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ABSTRACT: Hidden Markov Models (HMMs) which fall under the class of latent variable models have received 

widespread attention in many fields of applications. HMMs were initially developed and applied within the context 
of speech recognition. The theoretical framework underpinning the formalism of HMMs has also evolved over time 

and has found an exalted place in the theory of stochastic processes.  The three problems HMMs are used to resolve 

were discussed alongside their solutions in this paper. An application to criminal intelligence in unraveling the culprit 
in a situation involving theft was also carried out and results obtained indicated that the HMMs approach offered a 

similar result with that of the well-established Dynamic Programming approach. 
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Several models exist in the literature for characterizing 

the behavior of many real life processes and they can 

be dichotomized into deterministic and stochastic 

models. Deterministic models rely on some known 

specific properties of the observed process and hence 

it is straight forward to implement. On the other hand, 

stochastic models try to grasp the statistical properties 

of the process and as such they are more complex to 

deal with than deterministic models. Examples of such 

stochastic models are Markov models. Markov models 

have found great relevance in applications especially 

when the states of a process are fully observable but 

the existence of fully observable states is a very 

simplistic version of reality and in many complex 

situations, real life processes have one or more hidden 

states which can only be observed through another 

stochastic process which is fully observable. These 

kinds of processes with hidden states can best be 

modeled by a class of models called latent-variable 

models which include Hidden Markov Models 

(HMMs). The original works carried out on finite state 

space Markov models and works carried out on the 

theory of Gaussian linear state – space models, date 

back to the 1960s (Baum and Petrie, 1966; Baum and 

Egon, 1967; Baum and Sell, 1968). Since then, the 

successful application of these models in several 

distinct domains has spurred an ever-increasing 

interest in HMMs and in some other models derived 

from the principles of HMMs.  HMMs have been 

applied to so many aspects of real life problems and 
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more profoundly in speech recognition (see Baker, 

1975; Rabiner, 1989; Juang and Rabiner, 1991). A 

HMM is a Markov chain observed in noise. The model 

compose of a Markov chain denoted {𝑋𝑘}𝑘≥0 where 𝑘 

is an integer index. The Markov chain {𝑋𝑘}𝑘≥0 is often 

assumed to take values in a finite set, even though this 

restriction is not general and hence arbitrary number 

of states can be allowed. Furthermore, the Markov 

chain {𝑋𝑘}𝑘≥0 is hidden and not observable. What is 

available to the observer is another stochastic process 
{𝑌𝑘}𝑘≥0 connected to the Markov chain {𝑋𝑘}𝑘≥0 such 

that 𝑋𝑘 controls the distribution of the 

corresponding 𝑌𝑘. In fact, all statistical inference, even 

on the Markov chain {𝑋𝑘}𝑘≥0 itself, has to be done in 

terms of  {𝑌𝑘}𝑘≥0 only, since {𝑋𝑘}𝑘≥0 is not observed. 

Again, it is also assumed that 𝑋𝑘 is the only variable 

affecting the distribution of 𝑌𝑘. Thus a HMM is a 

bivariate discrete-time stochastic process {𝑋𝑘, 𝑌𝑘}𝑘≥0, 
where {𝑋𝑘} is a Markov chain and {𝑌𝑘} is a sequence 

of independent random variables conditioned on {𝑋𝑘} 

such that the conditional distribution of 𝑌𝑘 only 

depends on 𝑋𝑘. Fig 1 demonstrates the process 

diagrammatically 

 

 
Fig 1: Diagrammatic representation of the dependence structure of 

a Markov switching model 

 

Fig 1 demonstrates that the distribution of a variable 

𝑋𝑘+1 conditional on the history of the process 

𝑋0, … , 𝑋𝑘 is determined by the value taken by the 

preceding one,  𝑋𝑘; this is called the Markov property. 

Also, the distribution of  𝑌𝑘 conditionally on the past 

observations  𝑌0, … , 𝑌𝑘−1 and the past values of the 

state 𝑋0, … , 𝑋𝑘 is determined by 𝑋𝑘 only.  Indeed, even 

though the 𝑌𝑘′𝑠 are conditionally independent 

given {𝑋𝑘}, {𝑌𝑘} is not an independent sequence 

because of the dependence in {𝑋𝑘}. In short, {𝑌𝑘} is not 

a Markov chain either even though the joint process 
{𝑋𝑘 , 𝑌𝑘} is a Markov chain because, {𝑌𝑘} does not 

possess the memoryless property of Markov chains in 

the sense that the conditional distribution of 𝑌𝑘 given 

𝑌0, … , 𝑌𝑘−1 generally depends on all the conditional 

variables. Thus a HMM can be defined by a functional 

representation known as a latent state-space model 

 

𝑋𝑘+1 = 𝑓(𝑋𝑘 , 𝑈𝑘), 
𝑌𝑘 = 𝑔(𝑋𝑘 , 𝑉𝑘), 

 

Where {𝑈}𝑘≥0 and {𝑉𝑘}𝑘≥0 are mutually i.i.d 

sequences of random variables that are independent of 

𝑋0, and 𝑓 and 𝑔 are measurable functions. The first 

equation is the state equation, while the second 

equation is the observation equation. The two 

equations correspond to a recursive, generative form 

of the model but in this paper, our interest will be 

based on the specification of the joint probability 

distribution of the variables. Which approach is most 

natural and result-yielding, wholly depends on what 

the HMM is intended to model and for what purpose it 

is designed for. It is worthy to note that in this 

discussion, the Markov model is homogenous (the 

transition kernel does not depend on the time index 𝑘) 

and that the conditional law of  𝑌𝑘 given  𝑋𝑘 does not 

depend on 𝑘 too. A formal discussion on Markov and 

HMMs is presented in the next section. The problems 

and solutions of HMMs are contained in following 

section. An application of HMMs follows. The paper 

closes with a conclusion. 

 

Markov and Hidden Markov Models: Consider a 𝑄 −
valued stochastic process {𝑋𝑘}𝑘≥0, i.e., each 𝑋𝑘 is a 

𝑄 − valued random variable on a common underlying 

probability space (Ω, Σ, 𝑷) where 𝑄 is some measure 

space. We take 𝑋𝑘 to be the state of a process at time 

𝑘 and that 𝑄 is the state space of the process {𝑋𝑘}𝑘≥0. 

The process {𝑋𝑘}𝑘≥0, is said to be a Markov process if  

 

 𝑷(𝑋𝑘+1 ∈ 𝐴|𝑋0, … , 𝑋𝑘)
= 𝑷(𝑋𝑘+1 ∈ 𝐴|𝑋𝑘)    ∀𝐴, 𝑘.   (1) 

 

Thus the process is a Markov process if the future 

evolution of the process depends only on its present 

state and not on its past history. Central to the 

evolution of the states in a Markov process are set of 

fixed probabilities called transition probabilities 

which are the probabilities of moving from one state 

of the process to another. To fix ideas mathematically, 

we will need the concept of a transition kernel. 

 

Definition 1: A kernel from a measurable space 

(𝑄, 𝜉1) to a measurable space (𝐹, 𝜉2) is a map 𝑷: 𝑄 ×
𝜉2 → ℝ+ such that 

i. for every 𝑥 ∈ 𝑄, the map 𝐴 ⟼ 𝑷(𝑥, 𝐴) is a 

measure on 𝐹; and 

ii. for every 𝐴 ∈ 𝜉2, the map 𝑥 ⟼ 𝑷(𝑥, 𝐴) is  

measurable. 

 

If 𝑃(𝑥, 𝜉2) = 1 ∀𝑥 ∈ 𝑄, the kernel 𝑷 is called a 

transition kernel. 

 

Thus the stochastic process {𝑋𝑘}𝑘≥0, on the state space 

(𝑄, 𝜉1) is an homogenous Markov process if there 

exist a transition kernel 𝑷 from 𝑄 to itself such that 
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𝑷(𝑋𝑘+1 ∈ 𝐴|𝑋0, … , 𝑋𝑘) = 𝑷(𝑋𝑘, 𝐴)    ∀𝐴, 𝑘,    (2) 

 

Where 𝑷(𝑥, 𝐴) is the probability that the process will 

be in the set 𝐴 ⊂ 𝑄 in the next time step, given that it 

is currently in the state 𝑥 ∈ 𝑄. The probability 

measure 𝝅 on 𝑄 defined as 𝝅(𝐴) = 𝑷(𝑋0 ∈ 𝐴) is 

called the initial measure of {𝑋𝑘}𝑘≥0. 

 

In distinction to a Markov process is a HMM which is 

a Markov process decomposed into two components: 

an observable component and an unobservable or 

latent component. Thus a HMM is a Markov process 
{𝑋𝑘 , 𝑌𝑘}𝑘≥0 on the state space 𝑄 × 𝒪, where 𝑌𝑘 is 

observable and 𝑋𝑘 is not. In this case, 𝑄 is the state 

space of the unobserved 𝑋𝑘 and 𝒪 is the state space of 

the observed 𝑌𝑘. It is worthy to note that the process 
{𝑋𝑘}𝑘≥0 is a Markov process but {𝑌}𝑘≥0is not given 

that it is only a noisy functional of {𝑋𝑘}𝑘≥0. 

 

Definition 2: A stochastic process {𝑋𝑘, 𝑌𝑘}𝑘≥0 on the 

product state space (𝑄 × 𝒪, 𝜉1 ⊗ 𝜉2) is an HMM if 

there exist transition kernels  𝑨: 𝑄 × 𝜉1 → [0,1] and 

𝑩: 𝑄 × 𝜉2 → [0,1] such that 

 

𝑬(𝑔(𝑋𝑘+1, 𝑌𝑘+1)|𝑋0, 𝑌0, … , 𝑋𝑘, 𝑌𝑘)

= ∫ 𝑔(𝑥, 𝑦)𝑨(𝑋𝑘, 𝑑𝑥)𝑩(𝑥, 𝑑𝑦), 

 

and a probability measure 𝝅 on 𝑄 such that 

 

𝑬(𝑔(𝑋0, 𝑌0)) = ∫ 𝑔(𝑥, 𝑦)𝝅(𝑑𝑥)𝑩(𝑥, 𝑑𝑦), 

 

for every bounded measurable function 𝑔: 𝑄 × 𝒪 →
ℝ. In this situation 𝝅 is called the initial measure, 𝑨 

the transition kernel and 𝑩 the observation kernel of 

the hidden Markov model {𝑋𝑘 , 𝑌𝑘}𝑘≥0. 

 

In non-formal mathematical term, we can describe an 

HMM as follows: consider a Markov process {𝑋𝑘}𝑘≥0 

with 𝑁 distinct number of states = {𝑞1, … , 𝑞𝑁} . The 

process can transit from one state to another as well as 

to itself with probabilities 𝑎𝑖𝑗  such that  

 

𝑎𝑖𝑗 = 𝑃(state 𝑞𝑗at 𝑘 + 1|state 𝑞𝑖at 𝑘), 

 

and hence the process has a transition matrix 𝑨 =

{𝑎𝑖𝑗}
𝑁×𝑁

. The process {𝑋𝑘}𝑘≥0 is not observable and 

can only be observed through another non-Markov 

process {𝑌𝑘}𝑘≥0 with observations sequence, 𝒪 =
{𝒪1, … , 𝒪𝐾} and a set of possible observation 𝑉 =
{1, … , 𝑀}, where 𝐾 and 𝑀 are the length of the 

observation sequence and number of observation 

symbol respectively. Suppose the probabilistic 

relationship between the observable 𝑌𝑘 and the 

unobservable 𝑋𝑘 is given by  𝑏𝑗(𝑡) where  

 

𝑏𝑗(𝑡) = 𝑃(observation 𝑡 at 𝑘|state 𝑞𝑗at 𝑘), 

 

and hence the process has an emission probability 

matrix 𝑩 = {𝑏𝑗(𝑡)}
𝑁×𝑀

. Understand that the matrices 

𝑨 and 𝑩 are both row stochastic and the probabilities 

𝑏𝑗(𝑡) is independent of 𝑘. The Markov process 

{𝑋𝑘}𝑘≥0 also possess an initial state distribution 𝜋𝑖 

such that 𝝅 = {𝜋𝑖}1×𝑁 is a row stochastic set of initial 

probabilities of the states of the Markov 

process{𝑋𝑘}𝑘≥0. It follows that an HMM is defined by 

𝑨, 𝑩 and 𝝅 (and, implicitly by the dimensions N and 

M). The HMM is denoted by 

 

𝜆 = (𝑨, 𝑩, 𝝅). 
 

To fix ideas, consider a state sequence of length four 

 

𝑋 = (𝑥1, 𝑥2, 𝑥3, 𝑥4) 
 

With corresponding observations 

 

𝒪 = (𝒪1, 𝒪2, 𝒪3, 𝒪4). 
 

The probability of the state sequence 𝑃(𝑋, 𝒪) is given 

by 

 

 𝑃(𝑋, 𝒪) = 𝜋𝑥1
𝑏𝑥1

(𝒪1)𝑎𝑥1,𝑥2
𝑏𝑥2

(𝒪2)𝑎𝑥2,𝑥3
𝑏𝑥3

× 

                        (𝒪3)𝑎𝑥3,𝑥4
𝑏𝑥4

(𝒪4),                            (3) 

 

Where 𝜋𝑥1
is the probability of starting in state 𝑥1, 

𝑏𝑥1
(𝒪1) is the probability of initially observing 𝒪1 and 

𝑎𝑥1,𝑥2
is the probability of transiting from state 𝑥1 to 

𝑥2. The process continues in that manner accordingly. 

Thus we can compute the probability of each possible 

state sequence of length four, given the observation 

sequence. 

 

Problems and Solutions of Hidden Markov Models: 

Three fundamental problems exist that HMMs are 

used to address. Here we present these problems and 

their attendant solutions. 

 

Problem one and solution: The first problem centers 

on given a model 𝜆 = (𝑨, 𝑩, 𝝅) and a sequence of 

observation 𝒪, how do we find the probability of the 

observed sequence given the model i.e. to 

determine 𝑃(𝒪|𝜆). This problem is called the 

evaluation problem.  

 

To find a solution to the problem above, suppose 𝜆 =
(𝑨, 𝑩, 𝝅) is a model and let 𝒪 = (𝒪1, … , 𝒪𝐾) be a 
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series of observations. Our goal is to find 𝑃(𝒪|𝜆). Let 

𝑋 = (𝑥1, … , 𝑥𝐾) be a state sequence. Then by the 

definition of 𝑩 one realizes 

 

𝑃(𝒪|𝑋, 𝜆) = 𝑏𝑥1
(𝒪1)𝑏𝑥2

(𝒪2) … 𝑏𝑥𝐾
(𝒪𝐾)  

 

and by the definition of 𝑨 and 𝝅 it holds that 

 

𝑃(𝑋|𝜆) = 𝜋𝑥1
𝑎𝑥1,𝑥2

𝑎𝑥2,𝑥3
… 𝑎𝑥𝐾−1,𝑥𝐾

. 

Also, 

𝑃(𝒪, 𝑋|𝜆) =
𝑃(𝒪 ∩ 𝑋 ∩ 𝜆)

𝑃(𝜆)
 

And 

 

𝑃(𝒪|𝑋, 𝜆)𝑃(𝑋|𝜆) =
𝑃(𝒪 ∩ 𝑋 ∩ 𝜆)

𝑃(𝑋 ∩ 𝜆)
.
𝑃(𝑋 ∩ 𝜆)

𝑃(𝜆)

=
𝑃(𝒪 ∩ 𝑋 ∩ 𝜆)

𝑃(𝜆)
. 

 

It follows that 

 

𝑃(𝒪, 𝑋|𝜆) = 𝑃(𝒪|𝑋, 𝜆)𝑃(𝑋|𝜆). 
 

Summing over all possible state sequences gives 

𝑃(𝒪|𝜆) = ∑ 𝑃(𝒪, 𝑋|𝜆)

𝑋

 

                            = ∑ 𝑃(𝒪|𝑋, 𝜆)𝑃(𝑋|𝜆)

𝑋

 

 = ∑ 𝜋𝑥1
𝑏𝑥1

(𝒪1)𝑎𝑥1,𝑥2
𝑏𝑥2

(𝒪2) … 𝑎𝑥𝐾−1,𝑥𝐾
𝑏𝑥𝐾

(𝒪𝐾)

𝑋

.     (4) 

 

It is computationally very demanding to evaluate (4) 

especially when 𝑁 is very large. In fact, the 

computation in (4) requires 2𝐾𝑁𝐾 multiplications. 

This computational tediousness can be greatly reduced 

by using the so-called forward - backward algorithm 

(see Rabiner, 1989 for a description of this algorithm). 

More so, the forward algorithm only requires about 

𝑁2𝐾 multiplications in contrast to more than 2𝐾𝑁𝐾 

multiplications in the naïve approach. However, when 

𝑁 is small, the naïve approach works very efficiently. 

 

Problem two and solution: The second problem of 

HMMs border on determining the optimal state 

sequence for the underlying Markov process given a 

model 𝜆 = (𝑨, 𝑩, 𝝅) and an observation sequence 𝒪. 

In this problem, we seek to uncover the hidden part of 

the HMM. This problem is also called the decoding 

problem. 

 

The solution to this problem is to find the most likely 

state sequence. Now, there are different possible 

interpretations of “most likely”. For example, using 

dynamic programming, the optimal state sequence is 

the sequence with the highest probability. In the HMM 

sense, the optimal state sequence is obtained by 

choosing the most probable symbol at each position. 

The solution due to dynamic programming can be 

different from that due to HMM. The well – known 

Viterbi algorithm is used to solve this problem (see 

Rabiner, 1989 for a description of the algorithm). 

 

Problem three and solution: Given an observation 

sequence 𝒪 and the dimensions 𝑁 and 𝑀, the third 

problem of an HMM is to find the model 𝜆 = (𝑨, 𝑩, 𝝅) 

that maximizes the probability of 𝒪. We may consider 

this as training a model to best fit the observed data. 

The problem is also called the learning problem. 

 

The solution to problem three is determined by 

adjusting the model parameters to best fit the 

observations. The Baum – Welch algorithm is a very 

effective algorithm for handling problem three (also 

see Rabiner, 1989 for details). 

 

Application: Here we shall apply the theory of HMM 

to a situation involving a theft in a bank, and use it to 

unfold who the culprit was. 

 

Problem: A certain bank hired two security men 

(𝑆1and 𝑆2) to be in charge of keeping watch over the 

belongings of customers which are prohibited from 

being taken into the floor of the bank by the customers. 

These belongings are usually one of a handbag, 

suitcase and a backpack. The two security men 

(𝑆1and 𝑆2) work on shift in the sense that 𝑆1begins a 

day’s operation 2 out of the 5 working days of the 

week, implying that 𝑆2 begin a day’s operation 3 days 

out of the 5 working days. When on duty, 

𝑆1 and 𝑆2 work for equal number of hours per day. Of 

every 100 items that customers bring to the bank 𝑆1 

on average handles 10 handbags, 60 suitcases and 30 

backpacks. Likewise, 𝑆2 handles on average 40 

handbags, 25 suitcases and 35backpacks out of every 

100 items customers bring to the bank. On an eventful 

day, a cellphone got missing from the suitcase of one 

of the customers and the bank was determined to know 

who stole the cellphone. 𝑆1 and 𝑆2 were declared as 

the only suspects to the theft since they are responsible 

for handling the customers’ belongings and to make 

matter worse, there was no CCTV camera in the area 

where customers’ items are kept. Furthermore, the 

CCTV camera footage at the entrance of the bank 

revealed that prior to the theft, the last four customers 

(including the one whose cellphone is missing) who 

came into the bank came in a manner where the first 

person came with a backpack, the second person came 

with a suitcase, the third person came with a backpack 

and the fourth person came with a handbag. Using the 
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above information, how can we determine who the 

likely culprit is? 

 

Solution: Clearly, an HMM can be used to solve the 

problem. The system has a finite set of hidden states 

𝑄 = {𝑆1, 𝑆2} where the changes from state S1 to S2 

are invisible to observers. Again the process is a 

Markov process because the current state is always 

dependent on the previous state. Denote a handbag 

by 𝐻𝐵, a suitcase by 𝑆𝐶 and the Backpack by 𝐵𝑃. 

Footage from the CCTV camera at the entrance of the 

bank can be taken as the observation sequence. Thus, 

the observation sequence is given by 𝒪 =
{𝐵𝑃, 𝑆𝐶, 𝐵𝑃, 𝐻𝐵}. Letting 1 represent 𝐻𝐵, and 2 to 

represent 𝑆𝐶, and allowing 3 to represent 𝐵𝑃, we can 

redefine the observation sequence as 𝒪 = {3,2,3,1}. 

The goal is to determine the most likely state sequence 

given the observation sequence. From the problem one 

can infer that 𝝅 = [0.4,0.6], which is the initial 

distribution corresponding to the proportion of time S1 

and S2 changes work shift in a week. The transition 

and emission matrices as inferred from the problem 

are given by 

 

𝑨 = [
0.5 0.5
0.5 0.5

], 

𝑩 = [
0.1 0.6 0.3
0.4 0.25 0.35

]. 

 

Given these information, the first task will be to 

compute the probability of all possible state sequence 

of length four given the observation sequence 𝒪 using 

the relation in (3). A list of all these possible state 

sequence and their probabilities are given in Table 1 

alongside the corresponding normalized probabilities. 

 

Using the dynamic programming approach, the 

optimal sequence is the most probable sequence and 

this corresponds to the sequence 𝑆2 𝑆1 𝑆2 𝑆2 as 

shown in Table 1, which clearly tells us that 𝑆1 is the 

most likely security personnel responsible for the theft 

since 𝑆1 is directly in the position of the Suitcase with 

symbol 2, bearing in mind that the observation 

sequence is  𝒪 = {3,2,3,1}. In the Hidden Markov 

sense, the process of determining the optimal state 

sequence is different from the one based on the 

dynamic programming approach. 

 

To find the optimal state sequence using the Hidden 

Markov approach, we sum the probabilities of all 

possible sequence starting with 𝑆1 in first position; 

sum all probabilities with 𝑆1 in the second position; 

sum all probabilities with 𝑆1 in the third position and 

sum all probabilities with 𝑆1 in the fourth position. 

This is also done for 𝑆2. This is carried out using the 

forward – backward algorithm. The result is 

summarized in Table 2. 

 

To obtain the optimal state sequence, we use the 

Viterbi algorithm to trace the path of the state with the 

highest probability for a given position number. From 

table 2, the sequence is 𝑆2 𝑆1 𝑆2 𝑆2. Interestingly, the 

Hidden Markov and the dynamic programming 

approaches are giving the same result in this 

application. This is not always the case. Indeed the 

Culprit is likely the security personnel 𝑆1! 

 
Table 1: State sequence and probabilities 

Sequence Probability Normalized Probability 

𝑆1 𝑆1 𝑆1 𝑆1 0.00027 0.02366 

𝑆1 𝑆1 𝑆1 𝑆2 0.00108 0.09465 

𝑆1 𝑆1 𝑆2 𝑆1 0.00032 0.02805 

𝑆1 𝑆1 𝑆2 𝑆2 0.00126 0.11043 

𝑆1 𝑆2 𝑆1 𝑆1 0.00011 0.00964 

𝑆1 𝑆2 𝑆1 𝑆2 0.00045 0.03944 

𝑆1 𝑆2 𝑆2 𝑆1 0.00013 0.01139 

𝑆1 𝑆2 𝑆2 𝑆2 0.00053 0.04645 

𝑆2 𝑆1 𝑆1 𝑆1 0.00047 0.04119 

𝑆2 𝑆1 𝑆1 𝑆2 0.00189 0.16564 

𝑆2 𝑆1 𝑆2 𝑆1 0.00055 0.04820 

𝑆2 𝑆1 𝑆2 𝑆2 0.00221 0.19369 

𝑆2 𝑆2 𝑆1 𝑆1 0.00020 0.01753 

𝑆2 𝑆2 𝑆1 𝑆2 0.00079 0.06924 

𝑆2 𝑆2 𝑆2 𝑆1 0.00023 0.02016 

𝑆2 𝑆2 𝑆2 𝑆2 0.00092 0.08063 

 

Table 2: Hidden Markov Probabilities 

 1 2 3 4 

𝑃(𝑆1) 0.36371 0.70551 0.46099 0.19982 

𝑃(𝑆2) 0.63629 0.29449 0.53901 0.80018 

 

Conclusion: A study on Hidden Markov Models has 

been carried out in this paper. A formal mathematical 

as well as a non-formal mathematical presentation of 

the theory has been carried out. An application of the 

theory to unraveling a problem of criminal 

investigation has been performed. The major results 

from the application show that both the dynamic 

programming approach and the Hidden Markov 

approach detected the same optimal sequence of the 

states and hence suggested the same security personnel 

as being the most likely to carry out the theft in the 

facility under investigation. 
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