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ABSTRACT: Forest aboveground biomass (AGB) is imperative in the study of climate change and the carbon cycle 

in the global terrestrial ecosystem. Developing a credible approach to estimate forest biomass and carbon stocks is 
essential. Four allometric models were used with two optimization algorithms; Modified Root Mean Square Propagation 

(Modified RMSProp) and Modified Adaptive Moment Estimation (Modified Adam) were also used to train each model. 

Convergence was achieved after 1000 iterations of Modified RMSProp and 200 iterations of Modified Adam for all the 
models. A learning rate of 0.01 and exponential decay rates of 0.9 and 0.999 for the first and second momentum. A loss 

function of 0.5 Mean Square Error (0.5 MSE) was used and Root Mean Square Error (RMSE) was used to judge the 

accuracy of the models. The study showed that the optimization algorithms were both able to accurately optimize three of 
the four allometric models. While Modified Adam was the more efficient optimizer, it had the highest RMSE value 2.3910 

and Modified RMSProp had the least RMSE value 0.37381. However, there was no statistically significant difference 

between the accuracy of the models optimized by both algorithms.  
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Forest is the most important and largest terrestrial 

ecosystem that plays important role in maintaining and 

promoting global ecological balance and biological 

evolution and community succession (Brown, 2002; 

Houghton, et al., 2009). Forest aboveground biomass 

(AGB) is an important variable in the study of climate 

change and the carbon cycle in the global terrestrial 

ecosystem. Estimating the biomass accurately is key 

in understanding the carbon cycle of the terrestrial 

ecosystem in large areas (Lu, et al., 2005; Li, et al., 

2015). Therefore, developing a credible approach to 

estimate forest biomass and carbon stocks is essential. 

The forest above-ground biomass is mainly estimated 

using two methods, the traditional field measurements 

(West, 2016) or remote sensing techniques (Lu, 2006). 

The two methods are used together to achieve 

accuracy over a large area. The traditional field 

measurement gives a more accurate estimate but it is 

not feasible on a large area as it is labour intensive, too 

costly and time-consuming. Previous studies have 

shown that remote sensing can effectively measure 

AGB at a regional scale, hence both the passive and 

active sensors have been used to estimate AGB (Deng, 

2014; Cao, et al., 2016; Shen, et al., 2016). To be able 

to accommodate the complex relationship between 

forest AGB and other predictor variables that cannot 

be fully captured by conventional statistical regression 

methods, when creating allometric models, it is 

important not to assume a linear relationship between 

the dependent and independent variables of regression 

models as is the case with most early biomass 

estimation studies (Le et al., 1992; Dong, et al., 2003). 

Machine learning methods and optimization 

algorithms can accommodate complex non-linear 

relationship between predictor variables and predicted 

variables, and improve the accuracy of the prediction 

(Ali, et al., 2015; Baghdadi, et al. 2015). Research 

questions such as: can RMSProp and Adam be able to 

optimize allometric models? Which of the 

optimization algorithms is more efficient at optimizing 

allometric models? This study seeks to evaluate the 

adaptive learning rate optimization algorithms on the 

allometric model and to determine its efficiency in 

calculating and predicting above-ground biomass with 

the main purpose of coming up with allometric 

equations for estimating aboveground biomass in 

tropical regions. 

 

MATERIALS AND METHODS 
Study Area: The Omo Forest Reserve, which derives 

its name from River Omo that traverses it, is located 

between latitudes 6o 42' to 7o 05' N and longitude 4o 

12' to 4o 35' E (Figure 1) Ogun state South-western 

Nigeria. Omo covers about 130,500 hectares, which 
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includes a 460 ha Strict Nature Reserve (Okali and 

Ola-Adams, 1987). The climate is tropical and it is 

characterized by wet and dry seasons. The 

temperature ranges between 21 and 34°C while the 

annual rainfall ranges between 150 and 3000 mm 

(Larinde et al., 2011; Adedeji et al., 2015). 

 
Fig 1: Omo Forest Reserve 

 

Data Collection: A Forest inventory-based approach 

was adopted to estimate above-ground tree biomass in 

the study areas. Transects were distributed over the 

entire forest, using a systematic segmented grid 

(Buckland et al., 2004) randomly superimposed onto 

the area. The forest inventory was conducted in 50 

plots of 30 m x 30 m sample plots randomly laid in the 

forest reserve. The structural variables such as 

diameter at breast height (DBH) ≥ 20 cm, tree height 

and wood density were recorded in the field. The 

structural information obtained was used to estimate 

the AGB, which is the total amount of living organic 

material of trees. Field measurement of tree variables 

was carried out using relascope, Haga altimeter, 

increment borer, scale weight, measuring tape, ranging 

pole and Global Positioning System (GPS). 

  

Determination of Biomass and Carbon Stock in the 

Study Area 

Measurement of total height: This is the vertical 

distance between the ground level and the tip of a tree. 

It is obtained by taking the reading at the top (RT) and 

reading at the base  (RB)  which is usually negative  

(when on an elevated ground) and positive (when in a 

depressed ground or valley). It was measured with the 

aid of Spiegel Relaskop. The formula used to obtain 

the total height (H) using the metric scale is: 

H = RT-RB               (1) 

 

Where𝐻 is the height, 𝑅𝑇 is the reading at the top, and 

𝑅𝐵 is the reading at the base.  

 

Measurement of Tree diameter at Breast Height 

(DBH): This is the diameter measurement taking for a 

standing tree at height 1.30 m above the ground level. 

This tree parameter was taken for trees within the 

permanent sample plots. This measurement is 

generally accepted in forest inventory. It is the easiest 

measurable parameter in forest inventory with a high 

degree of accuracy where guiding rules are followed.  

It was measured with the aid of diameter tape in 

centimetre (cm). 

 

Diameter at the middle (Dm) and diameter at the top 

(Dt) was also measured at various positions on the 

standing tree using Spiegel Relaskop. Readings for 

Dm and Dt were taken in terms of numbers of bands 

of the relaskop occupied by the stem of the trees both 

at the middle and the top.  These bands of relaskop are 

of two types, dark bands which are one unit each and 

big white bands which are four units each. The 

readings were taken by standing at a specified distance 

from the tree whose diameter is to be measured. 
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Wood Density: To determine the specific wood 

density, core samples were collected for each species 

at breast height. The specific wood density is the 

arithmetic average value of all samples of a species 

and was calculated as oven-dry weight divided by the 

fresh volume of each sample. The inner diameter of 

the bit of the increment borer device was 0.5 cm 

leading to a diameter of the sample of 0.5 cm. The 

length L of the sample was measured after its 

extraction. The oven-dry density (ρ) in terms of dry 

mass per fresh volume (g cm-3) of all collected wood 

samples was estimated using: 

 

𝜌 =
4𝑑𝑀𝑆𝑖

𝜋𝑑2𝐿𝑖
            (2) 

 

Where 𝑑𝑀𝑆𝑖 is the dry mass of wood sample 𝑖 
obtained by the increment borer, 𝑑 is the diameter of 

the bit, and 𝐿𝑖 is the length of the sample 𝑖. 
 

Data Processing 

Basal Area Estimation: Tree Basal Area (TBA) is the 

cross-sectional area (over the bark) at breast height 

(1.3 metres above the ground) measured in metres 

squared (m2). The TBA can be used to estimate tree 

volumes and stand competition. The Tree Basal Area 

was determined by measuring the diameter at breast 

height in centimetres and the basal area (m2) was 

calculated using an equation based on the formula for 

the area of a circle (𝑎𝑟𝑒𝑎 =  𝜋𝑟2 where 𝑟 =  𝑟𝑎𝑑𝑖𝑢𝑠 

and 𝜋 =  3.142)  and the formula for radius (𝑟 =
𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟/2 =  𝐷𝐵𝐻/2). 

 

𝐵𝐴(𝑚2)  =  𝜋𝑟2 ∗  𝐷𝐵𝐻(𝑐𝑚)2 /4              (3) 

 

Volume Estimation: Volume for each tree was 

estimated using Newton’s formula 

 

2 2 24

24

Db Dm Dt
V H

  
  

               (4) 

 

Where V is the stem volume  (m3),  H  is the total height  

(m),  Db is the diameter at base (cm), Dm is the 

diameter at the middle (cm), and Dt is the Diameter at 

the top (cm). 

 

Above Ground-ground Biomass (AGB) Calculation: 

The above-ground biomass (AGB) for each tree was 

estimated using the formula: 

𝐴𝐺𝐵 = 𝑉 ×  𝜌 × 𝐵𝑒𝑓               (5) 

 

Where AGB (t/ha) measured in tonne per hectare is the 

aboveground biomass of the tree, V is the volume of 

the tree (m3/ha) measured in cubic metre per hectare, 

𝜌 is the specific wood density (t/m3), and 𝐵𝑒𝑓  is the 

biomass expansion factor.  

 

Model Development: Let 𝑌𝐴𝐺𝐵  and  𝑋𝑂𝐴𝑉  be 

independent variables denoting observations on AGB 

and a combination of other allometric variables 

(OAV), respectively. Also, let the relation between 

𝑌𝐴𝐺𝐵  and  𝑋𝑂𝐴𝑉   be given by: 

 

𝑌𝐴𝐺𝐵 =  𝑎0 + 𝑎1𝑋𝑂𝐴𝑉 + 𝑒𝑖         (6) 

 

where 𝑎0 and 𝑎1 are unknown parameters for the 

function and 𝐸𝑟𝑟𝑜𝑟  is a vector of measurement errors.  

 

Loss Function: The loss function used is the Half 

Mean Squared Error (HMSE) and is defined as: 

 

𝐿(𝜃0, 𝜃1) =  
1

2𝑛
∑ (𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑌𝐴𝐺𝐵)

2𝑛
𝑖=1      (7) 

 

Modified Root Mean Square Propagation (Modified 

RMSprop): The objective of RMSprop is to minimize 

(7). RMSprop is defined by Bubeck (2015) as: 

 

𝜃𝑗
𝑖+1  =  𝜃𝑗

𝑖  −  
𝜏

√𝑚𝑡
𝑖+1+10𝑒−8

𝜕

𝜕𝜃𝑗
𝐿(𝜃0, 𝜃1)        (8) 

 

Where 𝜃𝑗
𝑖 represents the value of the 𝑗𝑡ℎ coefficient of 

the 𝑖𝑡ℎ iteration, 𝜏 is the learning rate and 𝑚𝑡
𝑖+1 is 

defined as: 

 

𝑚𝑡
𝑖+1 =  𝛽𝑚𝑡

𝑖 +  (1 −  𝛽)
𝜕

𝜕𝜃𝑗
𝐿(𝜃0, 𝜃1)        (9) 

 

𝛽 is the exponential decay rate of the momentum 𝑚𝑡. 

According to Okonkwo et al. (2020), using the 

RMSprop algorithm as defined in (8) for traditional 

regression problems resulted in complex number 

regression coefficients due to the possibility of 

negative momentum 𝑚𝑡 in the algorithm. To solve this 

problem, we resorted to using Modified RMSprop 

which uses the absolute value of |𝑚𝑡
𝑖+1|. 

 

𝜃𝑗
𝑖+1 =  𝜃𝑗

𝑖 −  
𝜏

√|𝑚𝑡
𝑖+1|+10𝑒−8

𝜕

𝜕𝜃𝑗
𝐿(𝜃0, 𝜃1)       (10) 

 

For 𝑗 = 0,           𝑚𝑡
𝑖+1 =  𝛽𝑚𝑡

𝑖 +  (1 −  𝛽)
1

𝑛
∑ (𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 −  𝑌𝐴𝐺𝐵)𝑛

𝑖=1       (11) 
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𝜃0
𝑖+1 =  𝜃0

𝑖 − 
𝜏

√|𝑚𝑡
𝑖+1|+10𝑒−8

1

𝑛
∑ (𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 −  𝑌𝐴𝐺𝐵)𝑛

𝑖=1             (12) 

For 𝑗 = 1,      𝑚𝑡
𝑖+1 =  𝛽𝑚𝑡

𝑖 +  (1 −  𝛽)
1

𝑛
∑ (𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 −  𝑌𝐴𝐺𝐵)𝑛

𝑖=1 𝑋𝑂𝐴𝑉        (13) 

𝜃1
𝑖+1 =  𝜃1

𝑖 − 
𝜏

√|𝑚𝑡|+10𝑒−8

1

𝑛
∑ (𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑌𝐴𝐺𝐵)𝑛

𝑖=1 𝑋𝑂𝐴𝑉           (14) 

 

Modified Adaptive Moment Estimation (Modified 

Adam): The objective of Adam is to minimize (7). 

Adam is defined by Kingma and Ba (2017): 

𝜃𝑗
𝑖+1 =  𝜃𝑗

𝑖 −  
𝜏

√𝑣𝑡
𝑖+1+10𝑒−8

𝑚𝑡
𝑖+1               (15) 

Where 𝜃𝑗
𝑖 represents the value of the 𝑗𝑡ℎ coefficient of 

the 𝑖𝑡ℎ iteration, 𝜏 is the learning rate. 𝑚𝑡 and 𝑣𝑡 are 

the respective first and second momentum of the cost 

function of the algorithm respectively defined as: 

𝑚𝑡
𝑖+1 =  𝛽1𝑚𝑡

𝑖 + (1 −  𝛽1)
𝜕

𝜕𝜃𝑗
𝐿(𝜃0, 𝜃1)      (16) 

𝑣𝑡
𝑖+1 =  𝛽2𝑣𝑡

𝑖 +  (1 − 𝛽2)
𝜕

𝜕𝜃𝑗
𝐿(𝜃0, 𝜃1)        (17) 

 

𝛽1 and 𝛽2 are the exponential decay rates for the first 

and second momentum respectively. Also, due to the 

possibility of negative momentum 𝑣𝑡, using Adam as 

defined in (15) results in the coefficients being 

complex numbers. However, using Modified Adam 

which uses the absolute value of |𝑣𝑡
𝑖+1| results in (15) 

becoming (Okonkwo et al., 2020): 

 

𝜃𝑗
𝑖+1 =  𝜃𝑗

𝑖 −  
𝜏

√|𝑣𝑡
𝑖+1|+10𝑒−8

𝑚𝑡
𝑖+1                                                                     (18) 

 

Where 𝑚𝑡, 𝑣𝑡 and 
𝜕

𝜕𝜃𝑗
𝐿(𝜃0, 𝜃1) are as defined above. 

For 𝑗 = 0,  𝑚𝑡
𝑖+1 =  𝛽1𝑚𝑡

𝑖 +  (1 −  𝛽1)
1

𝑛
∑ (𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑌𝐴𝐺𝐵)𝑛

𝑖=1                  (19) 

𝑣𝑡
𝑖+1 =  𝛽2𝑣𝑡

𝑖 +  (1 − 𝛽2)
1

𝑛
∑ (𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 −  𝑌𝐴𝐺𝐵)𝑛

𝑖=1                                       (20) 

𝜃0
𝑖+1 =  𝜃0

𝑖 − 
𝜏

√|𝑣𝑡
𝑖+1|+10𝑒−8

𝑚𝑡
𝑖+1                                                                       (21) 

For 𝑗 = 1, 𝑚𝑡
𝑖+1 =  𝛽1𝑚𝑡

𝑖 +  (1 − 𝛽1)
1

𝑛
∑ (𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 −  𝑌𝐴𝐺𝐵)𝑛

𝑖=1 𝑋𝑂𝐴𝑉           (22) 

𝑣𝑡
𝑖+1 =  𝛽2𝑣𝑡

𝑖 +  (1 − 𝛽2)
1

𝑛
∑ (𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑌𝐴𝐺𝐵)𝑛

𝑖=1 𝑋𝑂𝐴𝑉                                (23) 

𝜃1
𝑖+1 ∶=  𝜃1

𝑖 −  
𝜏

√|𝑣𝑡
𝑖+1|+10𝑒−8

𝑚𝑡
𝑖+1                                                                     (24) 

 

Data Analysis: Data analysis was carried out using 

GNU’s Octave (Eaton et al., 2014). Data was split into 

two parts: training set (80%) and validation set (20%). 

Modified RMSProp and Modified Adam were used on 

the training set with a learning rate of 0.01 and 

exponential decay rates of 0.9 and 0.999 respectively 

for the first and second momentum of the algorithms. 

Modified RMSProp has just one momentum. The 

resulting estimated parameters were then used to 

create regression models between the dependent 

variable (ln (𝐴𝐺𝐵)) and the independent variable 

(𝑙𝑛 (𝐷), ln (𝐷𝐻), 𝑙𝑛 (𝐷2𝐻), 𝑙𝑛 (𝐷2𝐻𝑊)) of each 

allometric model. The input data from the validation 

set is then inputted in the regression model to predict 

𝑙𝑛 (𝐴𝐺𝐵) described as 𝑙𝑛 (𝐴𝐺𝐵̂). The predicted values 

are compared with the test values and accuracy was 

measured with a Welch’s t-test and Root Mean Square 

Error (RMSE). 

 

RESULTS AND DISCUSSION 
The optimization algorithms converged after a 

different number of iterations for each allometric 

model (Figure 3): Modified RMSProp converged after 

1000 iterations while Modified Adam converged after 

200 iterations. Both algorithms started from the same 

maximum loss of 8.7730 for all allometric models but 

converged to different minimum losses (Table 1). It 

can also be seen from Figure 3 that Model 1 has the 

lowest convergent rate, and the highest minimum loss 

for both algorithms (Table 1), while models 3 and 4 

have the highest convergent rate for Modified 

RMSProp and Modified Adam respectively. 
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Fig 2. Convergence for each Algorithm. (A). Modified RMSProp (B). Modified Adam 

 

From (Table 1) the estimated parameters for the slope 

𝜃0 and intercept 𝜃1 of each allometric model are equal. 

The estimated parameters and the minimum loss from 

both optimization algorithms for each allometric 

model are approximately equal. The estimated 

parameters for Model 1 is: 0.90298 for Modified 

RMSProp and 0.90185 for Modified Adam, while the 

minimum loss for Model 1 is 0.10618 for Modified 

RMSProp and 0.10620 for Modified Adam. However, 

Model 2, Model 3 and Model 4 respectively have the 

same minimum loss of 0.095934, 0.091944 and 

0.077989 for both optimization algorithms. It can also 

be seen that Modified Adam had the highest RMSE 

value of 2.3910 for Model 4, while Modified 

RMSProp had the least RMSE value 0.37381 for 

Model 3 (Table 2). 

 
Table 1. Descriptive Statistics and Parameter Estimates of the Models after Iterations. 

 

Variables 

RMSProp Adam 

𝜃0 𝜃1 Min. Loss 𝜃0 𝜃1 Min. Loss 

ln (𝐴𝐺𝐵) ln (𝐷) 0.90298 0.90298 0.10618 0.90185 0.90185 0.10620 

ln (𝐴𝐺𝐵) ln (𝐷𝐻) 0.55232 0.55232 0.095934 0.55252 0.55252 0.095934 

ln (𝐴𝐺𝐵) 𝑙𝑛 (𝐷2𝐻) 0.37311 0.37311 0.091944 0.37358 0.37358 0.091944 

ln (𝐴𝐺𝐵) ln (𝐷2𝐻𝑊) 0.39189 0.39189 0.077989 0.39145 0.39145 0.077989 

 

The parameters for Model 2 are 0.55232 and 0.55252 

for Modified RMSProp and Modified Adam 

respectively, while the parameters for Model 3 are 

0.37311 and 0.37358 for Modified RMSProp and 

Modified Adam respectively. Model 4 has parameters 

0.39189 and 0.39145 for Modified RMSProp and 

Modified Adam respectively. Model 1 has the highest 

minimum loss of 0.10620 for both algorithms while 

Model 4 has the least minimum loss of 0.077989.  
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Fig 3: Regression Line with Model 1. (A). Modified RMSProp (B). Modified Adam 

 

From (Table 2), except for Model 4, there was no 

statistically significant difference between the 

predicted and validation variables. Model 3 has the 

least validation error of 0.37381 and 0.37415 for 

Modified RMSProp and Modified Adam respectively 

followed by Model 2 with validation errors 0.39304 

and 0.39313 for Modified RMSProp and Modified 

Adam. Model 1 has the second-highest validation 

error of 0.40149 and 0.40123 for Modified RMSProp 

and Modified Adam respectively.  

 
Table 2: Test Accuracy for each Allometric model 

  RMSProp Adam 

  T–statistic p–value RMSE T–statistic p–value RMSE 

𝑙𝑛(𝐴𝐺𝐵)𝑡𝑒𝑠𝑡 𝑙𝑛(𝐴𝐺𝐵̂)
1
 -0.45414 0.65024 0.40149 -0.39178 0.69566 0.40123 

𝑙𝑛(𝐴𝐺𝐵)𝑡𝑒𝑠𝑡 𝑙𝑛(𝐴𝐺𝐵̂)
2
 -0.50606 0.61340 0.39304 -0.52411 0.60082 0.39313 

𝑙𝑛(𝐴𝐺𝐵)𝑡𝑒𝑠𝑡 𝑙𝑛(𝐴𝐺𝐵̂)
3
 -0.45112 0.65242 0.37381 -0.51373 0.60804 0.37415 

𝑙𝑛(𝐴𝐺𝐵)𝑡𝑒𝑠𝑡 𝑙𝑛(𝐴𝐺𝐵̂)
4
 31.817 0 2.3890 31.848 0 2.3910 

 

 
Fig 4: Regression Line with Model 2. (A). Modified RMSProp (B). Modified Adam 
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Model 4 has the highest validation error of 2.3890 and 

2.3910 for Modified RMSProp and Modified Adam 

respectively and there is a statistically significant 

difference between the predicted and validation data. 

This disparity between the predicted and validation 

values of Model 4 is most likely due to overfitting of 

the data during training since it has the fastest 

convergent rate for both algorithms, and the lowest 

training error but the highest validation error. Further 

investigation needs to be carried out on the model with 

fewer training iterations for both algorithms. 

 

 
Fig 5: Regression Line with Model 3. (A). Modified RMSProp (B). Modified Adam 

 

Conclusion: The study showed that the optimization 

algorithms were both able to accurately estimate the 

optimum parameters for three (out of four) allometric 

models with each fitting the data appropriately (Figure 

4, and Figure 5). Modified Adam had the highest 

RMSE value 2.3910 for Model 4, while Modified 

RMSProp had the least RMSE value 0.37381 for 

Model 3. Except for Model 4, there was no statistically 

significant difference between the actual and the 

predicted values of the models optimized by both 

algorithms.  
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