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ABSTRACT: Abuja Municipal Area Council (AMAC) is experiencing rapid urban expansion, which is 

expected to impact land surface temperatures (LST). This paper evaluates the trends in soil adjusted vegetation index 

(SAVI), normalize difference buildup index (NDBI), and land surface temperature (LST) between 1987 and 2023 

in AMAC using Landsat 4 Thematic Mapper and Landsat 8 Operational Land Imager/Thermal Infrared Sensor 
imagery, respectively. Results show that in 1987, SAVI ranged from -0.126 to 0.477, NDBI from -0.186 to 0.678, 

and LST from 27.18 to 46.4 oC. In 2023, SAVI ranged from -0.253 to 0.71, NDBI from -0.308 to 0.619, and LST 

from 23.89 to 46.57 oC. Analysis showed an increase in vegetation in 2023 compared to 1987. Built-up and bareland 
areas became more concentrated in the northeast in 2023 compared to 1987, and temperature reductions were 

observed in areas with increased vegetation, notably in the south and southwest. Correlation analysis indicated a 

strong negative relationship (-0.772) between SAVI and LST in 1987, weakening in 2023 (-0.389). NDBI and LST 
remained moderately positively correlated (0.645 in 1987, 0.621 in 2023). Significant differences (P<0.01) were 

observed between 1987 and 2023 SAVI, NDBI, and LST values. These findings have important implications for 

environmental monitoring, and urban planning in rapidly urbanizing areas such as AMAC.  
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Cities have grown from tiny, isolated population 

centers to huge urban centers during the past century 

(Fabolude and Aighewi, 2022; Amaechi et al., 2023). 

These growths involve the replacement of naturally 

occurring surfaces with highly reflective concrete 

masses, parking lots, asphalt roads, and other surfaces 

that have an impact on the urban temperature (Usman 

and Lay, 2013). According to Kolokotroni et al. 

(2006), urban temperature is growing globally, and 

reduced greenery in cities may be one of the 

contributing factors (Qiu et al., 2013; Kumar and 

Shekhar, 2015; Arifin et al., 2022). Researchers can 

gain valuable insights into the complex interactions 

between urbanization and temperature dynamics by 

utilizing remote sensing technology (Mohan and 

Kandya, 2015; Fu et al., 2016; Saleem et al., 2020). 

The advantages of using remote-sensing data are the 

availability of high resolution, reliable and repetitive 

coverage, and proficiency of measurements of earth 

surface conditions (Ifatimehin and Magaji, 2009). 
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Remote sensing is a very reliable method for obtaining 

a better understanding of the earth's environment 

(Ahmadi and Nusrath, 2012; Li et al., 2020). It is the 

science and art of acquiring information and extracting 

features about any region without coming into 

physical contact with the region (Karaburun and 

Bhandari, 2010). For example, SAVI can be used to 

estimate vegetation cover in any region (Vani and 

Mandla, 2017; Andhale et al., 2020; Rhyma et al., 

2020). NDBI can be used to estimate built-up 

environments (Hari, 2018; Guha et al., 2018; Yasin et 

al., 2020), and thermal infrared (TIR) sensors can 

provide quantitative information regarding LST in 

various land cover classes (Dar et al., 2019; Malik et 

al., 2019; Ru et al., 2021). In several parts of the 

world, some authors with remotely sensed data have 

investigated the link between land cover classes and 

LST. For instance, Xian and Crane (2006) used 

Landsat Thematic Mapper (TM) and Enhanced 

Thematic Mapper Plus (ETM+) data to analyze the 

influence of urbanization on surface temperature in 

Tampa Bay, Florida. In addition, Faqe Ibrahim (2017) 

carried out a similar study in Dohuk City, Iraq, and 

reported high temperatures for bareland and built-up 

areas in 1990, 2000, and 2016 with values of 47 oC, 50 
oC, and 56 oC, respectively, while also reporting that 

the years 1990, 2000, and 2016 presented lower 

temperatures in relation to water bodies and forests 

with values of 25 oC, 26 oC, and 29 oC, respectively. 

In Nigeria, several researchers have carried out similar 

studies. Notable among them is Ifatimehin et al. 

(2009) who assessed the impact of land cover classes 

on the LST in Lokoja, Nigeria. Their findings showed 

that as the built-up area and bareland grew in extent, 

so did the surface temperature. This result clearly 

shows that built-up has a higher LST than other land 

cover classes. Similarly, Babalola and Akinsanola 

(2016) analyzed the spatial distribution of changes in 

LST and land cover using Landsat images in Lagos. 

The findings demonstrated that vegetative cover 

declined rapidly over 30 years, from 70.043% to 

10.127%; this change contributed to changes in 

microclimate as urban and bare areas correlated 

positively with high LST. Adewale and Martins 

(2019) examine the relationship between urban growth 

and LST in AMAC using remote sensing techniques. 

They reported the mean LST of buildup areas as 27 oC, 

33 oC, and 36 oC in 1986, 2001, and 2016, 

respectively, with the highest temperature value at the 

city centre due to limited vegetative cover. As AMAC 

continues to develop, current research is needed to 

assess temperature variation and the spatial 

distribution of vegetation cover and built-up/bareland 

area using indices like SAVI and NDBI in order to 

plan for sustainable urban development as significant 

studies has not been carried out on AMAC. In view of 

the foregoing, the objective of this study was to 

evaluate the trends in soil adjusted vegetation index 

(SAVI), normalize difference buildup index (NDBI), 

and land surface temperature (LST) between 1987 and 

2023 in Abuja Municipal Area Council, FCT Nigeria. 

 

MATERIALS AND METHODS 
Study Area: Abuja is Nigeria's federal capital territory; 

the research area AMAC (Figure 1) is one of Abuja's 

area councils. 

 
Fig 1. Map of Abuja Municipal Area Council showing sampling points used for statistical analysis (Source: Researchers work) 

AMAC is the largest and most urbanized area in 

Abuja's six area councils (Touristlink, 2013). AMAC 

is situated between latitudes 8º36' N and 9º21' N of the 

Equator, and longitudes 7º07' E and 7º33' E of the 
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Greenwich Meridian (Adewale and Martins, 2019). It 

accounts for approximately 1,500 square kilometers 

(38.8%) of the entire land area of the Federal Capital 

Territory (FCT) (Balogun, 2001). The area is regarded 

as the most favorable and conducive for human 

habitation and settlement growth within the FCT 

(Mabogunje, 1976). The area has warm, humid rainy 

season and the chilly dry season. The rainy season lasts 

from April to October, with temperatures ranging from 

28°C to 30°C during the day and 22°C to 23°C at 

night. In the dry season, it can get as high as 38°C 

during the day and as low as 12°C at night (Adeyeri et 

al., 2015). The total annual rainfall ranges from 1100 

mm to 1600 mm, with relative humidity at 30% in the 

dry season and 70% in the wet season (Malik, 2004). 

AMAC has the largest population in Abuja, with 

778,567 people, according to the 2006 National 

Population and Housing Census (NPC, 2006). The 

2017 projected population of AMAC is roughly 

1,967,500 (National Bureau of Statistics, 2017). The 

increasing rate of settlement expansion in AMAC is 

very likely to affect surface temperature due to 

deforestation, road construction, and industrial 

pollution (Adewale and Martins, 2019).  

 

Image Acquisition: 30m-resolution Landsat images for 

1987 and 2023 were obtained from the United States 

Geological Survey Earth Explorer site 

(https://earthexplorer.usgs.gov). To obtain images 

without cloud cover, a thorough study was performed, 

and it was discovered that LANDSAT 4TM (Thematic 

Mapper) from 1987-12-21 appears to have cloud cover 

and a land cloud cover of zero (0). Similarly, Landsat 

8 (OLI/TIRS) (Operational Land Imager/Thermal 

Infrared Sensor) from 2023-12-16 appears to have 

cloud cover and a land cloud cover of 0.05, making it 

appropriate for this study.  

 

After setting the appropriate search criteria, the images 

with path (189) and row (054) were downloaded in 

GeoTIFF format (.tif). The Landsat images 

downloaded are atmospherically corrected level-2 

products, which have UTM (Universal Transverse 

Mercator) projection and WGS84 (World Geodetic 

System) datum. The acquired satellite images were 

processed in the geospatial tool ArcGIS 10.7. Then the 

region of interest (AMAC) was extracted from the 

entire scene using the Extract by Mask tool. 

 

Observing 1987 and 2023 false color composite 

image: The first step to image classification should be 

a proper monitoring of the area with different band 

combinations to get familiar with the different land 

cover classes that exist in the area. After creating a 

band composite, a false-color composite was used to 

observe different land cover. From Fig. 2, the red 

cover represents vegetation, darker shades of blue 

represent water bodies, bright white or light grey 

represents buildup and varying shades of dark brown 

or black represent bareland. It was noticed that 

although the built-up area increased around the 

northeast region, vegetation cover also increased in the 

southwest region between 1987 and 2023 at the 

expense of bareland.  
 

 
Fig 2: a (1987) and b (2023) false-color composite image  

(Source: Researchers work) 

 

SAVI Calculation from Landsat 4 and Landsat 8 

(Huete, 1988) 

 

SAVI =  (( 
NIR − RED

NIR + RED +  L
 )) ∗ (1 + L)      1 

For Landsat 4 SAVI 

=  ((
Band 4 − Band 3

Band 4 + Band 3 +  0.5
 ))    ∗ (1.5)      2 

For Landsat 8 SAVI 

=  (( 
Band 5 −  Band 4

Band 5 +  Band 4 +  0.5
 )) ∗ (1.5)      3 

 

L = soil brightness correction factor (0.5) 

 

NDBI Calculation from Landsat 4 and Landsat 8 (Zha 

et al., 2003) 
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NDBI =   
SWIR − NIR

SWIR + NIR  
        4  

 

For Landsat 4 NDBI =   
Band 5 − Band 4

Band 5 +  Band 4  
       5  

 

For Landsat 8 NDBI =   
Band 6−Band 5

Band 6 + Band 5  
        6 

 

LST Retrieval from Landsat 4 

Step 1: Conversion of Landsat Image Digital Number 

(DN) to radiance (Zareie et al., 2016)  

 

𝐿λ = (
LMAXλ  − LMINλ

Qcal max −  Q cal min
) × (Qcal −  Qcal min)

+ LMINλ   7 

 

𝐿λ= Top of Atmospheric spectral radiance [watts/(m2 

srad μm)]; LMAXλ
  = 

ADIANCE_MAXIMUM_BAND_6 = 15.303; 

LMINλ
 = RADIANCE_MINIMUM_BAND_6 = 

1.238; Qcal = Landsat Image Digital Number (DN) 

=Band 6; Qcalmin = 

QUANTIZE_CAL_MIN_BAND_6 = 1; Qcalmax = 

QUANTIZE_CAL_MAX_BAND_6 = 255  

 

Step 2: Conversion of radiance to brightness 

temperature (Landsat 7 Science Data Users Handbook, 

2010; Guha et al., 2020) 

 

BT =
K2

(ln (
K1

Lλ
+ 1)

         8 

 

BT = brightness temperature in Kelvin; 𝐿λ
  = Top of 

Atmospheric spectral radiance; K1 = K1 Constant 

Band (671.62) (Watts/(m² * sr * µm)); K2= K2 

Constant Band (1284.30) (Kelvin) 

 

Step 3: Convert kelvin to Degree Celsius (oC) 

 

𝑜𝐶  =  BT in Kelvin − 273.15        9   
LST Retrieval from Landsat 8 

Thermal Infrared Digital Numbers can be transformed 

to TOA spectral radiance by applying the radiance 

rescaling factor (Anandababu et al., 2018): 

 

Step 1: Calculating Top of Atmospheric Radiance 

(TOA)  

 

𝐿λ = ML ∗ Qcal + AL          10 
 

𝐿λ = TOA spectral radiance [watts/(m2 srad μm)]; 

ML = Radiance Multiplication Band 10 = 3.3420E-

04; AL = Radiance Add Band 10 = 0.10000; Qcal = 

Quantized and calibrated standard product pixel 

values (DN) (BAND 10) 

 

Step 2: Brightness Temperature: The thermal constant 

values is used to convert spectral radiance data to 

brightness temperature (Avdan and Jovanovska, 2016) 

 

BT =
K2

(ln (
K1

Lλ
+ 1) − 273.15

      11 

 

BT = TOA Brightness Temperature (OC); 𝐿λ = TOA 

spectral radiance; K1 = K1 Constant Band (774.8853);  

K2= K2 Constant Band (1321.0789)  

 

The Landsat metadata file is where the values for 

LMIN, LMAX, QCALMIN, QCALMAX, K1, and 

K2, ML, and AL come from. 

 

Step 3: Calculating NDVI: The Normalized 

Difference Vegetation Index (NDVI) is calculated 

with Near Infrared (Band 5) and Red (Band 4) bands. 

The NDVI is important because it assesses the amount 

of vegetation, which is a key factor in determining 

total vegetation health (Huang et al 2021). The 

estimation of NDVI is critical because it serves as the 

foundation for measuring the proportion of vegetation 

(PV). The correlation between NDVI, PV, and 

emissivity (ε) highlights the significance of computing 

these metrics together (Twumasi et al., 2021). 

 

NDVI =
Nir (Band 5) − Red (Band 4)

Nir (Band 5) +  Red (Band 4)  
     12 

 

Step 4: Calculating Vegetation Proportion (Wang et 

al., 2015) 

 

Pv = (
NDVI −

NDVImax +

NDVImin

NDVImin

)2       13 

 

Where PV= Proportion of vegetation; NDVI = DN 

values from the image; NDVI min = Minimum DN 

values from the image; NDVI max = Maximum DN 

values from NDVI image  

 

Step 5: Calculating Land surface emissivity: It is 

necessary to calculate land surface emissivity (LSE) in 

order to estimate land surface temperature (Avdan and 

Jovanovska, 2016). 

 

ε =  0.004 ∗  PV +  0.986         14 

 

Where ε = Land surface emissivity; PV= Proportion of 

vegetation 

 

Step 6: Calculating Land Surface Temperature 
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The Land Surface Temperature (LST) calculated using 

BT in OC, Wavelength of Emitted Radiance (w), and 

Land Surface Emissivity (ε) (Le Joseph, 2020). 

 
LST =  (BT / 1) +  W x (BT / 14380) x ln(ε)     15 

 

Extracting SAVI, NDBI, and LST values from raster 

image: In order to perform correlation analysis and 

check the level of significant difference, multiple 

values were extracted from the SAVI, NDBI, and LST 

raster images using the Fishnet tool in ArcMap. To 

remove the null values (0 and -999), the Fishnet points 

generated were clipped with an AMAC shapefile. The 

values generated were imported to Excel to make 

tables and to SPSS (Statistical Package for the Social 

Sciences) for Pearson correlation and to check the 

level of significance difference between SAVI, NDBI, 

and LST in 1987 and 2023. 

 

RESULTS AND DISCUSSION 
Spatial distribution of SAVI, NDBI, and LST in 1987: 

The minimum value of SAVI recorded in 1987 was            

-0.126, and the maximum value was 0.477. This range 

of values was used to generate four land cover classes 

based on the observed pixel values. Careful inspection 

of the pixels with the inspection tool in ArcMap shows 

that water bodies have negative values and values 

close to zero; bareland and built-up areas have values 

of 0 – 0.19; sparse vegetation has values of 0.19 – 0.24; 

and dense vegetation has values greater than 0.24 (da 

Silva Soares et al., 2023).  

 

In the result (Figure 3a), bareland and built-up areas 

were classified together as they both showed similar 

SAVI values. Figure 3b shows the NDBI range; the 

minimum and maximum NDBI values recorded in 

1987 range from -0.186 to 0.678, respectively. 

Negative values of NDBI represent water bodies and 

vegetation cover, while positive values indicate areas 

without water or vegetation, in this case, bareland and 

built-up areas. In this result, bareland and built-up 

were classified together as they both show similar 

NDBI values (Abdalkadhum et al., 2021; Shah et al., 

2022). Figure 3c shows the LST result for the year 

1987; the minimum LST recorded was 27.18 oC, while 

the maximum value of LST was 46.4 oC. After 

performing pixel observation, the range of values 

observed was used to classify the map, and the results 

show that a large area of land experienced high 

temperatures ranging from 32 oC to 46.4 oC, with the 

exception of water bodies and dense vegetation, which 

show a temperature range of 27.18 oC to 32 oC. 

 

 
Fig 3: showing a (SAVI), b (NDBI), and c (LST) for AMAC 1987 

 

Spatial distribution of SAVI, NDBI, and LST in 2023: 

The minimum and maximum values of SAVI recorded 

in 2023 range from -0.253 to 0.71. This range of values 

was used to generate four land cover classes based on 

the observed pixel values. Careful inspection of the 

pixels with the inspection tool in ArcMap shows that 

water bodies have negative values and values close to 

zero; bareland and built-up areas have values of 0 – 

0.19; sparse vegetation has values of 0.20 – 0.4; and 

dense vegetation has values of 0.41 – 0.71 (da Silva 

Soares et al., 2023). In the result (Figure 4a), bareland 

and built-up areas were classified together as they both 

showed similar SAVI values. By observing the band 

composite in Figure 2b, it is clear that the built-up area 

increased towards the northeast region. This is true for 

the classified SAVI map of 2023, as the built-

up/bareland class is mostly concentrated in the 

northeast. Hence, it is therefore right to say that sparse 

vegetation increased in AMAC in 2023 at the expense 

of bareland.  

 

Dense vegetation also increased in the southern part of 

AMAC. Figure 4b shows the NDBI range; the 
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minimum and maximum NDBI values recorded in 

2023 range from -0.308 to 0.619, respectively. As 

earlier stated, negative values of NDBI represent water 

bodies and vegetation cover, while positive values 

indicate areas without water or vegetation, in this case 

bareland and built-up areas. In this result, bareland and 

built-up were classified together as they both show 

similar NDBI values. From Figure 4c, the minimum 

LST recorded was 23.89 oC, while the maximum value 

of LST was 46.57 oC. Consequent upon performing 

pixel observation, the range of values observed was 

used to classify the map, and the results show that 

there was a reduction in temperature in certain regions 

due to the increase in vegetation. For example, regions 

towards the south and southwest that experienced high 

temperatures in 1987 became cooler in 2023. In the 

same way, the main city that experienced high 

temperatures in 1987 started experiencing lower 

temperatures due to the presence of vegetation. LST 

can be affected by the nature of land surface cover, 

ranging from the bare ground to vegetation cover types 

(Zhang et al., 2009). The results show that LST values 

have decreased in certain areas due to an increase in 

vegetation. 

 

Relationship between SAVI, NDBI, and LST in 1987 

and 2023: To better understand the relationships 

between SAVI, NDBI, and LST, sample points 

(Figure 1) from built-up/bareland, sparse vegetation, 

dense vegetation, and water bodies were used to 

investigate the relationships between SAVI and LST 

and the relationship between NDBI and LST. Pearson 

correlation (Tables 1 and 2) was used to find the 

relationship between SAVI, NDBI, and LST.   For 

correlation analysis, a total of 195 sampling points 

were extracted using the fishnet method from the 

raster data of SAVI, NDBI, and LST in 1987 and 2023, 

respectively. These sampling points were uniformly 

collected to represent all the groups classified by the 

SAVI, NDBI, and LST thresholds. From Table 1, there 

is a strong negative relationship (-.772) between SAVI 

and LST in 1987 and a moderately strong positive 

relationship (.645) between NDBI and LST. From 

Table 2, there is a weak negative relationship (-.389) 

between SAVI and LST in 2023 and a moderately 

strong positive relationship (.621) between NDBI and 

LST. These correlations were significant at the 0.01 

level. The moderately strong positive relationship 

found between NDBI and LST indicates that built-up 

or bareland areas are generating high land surface 

temperature. While the negative correlation between 

SAVI and LST shows that vegetation cover plays a 

key role in lowering the land surface temperature. 

Elevated SAVI values signify the existence of dense 

vegetation, whereas elevated NDBI values signify the 

existence of both built-up areas and barelands.  

 
Fig 4 showing a (SAVI), b (NDBI), and c (LST) for AMAC 2023 

 
Table 1: Correlation between SAVI, NDBI and LST in 1987 

Indices  LST 

SAVI Pearson Correlation -.772** 

 Sig. (2-tailed) .000 
NDBI Pearson Correlation .645** 

 Sig. (2-tailed) .000 

**. Correlation is significant at the 0.01 level (2-tailed). 
 

 

Table 2: Correlation between SAVI, NDBI and LST in 2023 

Indices  LST 

SAVI Pearson Correlation -.389** 

 Sig. (2-tailed) .000 

NDBI Pearson Correlation .621** 
 Sig. (2-tailed) .000 

**. Correlation is significant at the 0.01 level (2-tailed). 

 

Levels of significant difference in SAVI, NDBI, and 

LST between 1987 and 2023: From Tables 3, 4, and 5, 

there was a significant difference (P<0.01) between 

the SAVI values extracted from the same points in 

1987 and the SAVI values of 2023. In the same way, 

there was a significant difference (P<0.01) found 

between the NDBI of 1987 and the NDBI of 2023. In 

addition, there was a significant difference (P<0.01) 

found between the LST values of 1987 and the LST 

values of 2023 extracted from the same points. 
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Table 3: Paired Samples Statistics for SAVI 

 Mean N Std. Deviation Std. Error Mean Sig. (2 tailed) 

SAVI 1987 0.17903 195 0.048414 0.003467 P value < 0.01 
.(000) SAVI 2023 0.29754 195 0.09434 0.006756 

P<0.01 = highly significant  

 
Table 4: Paired Samples Statistics for NDBI 

 Mean N Std. Deviation Std. Error Mean Sig. (2 tailed) 

NDBI 1987 0.05028 195 0.042654 0.003055 P value < 0.01 

(.000) NDBI 2023 0.01461 195 0.056092 0.004017 

P<0.01 = highly significant  

 

Table 5: Paired Samples Statistics for LST 

 Mean N Std. Deviation Std. Error Mean Sig. (2 tailed) 

LST 1987 36.5546 195 2.57746 0.18458 P value < 0.01 

(.000) LST 2023 32.6634 195 1.60834 0.11518 

P<0.01 = highly significant  

 

As reported by Sarkar and Patra (2022), built-up areas 

and bareland have high NDBI values. One will expect 

the NDBI value to rise due to land conversion to 

developed land with industrial and commercial 

buildings, residential buildings, and roads; however, 

this was not the case in AMAC, as vegetation cover 

rose alongside built-up land at the expense of bare 

land, reducing the mean value of NDBI (Table 4). 

 

NDBI can identify the density of urban and built-up 

areas (Yasin et al., 2020). According to Asyraf et al. 

(2020), a higher NDBI density indicates densely 

populated metropolitan regions with impermeable 

surfaces. High NDBI values (more built areas and 

bareland) have a high LST value, and vice versa 

(Raynolds et al., 2008). This also implies that areas 

with low LST values have correspondingly high SAVI 

values. The high levels of LST in built-up and bareland 

might have been so because built-up areas are 

characterized by a high concentration of buildings, 

roads, pavements, and high-rise structures that 

contribute to higher LST (Voogt, 2004). Alteration of 

vegetation cover is one of the likely factors 

responsible for the rise in LST (Kumar and Shekhar, 

2015). 

 

In a study conducted by Babalola and Akinsanola 

(2016), bare surfaces exhibited relatively higher LST 

values than other land cover classes, probably because 

they tend to have a sparse or complete absence of 

vegetation. Increasing urban vegetation cover is an 

often suggested mitigation approach to lower city 

temperatures (De Abreu-Harbich et al., 2015; Wang et 

al., 2016; Morakinyo et al., 2017). Increased 

vegetation cover has the effect of lowering the 

temperature of the surroundings in its shadow, thus 

reducing LST (Meili et al., 2021). Chow et al. (2016) 

and Middel et al. (2016) opined that the presence of 

vegetation in cities could decrease air temperature 

through shade provision, which is beneficial to hot 

cities. 

Conclusion: Unlike other researches, which often 

reports high losses of vegetation and increases in land 

surface temperature in cities, this research reveals an 

increase in vegetation cover and a decrease in land 

surface temperature in Abuja Municipal Area Council 

between 1987 and 2023. For continuous urban 

sustainability, relevant agencies and urban planners 

should look towards planting trees in the northeast, 

east, and northwest regions as one of the best ways to 

reduce urban temperature. 

 

REFERENCES 
Abdalkadhum, AJ; Salih, MM; Jasim, OZ (2021). The 

correlation among land cover spectral indices and 

surface temperature using remote sensing 

techniques. In IOP Conference Series: Mater. Sci. 

Eng. A. 1090 (1): 012024. DOI: 10.1088/1757-

899X/1090/1/012024 

 

Adewale, FO; Martins, M (2019). Assessment of the 

Relationship between Urban Growth  and 

surface Temperature in Abuja Municipal Area 

Council. FUDMA J. Sci. 3 (3): 309 – 327. 

 

Adeyeri, OE; Okogbue, EC; Ige, SO; Ishola, KA 

(2015). Estimating the Land Surface Temperature 

over Abuja using different Landsat 

sensors. Proceedings of the Climate Change. 

Environ. Chall Sustain. Dev. 305 - 310. 

 

Ahmadi, H; Nusrath, A (2012). Vegetation change 

Detection of Neka River in Iran by using remote 

sensing and GIS. J Geogr. Geol. 2 (1): 58 - 67. 

 

Amaechi, CF; Enuneku, AA; Okhai, SO; Okoduwa, 

KA (2023). Geospatial Assessment of 

Deforestation in the Federal Capital Territory 

Abuja, Nigeria from 1987 to 2021. J. Appl. Sci. 

Environ. Manage. 27(11): 1881-1888. 

Anandababu, D; Purushothaman, BM; Suresh, BS 

(2018). Estimation of land surface temperature 



Soil Adjusted Vegetation Index, Normalize Difference Buildup Index…..                                                          672 

OKODUWA, K. A; AMAECHI CF; ENUNEKU, A. A 

using Landsat 8 data. Int. J. Adv. Sci. Res. 4 (2): 

177 - 186. DOI: 10.4314/jasem.v27i11.13 

 

Andhale, AN; Parmar, HV; Pappu KP (2020). Soil 

adjusted vegetation index (SAVI), in the Uben 

river basin of Gujarat. Int. J. Chem. Stud. 8 (5): 693 

- 698. DOI: 10.22271/chemi.2020.v8.i5j.10381 

 

Arifin, SS; Hamzah, B; Mulyadi, R; Rasyid, AR 

(2022). Effects of Vegetation on Urban Heat Island 

Using Landsat 8 OLI/TIRS Imagery in Tropical 

Urban Climate. Civ. Eng. Archit. 10: 395 - 405. 

DOI: 10.13189/cea.2022.100134 

 

Asyraf, MS; Damayanti, A; Dimyati, M (2020). The 

effect of building density on land surface 

temperature, (Case Study: Turikale District, Maros 

Regency). In IOP Conference  Series: 

Environ. Earth Sci. 500 (1): 012061. 

DOI: 10.1088/1755-1315/500/1/012061 

 

Avdan, U; Jovanovska, G (2016). Algorithm for 

automated mapping of land surface temperature 

using LANDSAT 8 satellite data. J. Sens. 2016: 1 

- 8. DOI: https://doi.org/10.1155/2016/1480307 

 

Babalola, OS; Akinsanola, AA (2016). Change 

Detection in Land Surface Temperature and Land 

Use Land Cover over Lagos Metropolis, Nigeria. 

Remote Sens. GIS. 5 (3): 6 - 10. DOI: 

10.4172/2469-4134.1000171 

 

Balogun, O (2001). The Federal Capital Territory of 

Nigeria: a geography of its development. Ibadan 

university press. 

 

Chow, WT; Akbar, SNABA; Heng, SL; Roth, M 

(2016). Assessment of measured and perceived 

microclimates within a tropical urban forest. 

Urban For. Urban Green. 16: 62 - 75. DOI: 

https://doi.org/10.1016/j.ufug.2016.01.010 

 

da Silva Soares, LC; Souza, PGC; Rodrigues, SDA; 

Perpétuo, RCS; Perpétuo, IA (2023). Modeling of 

the land surface temperature as a function of the 

soil-adjusted  vegetation index. Revista 

Agrogeoambiental. e20231723 - e20231723. 

DOI: 10.18406/2316-1817v15nunico20231723 

 

Dar, I; Qadir, J; Shukla, A (2019). Estimation of LST 

from multi-sensor thermal remote  sensing 

data and evaluating the influence of sensor 

characteristics. Ann. GIS. 25 (3): 263 - 281. DOI: 

https://doi.org/10.1080/19475683.2019.1623318 

 

De Abreu-Harbich, LV; Labaki, LC; Matzarakis, A 

(2015). Effect of tree planting design  and tree 

species on human thermal comfort in the 

tropics.  Landsc. Urban Plan. 138: 99 - 109. 

DOI: 10.1016/j.landurbplan.2015.02.008 

 

Fabolude, G; Aighewi, IT (2022). Evaluation of the 

Extent of Land Use-Land Cover Changes of Benin 

City, Edo State, Nigeria from 1987-2019. J. Appl. 

Sci. Environ. Manage. 26 (8): 1443 - 1450. DOI: 

10.4314/jasem.v26i8.18 

 

Fu, P; Weng, Q (2016). A time series analysis of 

urbanization induced land use and land cover 

change and its impact on land surface temperature 

with Landsat imagery. Remote Sens. Environ. 175: 

205 - 214. DOI: 

https://doi.org/10.1016/j.rse.2015.12.040 

 

Guha, S; Govil H; Dey A; Gill N (2020). A case study 

on the relationship between land surface 

temperature and land surface indices in Raipur 

City, India. Geografisk Tidsskrift-Danish J. Geogr. 

120 (1): 35 – 50. DOI: 

https://doi.org/10.1080/00167223.2020.1752272 

 

Guha, S; Govil, H; Dey, A; Gill, N (2018). Analytical 

study of land surface temperature with NDVI and 

NDBI using Landsat 8 OLI and TIRS data in 

Florence and Naples city, Italy. Eur. J. Remote 

Sens. 51 (1): 667 - 678. DOI: 
https://doi.org/10.1080/22797254.2018.1474494 

  

Hari, KK (2018). Study of Normalized Difference 

Built-Up (NDBI) Index in Automatically Mapping 

Urban Areas from Landsat TM Imagery. Int. J. Sci. 

Res. 7 (1): 1 - 9.  

 

Huang, S; Tang, L; Hupy, JP; Wang, Y; Shao, G 

(2021). A commentary review on the use of 

normalized difference vegetation index (NDVI) in 

the era of popular remote sensing. J. For. Res. 32 

(1): 1 - 6. DOI: https://doi.org/10.1007/s11676-

020-01155-1 

 

Huete, ARA (1988). Soil-Adjusted Vegetation Index 

(SAVI). Remote Sens. Environ. 25 (3): 205 - 309. 

DOI: https://doi.org/10.1016/0034-

4257(88)90106-X 

 

Ifatimehin, OO; Ujoh, F; Magaji, JY (2009). An 

evaluation of the effect of land use/cover  change 

on the surface temperature of Lokoja town, 

Nigeria. Afr. J. Environ. Sci. Technol. 3 (3): 086 - 

090. 

 

https://doi.org/10.4314/jasem.v27i11.13
https://doi.org/10.22271/chemi.2020.v8.i5j.10381
https://doi.org/10.1155/2016/1480307
http://dx.doi.org/10.4172/2469-4134.1000171
https://doi.org/10.1016/j.ufug.2016.01.010
http://dx.doi.org/10.18406/2316-1817v15nunico20231723
https://doi.org/10.1080/19475683.2019.1623318
http://dx.doi.org/10.1016/j.landurbplan.2015.02.008
https://doi.org/10.4314/jasem.v26i8.18
https://doi.org/10.1016/j.rse.2015.12.040
https://doi.org/10.1080/00167223.2020.1752272
https://doi.org/10.1080/22797254.2018.1474494
https://doi.org/10.1016/0034-4257(88)90106-X
https://doi.org/10.1016/0034-4257(88)90106-X


Soil Adjusted Vegetation Index, Normalize Difference Buildup Index…..                                                          673 

OKODUWA, K. A; AMAECHI CF; ENUNEKU, A. A 

Karaburun, AA; Bhandari, K (2010). Estimation of C 

factor for soil erosion modelling using NDVI in 

Buyukcekmece watershed, Ozean. J applied 

sciences. 3: 77 - 85. 

 

Kolokotroni, M; Giannitsaris, I; Watkins, R (2006). 

The effect of the London urban heat island on 

building summer cooling demand and night 

ventilation strategies. Sol. Energy 80 (4): 383 – 

392. DOI: 

https://doi.org/10.1016/j.solener.2005.03.010 

 

Kumar, D; Shekhar, S (2015). Statistical analysis of 

land surface temperature–vegetation  indexes 

relationship through thermal remote 

sensing. Ecotoxicol. Environ. Saf. 121: 39 - 44. 

DOI: 

https://doi.org/10.1016/j.ecoenv.2015.07.004 

 

Landsat 7 Science Data Users Handbook, (2010). 

National Aeronautics and Space Administration. 

117–120. Landsat Project Science Office at 

NASA’s Goddard Space Flight Center: Greenbelt, 

MD, USA, 2010. 

 

Le Joseph, G (2020). Investigating Ndvi Based 

Vegetation Dynamics and Its Relation to 

Environmental Variables in Parambikulam Forest, 

Kerala (Doctoral dissertation, Kerala Forest 

Research Institute). 

 

Li, J; Pei, Y; Zhao, S; Xiao, R; Sang, X; Zhang, C 

(2020). A review of remote sensing for 

environmental monitoring in China. Remote Sens. 

12 (7): 1130. DOI: 

https://doi.org/10.3390/rs12071130 

 

Mabogunje, AL (1976). Cities and African 

Development (Studies of African Resources). 

 Available online at 

https://search.worldcat.org/title/cities-and-african-

development/oclc/13835394. Retrieve January 18, 

2024. 

 

Malik, MS; Shukla, JP; Mishra, S (2019). Relationship 

of LST, NDBI and NDVI using landsat-8 data in 

Kandaihimmat watershed, Hoshangabad, India. 

Indian J. Geo-Mar. Si. 48 (01): 25 - 31. 

 

Meili, N; Acero, JA; Peleg, N; Manoli, G; Burlando, 

P; Fatichi, S (2021). Vegetation cover and plant-

trait effects on outdoor thermal comfort in a 

tropical city.  Build. Environ. 195: 107733. DOI: 

https://doi.org/10.1016/j.buildenv.2021.107733 

 

Middel, A; Selover, N; Hagen, B; Chhetri, N (2016). 

Impact of shade on outdoor thermal 

 comfort—a seasonal field study in Tempe, 

Arizona. Int. J. Biometeorol. 60: 1849 - 

1861.  DOI: 10.1007/s00484-016-1172-5 

 

Mohan, M; Kandya, A (2015). Impact of urbanization 

and land-use/land-cover change on diurnal 

temperature range: A case study of tropical urban 

airshed of India using remote sensing 

data. Sci. Total Environ. 506: 453 - 465. DOI: 

https://doi.org/10.1016/j.scitotenv.2014.11.006 

 

Morakinyo, TE; Kong, L; Lau, KKL; Yuan, C; Ng, E 

(2017). A study on the impact of shadow-cast and 

tree species on in-canyon and neighborhood's 

thermal comfort. Build. Environ. 115: 1 - 17. DOI: 

https://doi.org/10.1016/j.buildenv.2017.01.005 

 

National Bureau of Statistics (NBS) (2017) Annual 

Abstract. Available online at 

https://nigerianstat.gov.ng/pdfuploads/Annual%20

Abstract%20of%20Statistics,%202017 .pdf. 

Retrieve January 18, 2024.  

 

NPC (2006). Population and Housing Census 

Enumerators Manual. Federal Republic of Nigeria, 

National Population Commission, Nigeria. 

 

Qiu, GY; Li, HY; Zhang, QT; Wan, CHEN; Liang, XJ; 

Li, XZ (2013). Effects of evapotranspiration on 

mitigation of urban temperature by vegetation and 

urban agriculture. J. Integr. Agric. 12 (8): 1307 - 

1315. DOI: https://doi.org/10.1016/S2095-

3119(13)60543-2 

 

Faqe Ibrahim, GR; (2017). Urban land use land cover 

changes and their effect on land surface 

temperature: Case study using Dohuk City in the 

Kurdistan Region of Iraq. Climate. 5 (1): 13. DOI: 

https://doi.org/10.3390/cli5010013 
 

Raynolds, MK; Comiso, JC; Walker, DA; Verbyla, D 

(2008). Relationship between satellite-.derived 

.Land Surface Temperatures, arctic vegetation 

types, and NDVI. Remote Sens. Environ. 112 (23): 

1884 – 1894. 

 

Rhyma, PP; Norizah, K; Hamdan, O; Faridah-Hanum, 

I; Zulfa, AW (2020). Integration of normalised 

different vegetation index and Soil-Adjusted 

Vegetation Index for mangrove vegetation 

delineation. Remote Sens. Appl. Soc. Environ. 17: 

100280. DOI: 

https://doi.org/10.1016/j.rsase.2019.100280 

 

https://doi.org/10.1016/j.solener.2005.03.010
https://doi.org/10.1016/j.ecoenv.2015.07.004
https://doi.org/10.3390/rs12071130
https://search.worldcat.org/title/cities-and-african-
https://search.worldcat.org/title/cities-and-african-
https://doi.org/10.1016/j.buildenv.2021.107733
https://doi.org/10.1007/s00484-016-1172-5
https://doi.org/10.1016/j.scitotenv.2014.11.006
https://doi.org/10.1016/j.buildenv.2017.01.005
https://doi.org/10.1016/S2095-3119(13)60543-2
https://doi.org/10.1016/S2095-3119(13)60543-2
https://doi.org/10.3390/cli5010013
https://doi.org/10.1016/j.rsase.2019.100280


Soil Adjusted Vegetation Index, Normalize Difference Buildup Index…..                                                          674 

OKODUWA, K. A; AMAECHI CF; ENUNEKU, A. A 

Ru, C; Duan, SB; Jiang, XG; Li, ZL; Jiang, Y; Ren, H; 

Gao, M (2021). Land surface temperature retrieval 

from Landsat 8 thermal infrared data over urban 

areas considering geometry effect: Method and 

application. IEEE Trans Geosci Remote Sens. 60: 

1-16. DOI: 10.1109/TGRS.2021.3088482 

 

Saleem, MS; Ahmad, SR; Javed, MA (2020). Impact 

assessment of urban development patterns on land 

surface temperature by using remote sensing 

techniques: a case study of Lahore, Faisalabad and 

Multan district. Environ. Sci. Pollut. Res. 27 (32): 

39865 - 39878. 

 

Sarkar, B; Patra, S (2022). A Geospatial Analysis of 

the Relationship between Land Surface 

Temperature and Land Use/Land Cover Indices in 

Raiganj Municipality, West Bengal, India. DOI: 

https://doi.org/10.21203/rs.3.rs-1497635/v1. 

 

Shah, SA; Kiran, M; Nazir, A; Ashrafani, SH (2022). 

Exploring NDVI and NDBI relationship using 

Landsat 8 OLI/TIRS in Khangarh taluka, 

Ghotki. Malays. J. Anim. Sci. 6 (1): 08 - 11. 

 

Touristlink (2013). Abuja Nigeria Tourist 

Information’. Available online at Touristlink.com. 

Retrieve January 18, 2024. 

 

Twumasi, YA; Merem, EC; Namwamba, JB; 

Mwakimi, OS; Ayala-Silva, T; Frimpong, DB; 

Mosby, HJ (2021). Estimation of land surface 

temperature from Landsat-8 OLI thermal infrared 

satellite data. A comparative analysis of two cities 

in Ghana. Advances Remote Sens. 10 (4): 131 - 

149. DOI: 10.4236/ars.2021.104009  

 

Usman, LS; Lay, U (2013). The Dynamic of land 

Cover Change in Abuja City, Federal Capital 

Territory, Nigeria. Confluence J. Environ. Stud. 8 

(1597-5827): 14 - 24. 

 

Vani, V; Mandla, VR (2017). Comparative study of 

NDVI and SAVI vegetation indices in Anantapur 

district semi-arid areas. Int. J. Civ. Eng. Technol. 8 

(4): 559 - 566. DOI: 

http://iaeme.com/Home/issue/IJCIET?Volume=8

&Issue=4 

 

Voogt, JA (2004). Urban Heat Island: hotter cities. 

Remote Sens. Environ. 86 (3): 370 – 384. DOI: 

http://www.actionbioscience.org/environment/voo

gt.html 

 

Wang, F; Qin, Z; Song, C; Tu, L; Karnieli, A; Zhao, S 

(2015). An improved mono-window algorithm for 

land surface temperature retrieval from Landsat 8 

thermal infrared sensor data. Remote sen. 7 (4): 

4268 - 4289. DOI: 

https://doi.org/10.3390/rs70404268 
 

Wang, ZH; Zhao, X; Yang, J; Song, J (2016). Cooling 

and energy saving potentials of shade trees and 

urban lawns in a desert city. Appl. Energy. 161: 437 

- 444. DOI: 

https://doi.org/10.1016/j.apenergy.2015.10.047 

 

Xian, G; Crane, M (2006). Evaluation of Urbanization 

Influence on Urban Climate with Remote Sensing 

and Climate Observations. National Centre for 

Earth Resources Observation and Science, Sioux 

Falls, SD. 57198. 1 – 7 

 

Yasin, MY; Abdullah, J; Noor, NM; Yusoff, MM; 

Noor, NM (2022). Landsat observation of urban 

growth and land use change using NDVI and NDBI 

analysis. In IOP Conference Series: Environ. Earth 

Sci. 1067 (1): 012037. DOI: 10.1088/1755-

1315/1067/1/012037  

 

Zareie S; Khosravi H; Nasiri A (2016). Derivation of 

land surface temperature from landsat thematic 

mapper (TM) sensor data and analysing relation 

between land use changes and surface temperature. 

Solid Earth Discuss. 1 – 15. DOI: doi:10.5194/se-

2016-22 

 

Zha, Y; Gao, J; Ni, S (2003). Use of normalized 

difference built-up index in automatically mapping 

urban areas from TM imagery. Int. J. Remote Sens. 

24 (3): 583 − 594. DOI: 

https://doi.org/10.1080/01431160304987 

 

Zhang, Y; Odeh, IO; Han, C (2009). Bi-temporal 

characterization of land surface temperature in 

relation to impervious surface area, NDVI and 

NDBI, using a sub-pixel image analysis. 

Int. J. Appl. Earth Obs. Geoinf. 11 (4): 256 - 264. 

DOI: https://doi.org/10.1016/j.jag.2009.03.001 

https://doi.org/10.1109/TGRS.2021.3088482
https://doi.org/10.21203/rs.3.rs-1497635/v1
https://doi.org/10.4236/ars.2021.104009
https://doi.org/10.3390/rs70404268
https://doi.org/10.1016/j.apenergy.2015.10.047
https://doi.org/10.1080/01431160304987
https://doi.org/10.1016/j.jag.2009.03.001

