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ABSTRACT: Forest Canopy density (FCD) is an important index in the assessment and monitoring of forest 

ecosystems and it is a significant indicator for potential management interventions. The objective of this study was to 

analyse forest cover and landscape changes with Landsat images of 1990 and 2018 using FCD and Landscape metrics 
and, Markov Chain and CA-Markov to project the forest cover classes in Omo Forest Reserve. The FCD was obtained 

from the combination of data from the Advance Vegetation Density index (AVI), Bare soil index (BI), and Forest 

Shadow Index (FSI). Four categories of change were identified in the reserve, no change, growth, degradation, and 
deforestation. There was no change in 41798.79ha (44.36%), growth had 22498.11ha (23.87%), degradation with 

24916.05ha (26.45%), and deforestation with the least change with 5006.43 (5.32%). Deforestation had the least area 

coverage with 5006.43 ha. Degradation with a change rate of 0.27 % contributed more in terms of change. There was 
a slight increase in the values of the three diversity indices (SHDI, SHEI, SIDI) while a high degree of homogeneity 

is recorded in the no forest class, and the three others classes were fragmented. The 28years projection showed a slight 

change with no forest area gaining 1.7% while the high forest density losing 2%. Assessment and monitoring of the 
forest ecosystem will enhance its ecosystem services potential. 
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The increase pressure on the forests due to significant 

growth in human disturbance particularly in the tropics 

has resulted to a consistent degradation of the forest 

areas (Kiran et al., 2011 and Lewis et al., 2015). It also 

has an effect on the composition, abundance and 

natural regeneration of the species (Benitez-Malvido, 

1998 and Laurance et al., 2007). Tropical 

deforestation is considered the major contributor to 

global environmental change (Blaikie et al., 2015) that 

poses significant threats to biodiversity, climate and 

livelihoods (Hartter et al., 2012). Deforestation in 

Africa's tropics accounted for more than 23% of the 

global forest loss (Houghton, 2012). Protected areas or 

forest reserves form the backbone of forest 

conservation policy in developing countries (Craigie et 

al., 2010). The forests aid as biodiversity repositories 

(Li et al., 2009), restrain soil erosion (Nandy et al., 

2011), prevent landslides since tree roots bind the soil, 

regulate air moisture, temperature and mitigate global 

warming (Cabral et al., 2010) by absorbing 30 percent 

of CO2 emissions from fossil fuels (Pan et al., 2011). 

The goods and services provided by forested 

landscapes are vital for the socio-economic 

development of human populations (DeFries et al., 

2004) and their survival (Ramachandra et al., 2013). 

On a large scale, more recent changes in land cover are 

changing the structure of the ecosystem, impacting 

ecosystem goods and services. This disturbance 

resulted in forest fragmentation with a mosaic of 

natural plots surrounded by other land uses 

(Ramachandra and Kumar 2011). A host of 

anthropogenic activities, such as tree logging, 

conversion of forest land to agriculture, intense 

agricultural practices, forest fire and unplanned 

infrastructural development have contributed to the 

disruption of the contiguity of forests in predominantly 

natural landscapes (Buskirk et al., 2000; Boogaert et 

al., 2004). A change in forest structure due to forest 
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fragmentation has affected its functional capacities, as 

evidenced by declining water production, carbon 

sequestration potential and biodiversity. (Diaz et al., 

2006; Ramachandra and Kumar 2011). Any landscape 

is a mosaic of heterogeneous interacting dynamic 

elements, i.e., the occurrence of natural and 

anthropogenic processes. A landscape's structure (size, 

shape and configuration) affects its functional aspects 

such as biogeochemical cycles and hydrological 

regimes. Interactions between landscape elements 

result in a stream of nutrients, minerals and energy that 

contribute to the functioning of the landscape. 

Forest ecosystems constitute a key component of the 

global carbon cycle that account for over two-thirds of 

net primary production on land through photosynthesis 

converting solar energy into biomass (Roy et al., 2001; 

Ramachandra et al., 2013). Forest ecosystems contain 

wood and non-timber forest products, such as 

medicinal resources, firewood and recreational values 

(Kindstrand et al., 2008). Predicting future 

spatiotemporal forest scenario of forest degradation 

and fragmentation is an indispensable need for 

developing a framework that can help in prioritizing 

forest conservation aimed at monitoring forest 

biodiversity loss (Loynl et al.,2001), mitigating 

climate change (Azevedo et al.,2014), and gradually 

improving ecosystem services (Loynl et al.,2001). The 

objective of this study was to analyse forest cover and 

landscape changes using FCD and Landscape metrics 

and, Markov Chain and CA-Markov to project the 

forest cover classes in Omo Forest Reserve.  

 

MATERIALS AND METHODS  
Study Area: The Omo Forest Reserve, which derives 

its name from River Omo that traverses it, is located 

north of Sunmoge, between latitudes 6o 42' to 7o 05' N 

and longitude 4o 12' to 4o 35' E (Fig 1) in the Ijebu area 

of Ogun State in South-western Nigeria. Omo covers 

about 130,500 hectares, which includes a 460 ha Strict 

Nature Reserve (Okali and Ola-Adams 1987). The 

climate is tropical and it is characterized by wet and 

dry seasons. The temperature ranges between 21 and 

34°C while the annual rainfall ranges between 150 and 

3000 mm (Larinde et al., 2011; Adedeji et al., 2015). 

Landsat satellite images of 1990 (Landsat TM) and 

2018 (Landsat 8 OLI) with path 190 and row 55, were 

downloaded from the official website of the United 

States Geological Survey (USGS). These images 

provide moderate-scale data of 30m. The satellite 

images obtained were subjected to basic adjustments 

or pre-processing. This pre-processing is necessary to 

adjust the data for use in quantitative analysis (Agbor 

et al., 2017) and it consists of geometric and 

radiometric corrections. The images used in this study 

were first converted to Top of Atmosphere (TOA) 

radiance using equation 1 (Giannini et al., 2015). 

 

Lλ = (
(LMAXλ−LMINλ)

QCALλ
) QCAL + LMINλ      (1) 

 

Where: 𝐿𝜆 =Spectral radiance at the sensor's aperture 

[W/(m2 sr µm)]; QCAL = Quantized calibrated pixel 

value [DN]; QCALMIN = Minimum quantized 

calibrated pixel value corresponding to LMIN𝜆 [DN]; 

QCALMAX = Maximum quantized calibrated pixel 

value corresponding to LMAX𝝀) [DN]; LMIN 𝜆 = 

Spectral at-sensor radiance that is scaled to QCALMIN 

[W/(m2 sr µm)]; LMAX, = Spectral at-sensor radiance 

that is scaled to Qcalmax [W/ (m 2 sr µm)] 

. 

 

 
Fig.1. Omo Forest Reserve 
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The above expression does not consider the 

atmospheric effects, therefore there is a need to 

convert images from radiance to reflectance measures, 

using equation 2 ((Giannini et al., 2015).  

 
2

Esun

* r*d

E *Cos sz

TOA



 



                    (2) 

 

Where: 𝜌𝜆 = Planetary TOA reflectance (unitless); 

π= mathematical constant approximately equal to 

3.14159 (unitless); 𝐿𝜆 = spectral radiance at the 

sensors aperture [w/(m2 sr µm)]; 𝑑2 = the earth-Sun 

distance (Astronomical unit); 𝐸𝑆𝑈𝑁 = mean 

exoatmospheric solar irradiance [w/(m2 sr µm)]; θSZ= 

the solar zenith angle (degree). The cosine of this angle 

is equal to the sine of the sun elevation θSE; That is, θSZ 

= cos(90- θSE). 

 

The grid referencing system of individual bands of 

each of the images used has been transformed to one 

reference system (WGS1984 UTM Zone 31N). The re-

projection is important to make an accurate analysis of 

the datasets and comparability possible.  

 

 
Table 1. Landscape metrics used in the study 

Metric Abbreviation Description 

Land Cover LC Equals the number of cells for each class based on a classified land cover matrix. The 

resulting values were multiplied by the cell’s value; (ha) 

Landscape 

proportion 

LP Landscape  proportion  (LP)  quantifies  proportional abundance  of  certain  class  in  

the  total  landscape area(0<LP≤100); % 

Edge Length EL Equals  the  total  length  of  all  patches  from  a  specific  class.  The resulting values 

were, of course multiplied with the cell’s value; (m). 

Edge Density ED Edge  Density  equals  the  sum  of  the  lengths  of  all  edge segments involving the 
corresponding  patch type, divided by the total landscape area ; (m/ha) 

Number of Patches NP Express the number of patches identified for each class; (no.). 

Patch density   PD Equals the number of patches of the corresponding patch type divided by total 

landscape area; (no. /100 ha). 

Greatest patch  
area 

GPA Greatest Patch Area identifies area under single largest patch in a given landscape. It is 
a measure of dominance i.e. degree of homogeneity 

Mean Patch area MPA Mean Patch area serves as a fragmentation index. A landscape with smaller mean patch 

area for the target patch type than another landscape might be considered more 
fragmented. 

Over all Core area OC Total core area (ha) or the percentage of the landscape comprised of core area at the 

class or landscape level. Core area is a compound measure of shape, area and edge 

depth 

Landscape  

division 

LD Landscape  Division  is  defined  as  the  probability  that  two  

randomly  chosen  places  in  the  landscape  to  be  found  in  the same patch. 

Effective mesh  

size 

m The probability that two randomly chosen cells are connected (to be included into the 

same patch); (ha). 

Splitting index S The number of patches one gets when dividing the total region into parts of equal  size  

in  such  a  way  that  this  new  configuration  leads  to  the  same degree of landscape 

division desired; (nr.). 

Shannon’s 
Diversity Index 

SHDI Based on information theory; represents the amount of "information" per individual (or 
patch type, in this case); larger values indicate a greater number of patch types and/or 

greater evenness among patch types. 

Shannon 
Equitability Index 

SHEI Shannon Equitability (Evenness) Index expresses the dominance of patches within the 
total area. 

Simpson Diversity 

Index 

SIDI Simpson Diversity Index represents the probability that any two pixels selected at 

random would be different patch types. The larger the value the greater the likelihood 
that any 2 randomly drawn cells would be different patch types 

 

 

Landscape Metrics and Diversity Analysis: Remote Sensing data was 

primarily utilized to create a necessary database for two time periods, 

1990 and 2018. The landscape characterization of the study area will be 

conducted through a two-stage analysis which will focus on, 

standardized approach to understand the land cover patterns, and a 

quantitative approach to describe compositional and spatial aspects of the 

landscape. In this study, the LecoS plugin in QGIS was used to identify 

patches by class to calculate landscape metrics. The defined method of 

landscape ecology indices within landscape structure analysis will be 

performed for classified classes. Calculated coefficients can be classified 

according to the type of evaluated characteristic into categories of 

indices: shape, size, diversity, edges, and proximity (Stejskalova et al., 

2012). Statistically, many of the metrics are correlated and can be 

depicted in concise form according to the structural characteristics 

(Rajendran et al., 2015). Table 1 

shows the indices, acronyms used, 

and a short description of each 

indicator. 

 

The CA-Markov Chain Model (CA-

MCM): The integration of the CA-

Markov model is considered to be 

valuable for modeling land use 

changes and able to simulate and 

predict changes (Singh et al., 2015, 

Parsa et al., 2016). The CA-Markov 

model is the combination of Cellular 

Automata and transition probability 

matrix generated by the cross-
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tabulation of two different images (Singh et al., 2015). This combination 

of the CA-Markov model provides a robust approach in Spatio-temporal 

dynamic modeling (Hamad et al., 2018, Wang et al., 2001). Furthermore, 

CA uses Markov to add spatial character to the model. In other words, 

the CA-Markov chain can simulate two-way transitions among any 

number of categories and can predict any transition among any number 

of categories (Pontius et al., 2005, Ye et al., 2008). 

 

RESULTS AND DISCUSSION 
Forest Canopy Density of Omo Forest Reserve: The AVI and BSI both 

had a negative relationship with each other, a high AVI value shows high 

vegetation vigour, and similarly, high BSI shows soil exposure.  

 

 
Fig 2. Forest Canopy Density of Omo Forest Reserve 1990 and 2018 

 

Utilising the various spectral indices, vegetation density, and scale 

shadow index, the forest canopy density map was produced for the years 

1990 and 2018. It was thereafter utilised for the classification of the forest 

cover and its change detection. Based on the percentage, each pixel was 

classified into four classes of forest canopy density: high forest density, 

mid forest density, low forest density, and no forest. High forest density 

is areas having a value from 71 to 100%. In the same manner, 41 – 70%, 

5 – 40%, and below 5% were areas with mid forest density, low forest 

density, and no forest respectively (Figure 2). The maps described the 

distribution of forest resources in Omo Biosphere through the FCD 

model.  The statistics in Table 2 showed that from 1990 to 2018, the no 

forest area increased by 3747.42 ha at the rate of 0.14 %. This increase 

was significant compared to the biosphere that was highly restricted.  The 

changes in low forest area were 

insignificant as the difference 

between 1990 and 2018 was 423.99 

ha compared to the total land area 

(94219.38 ha). The mid forest 

density like the low forest density 

had an insignificant increase as it 

was 44.5 % in 1990 and 44.85 % in 

2018. The high forest density 

decreases by 4502.61 ha from 43.78 

% in 1990 to 39 % in 2018. The 

result showed that the rate of forest 

degradation is more than 

deforestation in Omo forest reserve. 

This is a result of logging and 

farming that takes place in the forest 

reserve. Even though, the entire 

Omo forest reserve was accessible 

except the biosphere it still has great 

capacity to sink carbon to mitigate 

the impact of climate change. Krug, 

(2019) observed that forest 

management increase biomass 

accumulation and CO2 

sequestration. Forest management 

in the observed beech-dominated 

forest stands leads to a 15.6% higher 

cumulative biomass growth 

compared to stands where 

management was discontinued and 

when harvested biomass is 

considered. The cumulative biomass 

growth of beech alone is noted as 

about 19.1% higher in management 

areas than in adjacent forest 

reserves. The comparison of the 

selected forest reserves and adjacent 

management areas to a larger extent 

(about 450 ha beech-dominated 

forests) allows this conclusion for 

the observed stand age classes 

(Krug, 2019). There is a need to 

properly manage the existing 

reserves and create new ones to 

effectively achieve the benefits of 

the conversed forest in South 

Western Nigeria. 

 

Landscape Metrics and Diversity 

Analysis: Tables 5 showed the 

values resulting from the calculation 

of global indices performed for the 

two periods. In terms of diversity, 

there was a slight increase of the 

values of the three indices (SHDI, 

SHEI, and SIDI) in the reserve 



Analysis of Forest Dynamics using Landscape Metrics and Markov Chain Model…..                                    1569 

MSHELIA, Z. H; AIGBOKHAN, O. J; AGBOR, C. F. 

(Table 5), as a result of the increase of some classes area reported to the 

general distribution of the landscape. The slight increase of the diversity 

values can be explained by an increase in the No Forest class from 2.13% 

to 6.11% and a decrease of the High Forest Density class from 43.78% 

to 38.99% (Table 2). 
 

Table 2. Area of Forest Density Classes of Omo Forest Reserve 

Class 1990 

Area 

(ha) 

% 2018 

Area 

(ha)  

% Area 

Diff. 

(ha) 

Change 

Rate 

(%) 

No Forest 2009.7 2.133 5757.12 6.1103 3747.42 0.142 
Low Forest 

Density 

9036.54 9.591 9460.53 10.041 423.99 0.0161 

Mid Forest 
Density 

41926.23 44.499 42257.43 44.85 331.2 0.0126 

High Forest 

Density 

41246.91 43.778 36744.3 38.999 -4502.61 0.1707 

Total 94219.38 100 94219.38 100   

 

 
Fig 3. Area of Forest Density Classes of Omo Forest Reserve 

 

However, the values of diversity and evenness remain relatively high, 

suggesting that the study area, which has favourable physical and 

geographical conditions, has a complex landscape with certain dominant 

species. In terms of landscape configuration, features, and functionality, 

some other landscape indices were calculated (Tables 6). Unlike 

diversity indices, these were applied particularly to each class. Table 1 

presents the indicators, the abbreviation used, and a short description for 

each type. Land Cover (LC) and Landscape Proportion (LP) - Significant 

changes were observed in the four classes both in the high forest density 

classes. The edge length (EL) and edge density (ED) - The result showed 

an increase of the two indices values for most classes tending towards 

heterogeneity. 

 

Number of Patches (NP) and Patch Density (PD) - A significant decrease 

was observed in mid forest density (MFD) of the biosphere from 120 to 

47. This explained why MFD occupied 49% of the biosphere. All the 

classes in Omo Forest Reserve had a decrease in PD except the no forest. 

Patch Density reflects the extent of landscape fragmentation and is 

therefore crucial for landscape structure assessment. Comparison of 

classes with varying sizes showed decreasing PD in most of the classes 

in the reserve. However, the rate of the decrease is moderate, thereby 

making the level of fragmentation insignificant for now. It was further 

explained following also the values 

of edge density. Edge density, with 

patch number and patch density, are 

representative for establishing the 

fragmentation degree of the 

landscape. The values obtained for 

the fragmentation (NP and, 

consequently, PD and ED) reveal a 

decrease in the study area’s 

fragmentation degree, inducing a 

clustering tendency.  

 

Greatest patch area (GPA) is related 

to the degree of homogeneity or 

dominance of the landscape. Omo 

forest reserve had the highest GPA 

in MFD with 346554000 m in 1990 

and 235075500 m in 2018. The 

mean patch area is also higher for 

the categories mentioned above. 

Landscape division, Effective mesh 

size, and Splitting index (LD, m, and 

s) are interconnected and measure 

the fragmentation degree of the 

landscape. They have the advantage, 

unlike other conventional 

indicators, that any omissions or 

additions of other small-sized 

patches do not influence the final 

result. 

 

In this study, values of LD for all 

classes are high (above 0.9), 

reflecting a high degree of 

fragmentation of class types. 

Although landscape division and 

Mesh are perfectly correlated, but 

inversely, both metrics are included 

because of the differences in units 

and interpretation. Split (s) is based 

on the cumulative patch area 

distribution, and is interpreted as the 

effective mesh number, or some 

patches with a constant patch size 

when the corresponding patch type 

is subdivided into S patches, where 

S is the value of the splitting index 

(McGarigal et al.,2002).  

 

Jaeger 2000, defines the splitting 

index as the number of patches that 

resulted after dividing the total area 

into equal size parts so that this new 

configuration leads to the same 

degree of landscape division (LD).  
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Table 6.  Landscape Metrics Computed for Class Types for 1990 and 2018 in Omo Forest Reserve 

 
 

When its value is 1, the landscape is represented by a 

single patch, the value increasing as the landscape is 

divided into several patches. Considering these 

aspects, the interpretation of the results must take into 

account the correlation of these three complementary 

indicators. 

 
Table 5. Landscape Diversity Indices between 1990 and 2018 of 

Omo Forest Reserve 

Metric 1990 2018 

Shannon’s Diversity Index 1.292 1.352 

Shannon Equitability Index 0.803 0.839 

Simpson Diversity Index 0.697 0.708 

 

The resulting values of the three indicators suggest 

different degrees of fragmentation for each class. 

Thus, the areas with a high degree of homogeneity are 

represented was recorded in the no forest class, and the 

three others classes were fragmented.  The degree of 

landscape fragmentation is an important 

environmental indicator in the fields of biodiversity 

and sustainable development. In addition, information 

on the degree of landscape fragmentation is relevant in 

regional planning and for decisions about 

infrastructure placement or removal. Its analysis of 

different time series shows how strong the current 

trends are and what their direction is (Jaeger et al., 

2006). 

 

Transition probability matrix: Tables 7 showed the 

transition probability matrix computed using the forest 

cover classes in Omo Biosphere and Omo Forest 

Reserve of the periods of 1990-2018 to show the 

projection of each forest cover class category. This 

procedure contains two significant matrices of 

probabilities, which are the transition probability 

matrix and the conditional probability images. The 

probability maps generated by the Markov model 

convey initial information on the likelihood of forest 

cover change occurrence before the final CA–Markov 

model (Figure 5). The probability matrix for forest 

cover conversions for all classes in Omo Forest 

Reserve is shown in Table 7. The probability of change 

for no forest class to no forest is 31.75%, no forest to 

low forest density is 19.36%, no forest to mid forest 

density is 31.73% and no forest to high forest density 

is 17.16%. The probability of change for high forest 

density to no forest is 3.29%, high forest density to low 

forest density is 8.88%, high forest density to mid 

forest density is 47.4% and high forest density to high 

forest density is 40.43%. The result of the transition 

probability matrix showed that transition from no 

forest to low forest, mid forest, and high forest 

densities are faster if the current trend of change 

continues as compared to the forest degrading from 

high and mid forest densities to low forest density and 

no forest class in 2046. This showed that the forest 

reserve can regenerate despite the level of degradation 

if properly managed. The result of the 28years 

projection in Omo Forest Reserve (Table 8) showed a 

slight change with no forest area gaining 1550.7 ha 

from 6.1% to 7.8% while the high forest density 

degraded from 39% in 2018 to 37% in 2046, which is 

1760.4 ha. It is important to know, that forests with a 

good management system will serve as a carbon sink 

for climate change mitigation. Hence, there is a need 

for yearly monitoring of the reserve to fulfill it role of 

sinking carbon and providing ecosystem services. 

Projecting Omo Forest Reserve showed the potential 

of the reserve to maintain biodiversity and to sink 

carbon. Projection can also show the state of forest 

degradation. Therefore, projection is very important 

for decision-making to achieve sustainable forest 

management. 

 
 

Table 7. Transition Probability Matrix of Omo Forest Reserve for 28 years 

Class No 

Forest 

Low Forest 

Density 

Mid Forest 

Density 

High Forest 

Density 

No Forest 0.3175 0.1936 0.3173 0.1716 

Low Forest Density 0.1586 0.1314 0.5036 0.2063 

Mid Forest Density 0.0656 0.1216 0.4061 0.4067 

High Forest Density 0.0329 0.0888 0.474 0.4043 
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Fig 4: Forest Cover of Omo Forest Reserve 2018 (a) and 2046 (b) 

 

Table 8. Area of Forest Cover of Omo Forest Reserve for 2018 and 2046 

Class 2018 Area (ha) % 2046 Area (ha) % 

No Forest 5757.12 6.1 7307.82 7.8 

Low Forest Density 9460.53 10 10756.53 11 
Mid Forest Density 42257.43 45 41171.13 44 

High Forest Density 36744.3 39 34983.9 37 

Total 94219.38 100 94219.38 100 

 

Conclusion: The study area, which has favourable 

physical and geographical conditions, has a complex 

landscape with certain dominant types. The study 

determined that the diversity and fragmentation model 

are important for analysing the Spatio-temporal 

condition of the forest which will help forest managers 

in decision making, monitoring biodiversity, and 

conversation planning for sustainable forest 

management.  
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