

Comparative Analysis of Atmospheric Carbon Dioxide Concentration and Temperature between Forest and Non-Forested Domains in Oyo State, Nigeria

*AWOSUSI, BM; ADAMU, IS; ORUNKOYI, AR; ATIBA, DO; OBE, AA; AMORI, MD; ADEDOYIN, ED

Environmental Modeling and Biometrics Department, Forestry Research Institute of Nigeria, P.M.B. 5054, Jericho, Ibadan, Oyo State, Nigeria

*Corresponding Author Email: <u>monisola.bola@yahoo.com</u>; Tel: +2348067331666

ABSTRACT: This study was carried out to assess the concentration levels of CO_2 and temperature and also to correlate their values among selected locations in Oyo State, Nigeria. CO_2 and temperature readings were taken using a portable CO_2 meter, and a GPS was use to capture co-ordinates of sample points, this was done twice a day. Data were collected from 7am to 11am for morning session while afternoon session data were collected between 1pm and 5pm making a total of 8 hours monitoring. There were negative correlation between CO_2 and temperature in all the forests while we have positive correlation between CO_2 and temperature in all the forests while we have positive correlation between CO_2 and temperature in all the forests while we have positive correlation between CO_2 and temperature in all the forests while we have positive correlation between CO_2 and temperature in all the forests while we have positive correlation between CO_2 and temperature in all the forests while we have positive correlation between CO_2 and temperature in all the forests while we have positive correlation between CO_2 and temperature in the forest teses in the forest reserve help to reduce Carbon dioxide during the day since trees manufacture their food using CO_2 in the presence of sunlight. Also, the positive correlation between CO_2 and temperature in the towns is due to high rate of human anthropogenic activities during the day. The values of CO_2 obtained in this study were higher when compared with IPCC limit of 435 ppm (parts per million) of CO_2 emission. Routine monitoring of carbon dioxide and public education is recommended.

DOI: https://dx.doi.org/10.4314/jasem.v25i3.21

Copyright: Copyright © 2021 Awosusi *et al.* This is an open access article distributed under the Creative Commons Attribution License (CCL), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Dates: Received: 12 December 2020; Revised: 26 January 2021; Accepted: 12 February 2021

Keywords: Carbon dioxide, Temperature, Forest, Non-Forest, Forest Reserve

A proper understanding of the relationship between the concentration of atmospheric CO₂ and global temperature is a prerequisite to evaluating anthropogenic impact on climate change (Davis, 2017). CO₂ concentration is increasing slowly but continuously with a typical seasonal fluctuation mostly due to the burning of the fossil fuels for energy needs (Tomomi, et al., 2012). Carbon dioxide concentrations are rising mostly because of the fossil fuels that people are burning for energy. Fossil fuels like coal and oil contain carbon that plants pulled out of the atmosphere through photosynthesis over the span of many millions of years; we are returning that carbon to the atmosphere by felling of trees. Anthropogenic activities have been found to contribute more than 80% of the atmospheric CO₂ in non-forested domains (Koerner and Klopatek, 2002). The interaction between CO₂ and temperature will certainty exert a profound influence on the earth's environment and global agricultural production (Rosenzweig et al., 2014). Growing evidence suggest how global background levels of atmospheric CO₂ are increasing and his impact on environmental quality, human and ecological health (Ana et.al, 2015). Scientists measure the amount of greenhouse gases in

the atmosphere in several ways. They use satellites and other instruments such as sensors to measure the amount of greenhouse gases in the air all around the world. Greenhouse gas such as CO₂ trap heat just like the glass roof of a greenhouse, helps warming the globe. The rise in CO₂ level has been observed to be more rapid than at any time in the past due to increase in anthropogenic activities. Carbon IV oxide (CO_2) emissions arising from human anthropogenic activities predisposes to adverse health outcomes and associated health risks, this may include headaches, dizziness, restlessness, difficulty breathing, sweating, tiredness, increased heart rate etc. We must reduce emissions of greenhouse gases to net zero to have a reasonable chance of limiting global warming to 1.5°C to prevent global disaster. The main objective of this paper is to evaluate the atmospheric carbon dioxide concentration and temperatures between forest and non-forested domains in Oyo State, Nigeria

MATERIALS AND METHODS

Study Area: Oyo state is an inland state in the south western part of Nigeria, with its capital in Ibadan. It is bounded in the North by Kwara State, East by Osun State, South by Ogun State and in West partly by

Ogun State and partly by the republic of Benin. Oyo state is located on the map on $7^0 22' 43"$ N, $7^0 37 84"$ N and $3^\circ 53' 43"$ E, $3^\circ 89' 53"$ E Oyo State covers an area of 28,245.3 square kilometers. It

has a population of 5,580,894 (2006 census figures). The average annual temperature is 25.9° C.

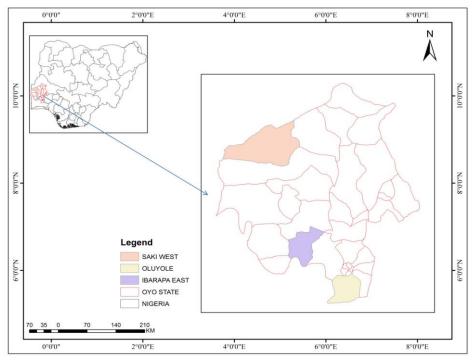


Fig 1: Map of the Study Area

Table 1: Study Locations					
Number	Non-Forested Domain	Forest Domain			
1	Saki Town	Wasangare Forest Reserve			
2	Eruwa Town	Eruwa Forest Reserve			
3	Idi Ayunre	Gambari Forest Reserve			

Data Collection: Three Forests domain (Wasangare, Eruwa and Gambari) and Non-Forested domain (Saki town, Eruwa town and Idi Ayunre town) close to each Forest reserve (Table 1) were purposively selected for this study. A Garmin Geo–Positioning System device was used to navigate through the coordinates of the laid sampling points while a hand-held neutron air quality meter-AQ-9901SD was used for measuring and storing the atmospheric CO_2 and temperature of the study points, taking the emitting zones into consideration during the measurements.

Table 2: Possible emitter of carbon dioxide in the study area

S/N	Location	Observable sources
1	Idi Ayunre Town	Generators, Residential, Industries, Gas station
2	Gambari Forest Reserve	Dead wood, soil and dead leaves
3	Saki Town	Automobile, Generator, Residential, Industries, Gas station
4	Wasangare Forest Reserve	Dead wood, soil and dead leaves
5	Eruwa Town	People, Automobiles, Gas station and school environment
6	Eruwa Forest Reserve	Dead wood, soil and dead leaves, charcoal production site

Data Exploration and Analysis: Data exploration, summary and analysis was carried out using R version 4.0.3 (R Core Team, 2020) while graphics were produced using ggplot2 (Wickham, 2016)–a package in R. Tools used for data summarization are tables and bar charts.

Pearson's correlation coefficient: was used to measure the relationship between the variables considered for this study (CO₂ and temperature). It has a value between -1 and +1 and is of the form:

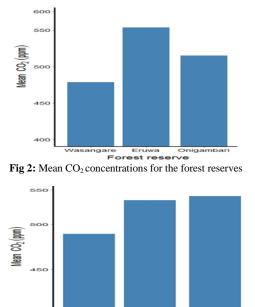
AWOSUSI, BM; ADAMU, IS; ORUNKOYI, AR; ATIBA, DO; OBE, AA; AMORI, MD; ADEDOYIN, ED

$$r = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2 \sum_{i=1}^{n} (Y_i - \bar{Y})^2}}$$

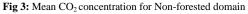
Where: $\mathbf{r} = \text{correlation coefficient}$; $X_i = \text{values of the x-variable in a sample}$; $\overline{X} = \text{Mean of the values of the values of the x-variable}$; $Y_i = \text{values of the y-variable in a sample}$; $\overline{Y} = \text{Mean of the values of the y-variable}$

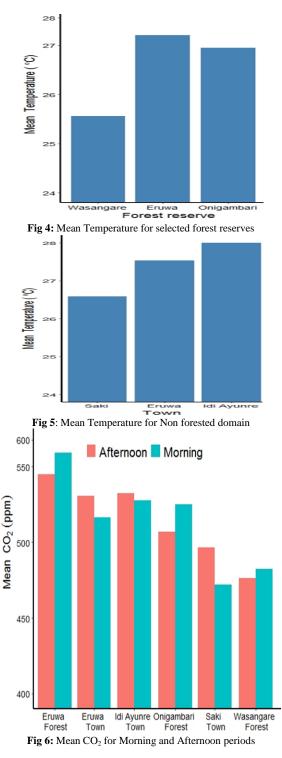
Welch's t-test: was used to determine the similarity of measurements obtained on each variable in the forested area to the corresponding variable measured at the community close to the forest area. The Welch's t-test is given as:

$$t = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{S^2_1}{n_1} + \frac{S^2_2}{n_2}}}$$
$$df = \frac{\frac{\sigma_1}{n_1} + \frac{\sigma_2}{n_2}}{\left(\frac{\sigma_1}{n_1}\right)^2 + \left(\frac{\sigma_2}{n_2}\right)^2}$$


Where t connotes Welch's t-statistic and df represents the degree of freedom for the Welch's test.

 $\frac{1}{n_1-1} + \frac{1}{n_2-1}$


RESULT AND DISCUSSION


With

Descriptive analysis: A summary of the observations on carbon (IV) oxide and temperature at the study locations are presented on Table 3.

The highest average CO_2 concentration was recorded at Eruwa Forest reserve while the lowest average concentration occurred at Wasangare Forest Reserve. Incidentally, the lowest mean temperature was measured at Wasangare Forest Reserve while the highest mean temperature was observed at Eruwa Forest Reserve (Table 3).

AWOSUSI, BM; ADAMU, IS; ORUNKOYI, AR; ATIBA, DO; OBE, AA; AMORI, MD; ADEDOYIN, ED

Table 3 : Mean CO ₂ and temperature levels of locations							
Location	Mean	Mean		Non-	Mean	Mean	
(Forest	CO_2	Tempera	ature	Forested	CO_2	Temp.	
Domain)	(ppm)	(°C)		Domain	(ppm)	(°C)	
Wasangare	478.48	25.52		Saki	489.18	26.59	
Eruwa Forest	553.41	27.21		Eruwa Town	526.47	27.54	
Onigambari	514.95	26.95		Idi Ayunre	531.09	28.00	
Table 4: Correlation between CO2 and TemperatureLocationrRemarkSaki Town0.5119Positively correlated							
	are Forest F	Reserve	-0.38		vely correlate		
Eruwa Town			U		ely correlated	<i>.</i>	
Eruwa Forest Reserve		ve	-0.4018 Negative		vely correlate	ly correlated	
Idi Ayu	nre Town		0.223	36 Positive	ely correlated	d	
Onigambari Forest Reserve		Reserve	-0.51	26 Negativ	Negatively correlated		
r = represents Pearson's correlation coefficient							

Table 3: Mean CO₂ and temperature levels of location

Table 5: Welch's t-test for CO₂ comparison between the forested and non-forested domain

Non-forested area	Forested area	t-value	df	p–value	Remark
Eruwa Town	Eruwa Forest Reserve	-2.8034	23.4240	0.0042	Statistically significantly different
Saki Town	Wasangare Forest Reserve	2.5198	75.6920	0.0010	Statistically significantly different
Idi Ayunre Town	Gambari Forest Reserve	3.0327	41.4370	0.0042	Statistically significantly different
Alaber 1					

Alpha level at 0.05

In other words, Eruwa forest had the highest mean CO_2 concentration and mean temperature while Wasangare had the lowest mean concentration and mean temperature (Figure 2, Figure 4) amongst the forest reserves. On the other hand, for non-forested areas, Idi Ayunre had the highest mean CO_2 concentration and mean temperature while Saki had the lowest mean CO_2 concentration and lowest mean temperature (Figure 3, Figure 5). This study further showed a higher mean concentration of CO_2 at afternoon period than morning period for the non-forested areas selected in this study while the forest reserves showed a higher concentration of CO_2 in the morning periods than afternoon periods (Figure 6).

A Pearson's correlation test between CO₂ and temperature observations obtained from the study locations revealed a positive correlation to exist for the variables within the town locations while a negative correlation was observed to exist within each forest reserve. Consequently, the observations showed that an increase in means CO₂ characteristically related with an increase in mean temperature for the nonforested domain while an increase in mean CO2 related with a decrease in mean temperature at the forest reserves (Table 4). The disparity in correlation coefficients between CO₂ and temperature for the forest and non-forested domain could be attributed to the fact that forests/trees sequester, or make use of carbon (IV) oxide, in the presence of sunlight (that is, increase in temperature), to produce food. Hence, the reduction of CO₂ within the forest domains compared to that observed at the non-forested areas. A Welch's t-test showed a marked statistical difference in the

measurement of the CO_2 concentration for each forest reserve and non-forested domain close to them (Table 5), at 95% confidence interval (i.e. at alpha level equals 0.05).

Conclusion: This result shows that the recent CO_2 increase is causing the temperature increase in nonforested domain, nonetheless, there exist weak correlations between surface temperature and atmospheric CO_2 concentration in the forest. This study reveal that values of CO_2 obtained was higher when compared with IPCC limit of CO_2 emission which is an average of 435ppm. There is the need for concerted efforts to reduce CO_2 in order to stem possible air pollution episodes in the future and this is achievable by routine monitoring of CO_2 level and increasing information programs.

Acknowledgement- All thanks to Forestry Research Institute of Nigeria Ibadan, for the support given during this research work.

REFERENCES

- Ana, GR; Ojelabi, P; Shendell, DG (2015). Spatiotemporal variations in carbon dioxide levels in Ibadan, Nigeria. *Int. J. Environ. Health. Res.* 25(3): 229-240.
- Davis, WJ (2017). The Relationship between Atmospheric Carbon Dioxide Concentration and Global Temperature for the Last 425 Million Years. *Climate* 5: 76.

AWOSUSI, BM; ADAMU, IS; ORUNKOYI, AR; ATIBA, DO; OBE, AA; AMORI, MD; ADEDOYIN, ED

- Koerner, B; Klopatek, J (2002). Anthropogenic and natural CO₂ emission sources in an arid urban environment. *Inter. J. Environ. Pollute* 116: S45–S51.
- R Core Team (2020). R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. URL: <u>https://www.R-project.org/</u>.
- Rosenzweig, C; Elliott, J; Deryng, D; Ruane, AC; Müller, C; Arneth, A; Boote, KJ; Folberth, C; Glotter, M; Khabarov, N; Neumann, K; Piontek, F; Pugh, TA M; Schmid, E; Stehfest, E; Tomomi, Y; Selichiro, Y; Akira, T (2012). Comparison of the Characteristics of small Commercial NDIR CO₂ Sensor Models and Development of a portable CO₂ measurement device. www.mdpi.com/journal/sensors. ISSN 1424-8220.
- Yang, H; Jones, JW (2014). Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. *Natl. Acad. Sci.*, 111(9): 3268-3273
- Wickham, H (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. ISBN 978-3-319-24277-4, https://ggplot2.tidyverse.org.