and virus
respectively, Oy, & O, are the volumetric fraction of

bacteria and virus respectively, Kb, KV are the

linear equilibrium distribution coefficient of bacteria
and virus between the aqueous phase and the solid

phase respectively, KO is the first-order decay rate
coefficient of DOM, KS is the half saturation constant,

Y, and Y, isthe yield coefficient of bacteria and

Virus, fl, is the maximum growth rate, Kl is the
linear equilibrium distribution  coefficient of
contaminants between the aqueous phase and the solid
matrix, Kz is the linear equilibrium distribution
coefficient of contaminants between the aqueous
phase and DOM, K3& K4

equilibrium distribution coefficient of contaminants
between the aqueous phase, mobile and immobile

are the linear

bacteria respectively, K5& Ke are the linear

equilibrium distribution coefficient of contaminants
between the aqueous phase, mobile and immobile

virus respectively, Kdmb& Kdib are the decay rate

coefficient of mobile and immobile bacteria

respectively, Kdmv & Kdiv are the decay rate
coefficient of mobile and immobile virus respectively,
Ps is the dry bulk density of solid matrix, O is the
mass fraction of contaminants sorbed on solid matrix,

ro is the utilization rate of contaminants sorbed on

DOM, O, is the mass fraction of contaminants

attached to DOM,

The dependence of diffusion coefficients on the
concentration of contaminant is taken in to account by
the mathematical expressions:

D,=D, &, D, =D, e", D,=D,e“
and D, =D, e ®)

The initial and boundary conditions associated with
the equations are formulated as:
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Method of Solution: Dimensional analysis: Equation (1) - (7) were non-dimensionalized using the following
dimensionless variables
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Analytical Solution: Equations (9) — (13) satisfies (14) were solved analytically using parameter expanding
method and Eigen function expansion techniques and we obtained
h(x, t)=1+>_qg,e " Si”wﬂLzhn (t)sin% (15)

n=1 n=1
o0 ) 2
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n=1
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RESULTS AND DISCUSSION
In this section, the governing equations (9) - (14) were
solved analytically using parameter expanding method
and Eigen functions expansions techniques, the
solutions are discussed with the help of input data.
From Figures 2 and 3 we observed that the hydraulic
head h increases along distance and decreases with

time, but increases with increase in pumping rate ﬂp.

Figure 4 shows a sinusoidal form along distance and
later decrease, but increases with increase in Pumping

rate ,Bp. In a similar manner in Figures 5 and 6 the

(2n -1z

_ (@, —D,(n7)?)
- ’ 2

P11 Rb

n, = n, =

pumping rate increases the concentration of
contaminant @ along distance and later decreases.
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Fig 2: Relation between Hydraulic head against distance at various
values of pumping rate.
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Fig 3: Relation between Hydraulic head against time at various
values of pumping rate
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Fig 4: Relationships among bacteria concentration, distance and
time at various values of pumping rate

ABUBAKAR, AD; OLAYIWOLA, RO; MOHAMMED, AA; COLE, AT



Bx. B,=01
B,=02
CB,=04

o 0.2 0.4 0.5 0.8 1
Diszamce

Fig 5: Relation between contaminant concentrations against
distance at various values of pumping rate
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Fig 6: Relation between contaminant concentrations against time at

various values of pumping rate
Conclusion:  We developed unsteady one -
dimensional analytical model that incorporates
variable dependent pumping rates on a contaminant
transport in riverbank filtration system. Based on the
above results we can conclude that: Pumping rate
values increases both the hydraulic head and
concentration of colloids. The quality of pumped
water from RBF will slightly reduce due to the
increase in pumping rate. The bacteria concentrations
of the pumped water will be high if the pumping well
is closed to the river.
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