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ABSTRACT: Groundwater flow problems can be expressed mathematically with the employ of partial 

differential equations and which could be solved analytically or numerically.  The results obtained showed that the 

direction of flow of groundwater is from a region of higher hydraulic head to a lower hydraulic head, and that 
pumping groundwater from the well faster than it is recharged leads to dry wells.  The numerical methods used for 

the analysis of Transient and steady-state groundwater flow produced efficient, effective and accurate solution and 

can be used for all real-life problems.  
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Groundwater refers to all the water occupying the 

voids, pores inside geological formations. It is the 

water found underneath the ground in the cracks and 

spaces in soil, sand and rock.  Groundwater is almost 

everywhere below the earth’s surface (Kumar and 

Singh, 2015). Groundwater modeling according to 

Baalousha (2011) is used to represent the system 

in a different form in order to study the system’s 

response under certain conditions or to predict 

the system's behavior in the near future.  Groundwater 

modeling is a powerful tool for managing, protecting 

and restoring water resources. Decision makers use 

models to predict the behavior of groundwater 

systems prior to project implementation or the 

implementation of a recovery plan. Mathematical 

models are ways to describe the physical system using 

mathematical equations. They are based on solving an 

equation or a system of equations that describe the 

physical phenomenon. Such equations are called 

governing equations of the specified phenomenon 

(Mango et al., 2014). To develop models, it is helpful 

to first understand the general equation and how it is 

related to the underlying physical principles.  The 

general equation has several different forms 

depending on whether the flow is saturated or 

unsaturated, two-dimensional or three-dimensional, 

isotropic or anisotropic, and transient or steady state 

(Waghmare, 2016). According Nkurunziza et al. 

(2014), one needs hydrological inputs, hydraulic 

parameters, and initial and boundary conditions for the 

calculations in groundwater modeling.  Groundwater 

flow models simulate either steady or unsteady states 

(transient flow).  In steady-state systems, inputs 

(recharge) and outputs (discharge) are in equilibrium 

so that there is no net change in the system with time.  

In unsteady state or transient simulations, the inputs 

(recharge) and outputs (discharge) are not in 

equilibrium so there is a net change in the systems with 
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time that is the flow velocity and pressure are changing 

with time. For  groundwater flow, the governing 

equation is the combination of Darcy’s law and the 

principle of conservation of mass, thus, combining 

these two principles gives the general groundwater 

flow equation, which is a partial differential equation 

(Atangana and Botha, 2013), (Waghmare, 2016), 

(Wang and Zheng, 2015).  Hence, the objective of this 

paper was to evaluate the mathematical modeling of 

transient and 

steady-state groundwater flow in a confined aquifer. 

 

MATERIALS AND METHODS 
The basic groundwater flow equation is: 

 
𝜕

𝜕𝑥
(𝐾𝑥

𝜕ℎ

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝐾𝑦

𝜕ℎ

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝐾𝑧

𝜕ℎ

𝜕𝑧
) − 𝑄 = 𝑆𝑠

𝜕ℎ

𝜕𝑡
  (1) 

 

ℎ is the hydraulic head or piezometric head, 𝐾𝑥 , 𝐾𝑦 , 𝐾𝑧 

are the hydraulic conductivity along x, y, z axes, Q is 

the volumetric source or sink and 𝑆𝑠 is the specific 

storage coefficient. 

 

From equation 1, the governing equation for 

groundwater flow through an isotropic, homogeneous 

medium under steady-state condition in three-

dimensions is  

 

𝜕2ℎ

𝜕𝑥2
+
𝜕2ℎ

𝜕𝑦2
+
𝜕2ℎ

𝜕𝑧2
= 0     (2) 

 

Allowing the possibility of a sink (for example, a 

pumping well) or a source of water (for example, an 

injection well or recharge) which is expressed as 

volume of per area of aquifer per time, R, so equation 

(2) becomes 

𝜕2ℎ

𝜕𝑥2
+
𝜕2ℎ

𝜕𝑦2
+
𝜕2ℎ

𝜕𝑧2
=
𝑅

𝑇
      (3) 

 

Equation (3) is called Poisson equation, which is the 

equation for steady-state flow equation with 

sinks/sources while equation (2) is a very famous 

equation called the Laplace equation. 

 

Re-writing equation (1) without source/sink in an 

isotropic, homogeneous medium becomes 

 

𝐾 [
𝜕2ℎ

𝜕𝑥2
+
𝜕2ℎ

𝜕𝑦2
+
𝜕2ℎ

𝜕𝑧2
] = 𝑆𝑠

𝜕ℎ

𝜕𝑡
   (4) 

 

Saturated thickness, b, is not dependent on head, h, and 

assuming the aquifer thickness is constant, both sides 

of equation (4) can be multiplied by the aquifer 

thickness to give equation (5) 

 

𝐾𝑏 [
𝜕2ℎ

𝜕𝑥2
+
𝜕2ℎ

𝜕𝑦2
+
𝜕2ℎ

𝜕𝑧2
] = 𝑆𝑠𝑏

𝜕ℎ

𝜕𝑡
   (5) 

 

Then by using the definition of Transmissivity, T, and 

Storativity, 𝑇 = 𝐾𝑏,     𝑆𝑠𝑏 = 𝑆 and dividing both 

sides by T, equation (5) can be written in another form 

in equation (6). 

 

𝜕2ℎ

𝜕𝑥2
+
𝜕2ℎ

𝜕𝑦2
+
𝜕2ℎ

𝜕𝑧2
=
𝑆

𝑇

𝜕ℎ

𝜕𝑡
      (6) 

 

This is the Transient or unsteady-state equation in 

three-dimensions without sinks/sources. 

 

We must allow for possibility of a sink (for example, 

a pumping well) or source of water (for example, an 

injection well or recharge) which is expressed as 

volume per area of aquifer per time, R, so equation (6) 

becomes 

 

𝜕2ℎ

𝜕𝑥2
+
𝜕2ℎ

𝜕𝑦2
+
𝜕2ℎ

𝜕𝑧2
=
𝑆

𝑇

𝜕ℎ

𝜕𝑡
−
𝑅

𝑇
      (7) 

 

Methods for Steady-State Flow 

Method1: Successive Over-Relaxation Method 

(SOR) 

Successive over-relaxation method is an improved 

Gauss-Seidel method for solving a linear system that 

leads faster convergence.  In SOR, the Gauss-Siedel 

method is improved by introducing the previous 

results 

 

𝐻𝑚,𝑛
𝑘+1 = 𝐻𝑚,𝑛

𝑘 +ω
1

4
(𝐻𝑚−1,𝑛

𝑘+1 + 𝐻𝑚,𝑛−1
𝑘+1 + 𝐻𝑚+1,𝑛

𝑘+1

+ 𝐻𝑚,𝑛+1
𝑘+1 − 𝐻𝑚,𝑛

𝑘                    (8) 

 
The convergence can be increased by introducing a 

parameter, ω (omega) 

 

𝐻𝑚,𝑛
𝑘+1 = 𝐻𝑚,𝑛

𝑘 + ω
1

4
(𝐻𝑚−1,𝑛

𝑘+1 + 𝐻𝑚,𝑛−1
𝑘+1 +𝐻𝑚+1,𝑛

𝑘+1

+ 𝐻𝑚,𝑛+1
𝑘+1 − ω𝐻𝑚,𝑛

𝑘                (9) 
 

Re-writing equation (9), the new value 𝐻𝑚,𝑛
𝑘+1  is given 

by  

 

𝐻𝑚,𝑛
𝑘+1

= (1 − ω)𝐻𝑚,𝑛
𝑘

+ ω(
𝐻𝑚−1,𝑛
𝑘+1 + 𝐻𝑚,𝑛−1

𝑘+1 + 𝐻𝑚+1,𝑛
𝑘 + 𝐻𝑚,𝑛+1

𝑘

4
)   (10) 

 

With sinks/sources, equation (10) becomes 
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𝐻𝑚,𝑛
𝑘+1

= (1 − ω)𝐻𝑚,𝑛
𝑘

+ ω(
𝐻𝑚−1,𝑛
𝑘+1 + 𝐻𝑚,𝑛−1

𝑘+1  𝐻𝑚+1,𝑛
𝑘 + 𝐻𝑚,𝑛+1

𝑘

4

−
𝑅(∆𝑥)2

𝑇
)             (11) 

 

If 0 < ω < 1, then the updated head is under relaxed.  

If ω = 1, equation (11) reduces to Gauss- Siedel 

formula but for optimum result and in general 1 ≤ ω 

≤2 (Wang and Anderson, 1992). 

 

Method 2: Alternating Direction Implicit Method 

(ADI) 

The ADI Method was first introduced by Peaceman 

and Rachford for solving the time-dependent heat 

equation in two space dimensions. It was quickly 

recognized that the unconditional stability of the 

method might render it effective as a steady-state 

(hence, elliptic) solver due to the possibility of 

employing large time steps for pseudo-time marching 

to a steady state (Imam, 2015).   

 

Consider the two-dimensional steady state 

groundwater flow equation without sinks/sources 

below: 

 

  

𝛿2𝐻

𝑑𝑥2
+
𝛿2𝐻

𝑑𝑦2
= 0 

 

Finite difference approximation, assuming ∆𝑥 = ∆𝑦 is 

 
𝐻𝑚+1,𝑛 − 4𝐻𝑚,𝑛+𝐻𝑚−1,𝑛 + 𝐻𝑚,𝑛+1 +  𝐻𝑚,𝑛−1 = 0     (12) 

 

For fix row formula, we have 

 

𝐻𝑚−1,𝑛
(𝑝+1)

− 4𝐻𝑚,𝑛
(𝑝+1)

+ 𝐻𝑚+1,𝑛
(𝑝+1)

= −𝐻𝑚,𝑛+1
(𝑝)

−𝐻𝑚,𝑛−1
(𝑝)

 (13) 

 

In the next iteration, we alternate the direction by using the formula for fix column 

 

𝐻𝑚,𝑛+1 − 4𝐻𝑚,𝑛+𝐻𝑚,𝑛−1 = −𝐻𝑚+1,𝑛 −  𝐻𝑚+1,𝑛  (14) 
 

Substituting p+1th approximation (the results from equation (13)) is substituted on the right as: 

 

 

𝐻𝑚,𝑛−1
(𝑝+2)

− 4𝐻𝑚,𝑛
(𝑝+2)

+ 𝐻𝑚,𝑛+1
(𝑝+2)

= −𝐻𝑚−1,𝑛
(𝑝+1)

−𝐻𝑚+1,𝑛
(𝑝+1)

  (15) 

 

With sinks/sources, we have for row and column 

 

𝐻𝑚−1,𝑛
(𝑝+1)

− 4𝐻𝑚,𝑛
(𝑝+1)

+ 𝐻𝑚+1,𝑛
(𝑝+1)

= −𝐻𝑚,𝑛+1
(𝑝)

− 𝐻𝑚,𝑛−1
(𝑝)

−
𝑅(∆𝑥)2

𝑇
              (16) 

 

𝐻𝑚,𝑛−1
(𝑝+2)

− 4𝐻𝑚,𝑛
(𝑝+2)

+ 𝐻𝑚,𝑛+1
(𝑝+2)

= −𝐻𝑚−1,𝑛
(𝑝+1)

− 𝐻𝑚+1,𝑛
(𝑝+1)

−
𝑅(∆𝑥)2

𝑇
              (17) 

 

Method 3: Improved Alternating Direction Implicit Method (IADI) 

To improve the convergence of ADI, we introduce a parameter k (Imam, 2015). 

From equations (13) and (15), we have the improved formula for row and column 

 

   𝐻𝑚−1,𝑛
(𝑝+1)

− (2 + 𝑘)𝐻𝑚,𝑛
(𝑝+1)

+ 𝐻𝑚+1,𝑛
(𝑝+1)

= −𝐻𝑚,𝑛−1
(𝑝)

−𝐻𝑚,𝑛+1
(𝑝)

+ (2 − 𝑘)𝐻𝑚,𝑛
(𝑝)
 (18) 

   𝐻𝑚,𝑛−1
(𝑝+2)

− (2 + 𝑘)𝐻𝑚,𝑛
(𝑝+2)

+ 𝑢𝑚,𝑛+1
(𝑝+2)

= −𝐻𝑚−1,𝑛
(𝑝+1)

−𝐻𝑚+1,𝑛
(𝑝+1)

+ (2 − 𝑘)𝐻𝑚,𝑛
(𝑝+1) 

 (19) 

 

With sinks/sources, we have 

 

From equations (18) and (19), we introduce the parameter k and add the source/sinks 

 

𝐻𝑚−1,𝑛
(𝑝+1)

− (2 + 𝑘)𝐻𝑚,𝑛
(𝑝+1)

+𝐻𝑚+1,𝑛
(𝑝+1)

= −𝐻𝑚,𝑛+1
(𝑝)

− 𝐻𝑚,𝑛−1
(𝑝)

+ (2 − 𝑘)𝐻𝑚,𝑛
(𝑝)

−
𝑅(∆𝑥)2

𝑇
 (20) 

                𝐻𝑚,𝑛−1
(𝑝+2)

− (2 + 𝑘)𝐻𝑚,𝑛
(𝑝+2)

+ 𝐻𝑚,𝑛+1
(𝑝+2)

= −𝐻𝑚−1,𝑛
(𝑝+1)

− 𝐻𝑚+1,𝑛
(𝑝+1)

+ (2 − 𝑘)𝐻𝑚,𝑛
(𝑝+1)

−
𝑅(∆𝑥)2

𝑇
     (21) 
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Methods For Transient Flow 

Method 1: Explicit Finite Difference Method (EFDM) 

Explicit Finite Difference uses forward differencing for the time derivative and central differencing for the space 

derivatives. (Hoffmann and Chiang, 2000). 

 

Consider the two-dimensional transient groundwater flow equation below: 

 

𝜕2𝐻

𝜕𝑥2
+
𝜕2𝐻

𝜕𝑦2
=
𝑆

𝑇

𝜕𝐻

𝜕𝑡
 (22) 

 

Using the forward difference approximation for the time derivative and central difference approximation for the 

space derivative, equation (22) becomes 

 

𝐻 𝑚+1,𝑛
𝑝 − 2𝐻𝑚,𝑛

𝑝
+𝐻 𝑚−1,𝑛

𝑝

(∆𝑥)2
+
𝐻𝑚,𝑛+1
𝑝

− 2𝐻𝑚,𝑛
𝑝

+ 𝐻𝑚,𝑛−1
𝑝

(∆𝑦)2
=
𝑆

𝑇

𝐻𝑚,𝑛
𝑝+1 

−  𝐻𝑚,𝑛
𝑝

∆𝑡
 (23) 

assume ∆𝑥 = ∆𝑦 = 𝑏 and let  γ =
𝑇∆𝑡

𝑆𝑏2
 

𝐻𝑚,𝑛
𝑝+1 

 = 𝐻𝑚,𝑛
𝑝

+ γ(𝐻 𝑚+1,𝑛
𝑝 − 4𝐻𝑚,𝑛

𝑝
+𝐻 𝑚−1,𝑛

𝑝 +𝐻𝑚,𝑛+1
𝑝

+𝐻𝑚,𝑛−1
𝑝

) (24) 

 

Collecting like terms, equation (24) becomes 

 

𝐻𝑚,𝑛
𝑝+1 

 = 𝐻𝑚,𝑛
𝑝 (1 − 4γ ) + γ(𝐻 𝑚+1,𝑛

𝑝 +𝐻 𝑚−1,𝑛
𝑝 +𝐻𝑚,𝑛+1

𝑝
+ 𝐻𝑚,𝑛−1

𝑝
) (25) 

 

For the solution to be stable, γ must be kept sufficiently small so for two-dimensional case where ∆𝑥 = ∆𝑦, the 

value of γ must be less than or equal to 0.25 while for one-dimensional case, γ must be less than or equal to 0.5 

(Wang and Anderson, 1996). 

 

Method 2: Crank Nicolson Method (CNM) 

Crank Nicolson Method according to (Fadugba et al., 2013) was developed by John Crank and Phyllis Nicolson 

in the mid-20th century. This method is always used in dealing with complex problems of science and technology. 

(Jamaluddin et al., 2020), (Arunachalam,  2023), (Hoffmann and Chiang, 2000) 

Considering equation (22) 

Using forward difference for the time derivative and central difference for the space derivative along at time level 

t and t+1 

𝐻 𝑚+1,𝑛
𝑡 − 2𝐻𝑚,𝑛

𝑡 +𝐻 𝑚−1,𝑛  
𝑡

(∆𝑥)2
+  

𝐻 𝑚,𝑛+1
𝑡 − 2𝐻𝑚,𝑛

𝑡 +𝐻 𝑚,𝑛−1  
𝑡

(∆𝑦)2
=
𝑆

𝑇

𝐻𝑚,𝑛
𝑡+1 −  𝐻𝑚,𝑛 

𝑡

∆𝑡
(26) 

𝐻 𝑚+1,𝑛
𝑡+1 − 2𝐻𝑚,𝑛

𝑡+1 +𝐻 𝑚−1,𝑛
𝑡+1

(∆𝑥)2
+
𝐻 𝑚,𝑛+1
𝑡+1 − 2𝐻𝑚,𝑛

𝑡+1+𝐻 𝑚,𝑛−1
𝑡+1

(∆𝑦)2
=
𝑆

𝑇

𝐻𝑚,𝑛
𝑡+1 −  𝐻𝑚,𝑛 

𝑡

∆𝑡
 (27) 

Taking the average of equations (26) and (27) and assume ∆𝑥 = ∆𝑦,  

𝑆

𝑇

𝐻𝑚,𝑛
𝑡+1 −𝐻𝑚,𝑛

𝑡

∆𝑡
=
1

2
(
𝐻 𝑚+1,𝑛
𝑡+1 +𝐻 𝑚−1,𝑛

𝑡+1 + 𝐻 𝑚,𝑛+1
𝑡+1 +𝐻 𝑚,𝑛−1

𝑡+1 − 4𝐻𝑚,𝑛
𝑡+1

 

(∆𝑥)2
+ 

+  
𝐻 𝑚+1,𝑛
𝑡 − 4𝐻𝑚,𝑛

𝑡 +𝐻 𝑚−1,𝑛
𝑡 + 𝐻 𝑚,𝑛+1

𝑡 +𝐻 𝑚,𝑛−1
𝑡

(∆𝑥)2
) (28) 

Re-arranging and Let 𝛽 =
𝑇∆𝑡

𝑆(∆𝑥)2
, it becomes 

𝐻𝑚,𝑛
𝑡+1 = 𝐻𝑚,𝑛

𝑡 + 
1

2
𝛽(𝐻 𝑚+1,𝑛

𝑡+1 +𝐻 𝑚−1,𝑛
𝑡+1 + 𝐻 𝑚,𝑛+1

𝑡+1 +𝐻 𝑚,𝑛−1
𝑡+1 − 4𝐻𝑚,𝑛

𝑡+1
 
+ 𝐻 𝑚+1,𝑛

𝑡 − 

− 4𝐻𝑚,𝑛
𝑡 +𝐻 𝑚−1,𝑛

𝑡 + 𝐻 𝑚,𝑛+1
𝑡 +𝐻 𝑚,𝑛−1

𝑡 ) (29) 

With sinks/sources 

𝑆

𝑇

𝜕𝐻

𝜕𝑡
=
𝜕2𝐻

𝜕𝑥2
+
𝜕2𝐻

𝜕𝑦2
+
𝑅

𝑇
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Using equation (29), we have 

𝐻𝑚,𝑛
𝑡+1 = 𝐻𝑚,𝑛

𝑡 + 
1

2
 𝛽(𝐻 𝑚+1,𝑛

𝑡+1 +𝐻 𝑚−1,𝑛
𝑡+1 + 𝐻 𝑚,𝑛+1

𝑡+1 +𝐻 𝑚,𝑛−1
𝑡+1 − 4𝐻𝑚,𝑛

𝑡+1
 
 + 𝐻 𝑚+1,𝑛

𝑡 − 

−4𝐻𝑚,𝑛
𝑡 +𝐻 𝑚−1,𝑛

𝑡 + 𝐻 𝑚,𝑛+1
𝑡 +𝐻 𝑚,𝑛−1

𝑡 +
2𝑅(∆𝑥)2

𝑇
) (30) 

Method3: Fractional Step Method (FSM) 

Fractional step method (FSM) is similar to ADI method with time splitting resulting in two sets of tridiagonal 

problem per time. This method splits the multi-dimensional equation into a series of one-space dimensional 

equations and solves them sequentially. (Note that Crank-Nicolson scheme is used) (Hoffmann and Chiang, 2000) 

Splitting equation (28) into 2, assuming ∆𝑥 = ∆𝑦 and take γ =
𝑇∆𝑡

𝑆(∆𝑥)2
, we have 2 equations 

𝐻𝑚,𝑛
𝑡+1 = 𝐻𝑚,𝑛

𝑡 +
1

4
γ(𝐻 𝑚+1,𝑛

𝑡+1 − 2𝐻𝑚,𝑛
𝑡+1+𝐻 𝑚−1,𝑛

𝑡+1 + 𝐻 𝑚+1,𝑛
𝑡 − 2𝐻𝑚,𝑛

𝑡 +𝐻 𝑚−1,𝑛
𝑡 ) (31) 

𝐻𝑚,𝑛
𝑡+2 = 𝐻𝑚,𝑛

𝑡+1 +
1

4
γ(𝐻 𝑚,𝑛+1

𝑡+2 − 2𝐻𝑚,𝑛
𝑡+2+𝐻 𝑚,𝑛−1

𝑡+2 + 𝐻 𝑚,𝑛+1
𝑡+1 − 2𝐻𝑚,𝑛

𝑡+1 +𝐻 𝑚,𝑛−1
𝑡+1 ) (32) 

Adding sinks/sources to equations (31) and (32), we have the following equations 

𝐻𝑚,𝑛
𝑡+1 = 𝐻𝑚,𝑛

𝑡 +
1

4
γ(𝐻 𝑚+1,𝑛

𝑡+1 − 2𝐻𝑚,𝑛
𝑡+1 +𝐻 𝑚−1,𝑛

𝑡+1 + 𝐻 𝑚+1,𝑛
𝑡 − 2𝐻𝑚,𝑛

𝑡 +𝐻 𝑚−1,𝑛
𝑡 −

2𝑅(∆𝑥)2

𝑇
) (33) 

𝐻𝑚,𝑛
𝑡+2 = 𝐻𝑚,𝑛

𝑡+1 +
1

4
γ(𝐻 𝑚,𝑛+1

𝑡+2 − 2𝐻𝑚,𝑛
𝑡+2 +𝐻 𝑚,𝑛−1

𝑡+2 + 𝐻 𝑚,𝑛+1
𝑡+1 − 2𝐻𝑚,𝑛

𝑡+1 +𝐻 𝑚,𝑛−1
𝑡+1 −

2𝑅(∆𝑥)2

𝑇
) (34) 

Fractional step method (FSM) is unconditionally stable and is of order [(∆𝑡)2, (∆𝑥)2, (∆𝑦)2 ] (Hoffmann and 

Chiang, 2000). This method may be applied to any multidimensional problem to provide the approximate 

factorization of the partial differential equations. 

 

Numerical applications 

Problem 1: A single well is pumped to steady-state in a confined isotropic, homogeneous aquifer. A square 

500m x 500m grid is imposed as shown below and heads are measured in wells along the boundary of the grid. 

Compute the heads at the nine (9) interior nodes (Karvonen, 2002). 

 

8.26  8.33  8.43  8.55  8.68 

7.99  H1   H2   H3  8.55 

7.65  H4   H5   H6  8.43 

7.22  H7   H8   H9  8.33  

6.68  7.22  7.65  7.99  8.26 

 

Method 1: SOR  

using equation (10) with  𝜔 = 1.2 and stating the iterations at k = 0 

𝐻𝑚,𝑛
𝑘+1 = (−0.2)𝐻𝑚,𝑛

𝑘 + ω(
𝐻𝑚−1,𝑛
𝑘+1 + 𝐻𝑚,𝑛−1

𝑘+1  𝐻𝑚+1,𝑛
𝑘 +𝐻𝑚,𝑛+1

𝑘

4
) (35) 

The results converge after 7 iterations: 

H1= 8.10 H2 = 8.24 H3 = 8.39 H4 = 7.83 H5 = 8.03   

H6 = 8.24 H7 = 7.52 H8 = 7.82 H9 = 8.10 

 

Method 2:  ADI 

 
Fig 1: Schematic Diagram for ADI 
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Using equation (13) and figure 1 for the row iterations  

      7.22 − 4𝐻7
(𝑝+1)

+ 𝐻8
(𝑝+1)

= −7.22 − 𝐻4
(𝑝)

       for m = 1 

𝐻7
(𝑝+1) − 4𝐻8

(𝑝+1)
+ 𝐻9

(𝑝+1)
= −7.65 − 𝐻5

(𝑝)
   for m = 2 

    𝐻8
(𝑝+1) − 4𝐻9

(𝑝+1)
+ 8.33 = −7.99 − 𝐻6

(𝑝)
   for m = 3 

For Row n = 2 

     7.65 − 4𝐻4
(𝑝+1)

+ 𝐻5
(𝑝+1)

 = −𝐻7
(𝑝)
− 𝐻1

(𝑝)
     for m = 1 

𝐻4
(𝑝+1) − 4𝐻5

(𝑝+1)
+ 𝐻6

(𝑝+1)
= −𝐻8

(𝑝)
− 𝐻2

(𝑝)
     for m = 2 

  𝐻5
(𝑝+1) − 4𝐻6

(𝑝+1)
+ 8.43  = −𝐻9

(𝑝)
− 𝐻3

(𝑝)
   for m = 3 

For Row n = 3 

 7.99 − 4𝐻1
(𝑝+1)

+ 𝐻2
(𝑝+1)

     = −𝐻4
(𝑝)
− 8.33     for m =1 

𝐻1
(𝑝+1) − 4𝐻2

(𝑝+1)
+ 𝐻3

(𝑝+1)
= −𝐻5

(𝑝)
− 8.43   for m = 2 

𝐻2
(𝑝+1) − 4𝐻3

(𝑝+1)
+ 8.56    = −𝐻6

(𝑝)
− 8.55   for m = 3 

 

Using equation (15) and figure (1), we have the following equations for the column iterations 

For Column m = 1  

      7.22 − 4𝐻7
(𝑝+1)

+ 𝐻4
(𝑝+1)

= −𝐻8
(𝑝)
− 7.22   for n =1 

𝐻7
(𝑝+1) − 4𝐻4

(𝑝+1)
+ 𝐻1

(𝑝+1)
= −𝐻5

(𝑝)
− 7.65   for n = 2 

     𝐻4
(𝑝+1) − 4𝐻1

(𝑝+1)
+ 8.33 = −𝐻2

(𝑝)
− 7.99   for n = 3 

For Column m = 2  

7.65 − 4𝐻8
(𝑝+1)

+ 𝐻5
(𝑝+1)

      = −𝐻7
(𝑝)
− 𝐻9

(𝑝)
   for n = 1 

𝐻8
(𝑝+1) − 4𝐻5

(𝑝+1)
+ 𝐻2

(𝑝+1)
= −𝐻4

(𝑝)
− 𝐻6

(𝑝)
    for n = 2 

𝐻5
(𝑝+1) − 4𝐻2

(𝑝+1)
+ 8.43     = −𝐻1

(𝑝)
− 𝐻3

(𝑝)
    for n = 3 

For Column m = 3 

     7.99 − 4𝐻9
(𝑝+1)

+ 𝐻6
(𝑝+1)

 = −𝐻8
(𝑝)
− 8.33    for n = 1 

𝐻9
(𝑝+1) − 4𝐻6

(𝑝+1)
+ 𝐻3

(𝑝+1)
= −𝐻5

(𝑝)
− 8.43    for n = 2 

 𝐻6
(𝑝+1) − 4𝐻3

(𝑝+1)
+ 8.55   = −𝐻2

(𝑝)
− 8.56    for n = 3 

The results converge after 11 iterations, the results are 

H1 = 8.10 H2 = 8.24 H3 = 8.40 H4 = 7.83 H5 = 8.03 

H6 = 8.24 H7 = 7.52 H8 = 7.83 H9 = 8.10 

 

Method 3:  IADI 

Using equations (18) and (19), we have the following equations for the iterations  

Assume k = 1.5, starting at p = 0 

For Row n = 1 

     7.22 − 3.5𝐻7
(𝑝+1)

+ 𝐻8
(𝑝+1)

= −7.22 − 𝐻4
(𝑝)
+ 0.5𝐻7

(𝑝)
    for m =1 

     𝐻7
(𝑝+1) − 3.5𝐻8

(𝑝+1)
+ 𝐻9

(𝑝+1)
= −7.65 − 𝐻5

(𝑝)
+ 0.5𝐻8

(𝑝)
   for m =2 

     𝐻8
(𝑝+1) − 3.5𝐻9

(𝑝+1)
+ 8.33 = −7.99 − 𝐻6

(𝑝)
+ 0.5𝐻9

(𝑝)
   for m =3 

For Row n = 2 

7.65 − 3.5𝐻4
(𝑝+1)

+ 𝐻5
(𝑝+1)

= −𝐻7
(𝑝)
− 𝐻1

(𝑝)
+ 0.5𝐻4

(𝑝)
   for m =1 

𝐻4
(𝑝+1) − 3.5𝐻5

(𝑝+1)
+ 𝐻6

(𝑝+1)
= −𝐻8

(𝑝)
− 𝐻2

(𝑝)
+ 0.5𝐻5

(𝑝)
  for m =3 

𝐻5
(𝑝+1) − 3.5𝐻6

(𝑝+1)
+ 8.43  = −𝐻9

(𝑝)
−𝐻3

(𝑝)
+ 0.5𝐻6

(𝑝)
  for m =3 

For Row n = 3 

7.99 − 3.5𝐻1
(𝑝+1)

+ 𝐻2
(𝑝+1)

     = −𝐻4
(𝑝)
− 8.33 + 0.5𝐻1

(𝑝)
   for m =1 

𝐻1
(𝑝+1) − 3.5𝐻2

(𝑝+1)
+ 𝐻3

(𝑝+1)
 = −𝐻5

(𝑝)
− 8.43 + 0.5𝐻2

(𝑝)
  for m =2 

𝐻2
(𝑝+1) − 3.5𝐻3

(𝑝+1)
+ 8.56 = −𝐻6

(𝑝)
− 8.55 + 0.5𝐻3

(𝑝)
                 for m =3 

For Column m = 1 

 7.22 − 3.5𝐻7
(𝑝+1)

+ 𝐻4
(𝑝+1)

   = −𝐻8
(𝑝)
− 7.22 + 0.5𝐻7

(𝑝)
   for n =1 

 𝐻7
(𝑝+1) − 3.5𝐻4

(𝑝+1)
+𝐻1

(𝑝+1)
= −𝐻5

(𝑝)
− 7.65 + 0.5𝐻4

(𝑝)
   for n =2 
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  𝐻4
(𝑝+1) − 3.5𝐻1

(𝑝+1)
+ 8.33 = −𝐻2

(𝑝)
− 7.99 + 0.5𝐻1

(𝑝)
   for n =3 

For Column m = 2  

 7.65 − 3.5𝐻8
(𝑝+1)

+ 𝐻5
(𝑝+1)

 = −𝐻7
(𝑝)
−𝐻9

(𝑝)
+ 0.5𝐻8

(𝑝)
   for n =1 

 𝐻8
(𝑝+1) − 3.5𝐻5

(𝑝+1)
+𝐻2

(𝑝+1)
= −𝐻4

(𝑝)
− 𝐻6

(𝑝)
+ 0.5𝐻5

(𝑝)
    for n =2 

 𝐻5
(𝑝+1) − 3.5𝐻2

(𝑝+1)
+ 8.43 = −𝐻1

(𝑝)
− 𝐻3

(𝑝)
 + 0.5𝐻2

(𝑝)
   for n =3 

For Column m = 3 

7.99 − 3.5𝐻9
(𝑝+1)

+ 𝐻6
(𝑝+1)

 = −𝐻8
(𝑝)
− 8.33 + 0.5𝐻9

(𝑝)
   for n =1 

−3.5𝐻6
(𝑝+1)

+ 𝐻3
(𝑝+1)

= −𝐻5
(𝑝)
− 8.43 + 0.5𝐻6

(𝑝)
    for n =2 

𝐻6
(𝑝+1) − 3.5𝐻3

(𝑝+1)
+ 8.55 = −𝐻2

(𝑝)
− 8.56 + 0.5𝐻3

(𝑝)
   for n =3 

 

The results converged after 6 iterations are 

H1 = 8.10  H2 = 8.24 H3 = 8.40 H4 = 7.83 H5 = 8.03 

H6 = 8.24 H7 = 7.53 H8 = 7.82 H9 = 8.10 

 

Problem 2: A domain is bounded at the top and bottom by Neumann boundary with no flow and we allow water 

to infiltrate at the piezometric head at 1m and 2m per day on the left and right boundary respectively.  

These can be expressed mathematically as: 

∇2= 0                              {(𝑥, 𝑦):                        0 <  𝑥 < 1, 0 < 𝑦 < 1 

𝐵𝐶:                                  𝐻(0, 𝑦)  = 1                0 ≤ 𝑦 ≤ 1 

 𝐻(1, 𝑦)   = 2                0 ≤ 𝑦 ≤ 1;        
𝜕𝐻(𝑥,0) 

𝜕𝑦
= 0                 0 ≤ 𝑥 ≤ 1 

𝜕𝐻(𝑥, 1)

𝜕𝑦
 = 0                 0 ≤ 𝑥 ≤ 1                        𝑁𝑦 = 6,𝑁𝑥 = 6 

 
Fig 2: Finite Difference Grid Diagram 

Using figure 2 

For the no-flow Boundary(Neumann Boundary), we use the central difference formula for the first derivative.   
𝑑𝑦

𝑑𝑥
=

𝐻𝑖+1,𝑗−𝐻𝑖−1,𝑗

2∆𝑥
= 0 which implies that  𝐻𝑖+1,𝑗 = 𝐻𝑖−1,𝑗 for example 𝐻2,1 = 𝐻0,1. 

Method 1: SOR 

Considering problem 2 with Neumann boundaries on the top and bottom and taking omega ω = 1.4, SOR formula 

is stated below 

𝐻𝑚,𝑛
𝑘+1 = (1 − 𝜔)𝐻𝑚,𝑛

𝑘 +
𝜔(𝐻𝑚−1,𝑛

(𝑘+1) + 𝐻𝑚,𝑛−1
(𝑘+1) + 𝐻𝑚+1,𝑛

𝑘 + 𝐻𝑚,𝑛+1
𝑘 )

4
 (36) 

taking omega (𝜔) = 1.4, we have and using central difference formula for Neumann boundary that is for the 

derivative 

𝐻𝑚,𝑛
𝑘+1 = (−0.4)𝐻𝑚,𝑛

𝑘 +
1.4(𝐻𝑚−1,𝑛

(𝑘+1) + 𝐻𝑚+1,𝑛
𝑘 + 𝐻𝑚,𝑛−1

(𝑘+1) +𝐻𝑚,𝑛+1
𝑘 )

4
 (37) 

𝐻𝑚,𝑛
𝑘+1 = (−0.4)𝐻𝑚,𝑛

𝑘 +
1.4(𝐻𝑚−1,𝑛

(𝑘+1) + 𝐻𝑚+1,𝑛
𝑘 + 2𝐻𝑚,𝑛−1

(𝑘+1) )

4
                  (38) 
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             𝐻𝑚,𝑛
𝑘+1 = (−0.4)𝐻𝑚,𝑛

𝑘 +
1.4(𝐻𝑚−1,𝑛

(𝑘+1) + 𝐻𝑚+1,𝑛
𝑘 + 2𝐻𝑚,𝑛+1

𝑘 )

4
                          (39) 

For the Bottom Boundary (H20 to H24), use equation (39) , For the Top Boundary (H1 to H4), use equation 

(38) , Other Nodes (H5 to H19), use equation (37)  

The results after 11 iterations are 

H1= 1.20 H2 =  1.40 H3 = 1.60 H4 = 1.80   H5 = 1.20  H6 = 1.40    

H7=1.60  H8 = 1.80 H9 = 1.20 H10 =  1.40 H11 = 1.60 H12 = 1.80   

H13 = 1.20 H14 =  1.40 H15 = 1.60 H16 = 1.80 H17 = 1.20 H18 = 1.40

 H19 = 1.60 H20 = 1.80 H21 = 1.20 H22 =  1.40 H23 = 1.60 H24 = 1.80

  

 

Method 2: ADI 

using figure 3 and equation (13) for the row iteration and equation (15) for the column iterations and starting at p 

= 0 and apply the boundary using the central difference for first derivative that is 𝐻𝑖+1,𝑗 = 𝐻𝑖−1,𝑗 and 𝐻𝑖,𝑗+1 =

𝐻𝑖,𝑗−1 

 
Fig 3: ADI schematics Diagram for Problem 2 

 

𝐻𝑚−1,𝑛
(1) − 4𝐻𝑚,𝑛

(1) + 𝐻𝑚+1,𝑛
(1) = −𝐻𝑚,𝑛+1

(0) − 𝐻𝑚,𝑛−1
(0)                                                       (40) 

𝐻𝑚,𝑛−1
(2) − 4𝐻𝑚,𝑛

(2) + 𝐻𝑚,𝑛+1
(2) = −𝐻𝑚−1,𝑛

(1) − 𝐻𝑚+1,𝑛
(1)                                                      (41) 

We continue the iterations until the results converge, the results converged after iteration 18, the results  

are: H1= 1.20 H2 =  1.40 H3 = 1.60 H4 = 1.80   H5 = 1.20  H6 = 1.40    

H7=1.60  H8 = 1.80 H9 = 1.20 H10 =  1.40 H11 = 1.60 H12 = 1.80   

H13 = 1.20 H14 =  1.40 H15 = 1.60 H16 = 1.80 H17 = 1.20 H18 = 1.40 

H19 = 1.60 H20 = 1.80 H21 = 1.20 H22 =  1.40 H23 = 1.60 H24 = 1.80

  

 

Method 3:  IADI 

using figure 3 and equations (18) and (19) for the iterations and assume k = 1.2 

for Row iteration  

𝐻𝑚−1,𝑛
(𝑝+1)

− (3.2)𝐻𝑚,𝑛
(𝑝+1)

+ 𝐻𝑚+1,𝑛
(𝑝+1)

= −𝐻𝑚,𝑛−1
(𝑝)

− 𝐻𝑚,𝑛+1
(𝑝)

+ (0.8)𝐻𝑚,𝑛
(𝑝) (42) 

Column iterations,  

𝐻𝑚,𝑛−1
(𝑝+2)

− (3.2)𝐻𝑚,𝑛
(𝑝+2)

+ 𝑢𝑚,𝑛+1
(𝑝+2)

= −𝐻𝑚−1,𝑛
(𝑝+1)

− 𝐻𝑚+1,𝑛
(𝑝+1)

+ (0.8)𝐻𝑚,𝑛
(𝑝+1) 

 (43) 

the results converge after iteration 8, the results are: 

H1= 1.20 H2 =  1.40 H3 = 1.60 H4 = 1.80   H5 = 1.20  H6 = 1.40    

H7=1.60  H8 = 1.80 H9 = 1.20 H10 =  1.40 H11 = 1.60 H12 = 1.80   

H13 = 1.20 H14 =  1.40 H15 = 1.60 H16 = 1.80 H17 = 1.20 H18 = 1.40  

H19 = 1.60 H20 = 1.80 H21 = 1.20 H22 =  1.40 H23 = 1.60 H24 = 1.80 
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Problem 3 (Well Drawdown in A Confined Aquifer): A well fully penetrates a horizontal isotropic aquifer of 

thickness 30m. The confined aquifer is assumed to be of circular shape and the discharging well is located at the 

centre of the aquifer, the radius of the homogeneous, isotropic aquifer is 1100 m. The transmissivity, T is 400 

m2/d and the pumping rate Q from the well is 2000 m3/d. Before pumping, the static water level in the well is 30 

m, the hydraulic head along the circular boundary of the aquifer is 30 m and it is assumed that drawdown extends 

out to a radial distance of 1100 m from the well. That is the static water level remains unaffected for distances 

that exceed 1100 m from the well. Take ∆x = 100. (Karvonen, 2002). 

 

 
 

As shown in Figure 4, only one quadrant will be considered and use rectangular coordinates for the solution. 

Because of symmetry, it is required that the line x and y axes be no-flow boundary. We can also Figure 4 and 

table 1 that all the nodes that the distance from the well is greater than 1100m takes the value 30m. There is No 

flow boundary on the left and bottom of the quadrant and constant head on the right and top boundary = 30m. 

 
Table 1: The finite difference grid 

 
 

Method 1:  SOR 

Using equation (10) for the nodes without the pump and equation (11) for the pumping node with  ω = 1.5, 

starting the iteration at k = 0 and applying the boundary at the left and the bottom using 

 

 
𝑑𝑦

𝑑𝑥
=

𝐻𝑖+1,𝑗−𝐻𝑖−1,𝑗

2∆𝑥
= 0 which implies that  𝐻𝑖+1,𝑗 = 𝐻𝑖−1,𝑗 for example 𝐻2,1 = 𝐻0,1  

 

 

𝐻𝑚,𝑛
𝑘+1 = (−0.5)𝐻𝑚,𝑛

𝑘 + 1.5 (
𝐻𝑚−1,𝑛
𝑘+1 + 𝐻𝑚,𝑛−1

𝑘+1  𝐻𝑚+1,𝑛
𝑘 + 𝐻𝑚,𝑛+1

𝑘

4
) (44) 

 

for the pumping node, H94 

 

𝐻𝑚,𝑛
𝑘+1 = (−0.5)𝐻𝑚,𝑛

𝑘 + 1.5 (
𝐻𝑚−1,𝑛
𝑘+1 + 𝐻𝑚,𝑛−1

𝑘+1  𝐻𝑚+1,𝑛
𝑘 + 𝐻𝑚,𝑛+1

𝑘

4
− 5) (45) 

 

The results converge after iteration 93 

 
 

Figure 4: Schematic Diagram

Mathematically, 

∆x = ∆y = 100, T = 400 m2/d, 

R = 0.2m/d, Q = 2000 m3/d

𝑅 = −
 

∆ 2 = 
2000

10000
= −0.2
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Table 2: Results of SOR after 93 iterations 

 
 

Method 2: ADI 

Using figure 4 and equations (13) and (15), starting the iteration at p = 0 and applying the boundary conditions 

on the left and at the bottom since they are no flow boundaries. 

 
𝑑𝑦

𝑑𝑥
=

𝐻𝑖+1,𝑗−𝐻𝑖−1,𝑗

2∆𝑥
= 0 which implies that  𝐻𝑖+1,𝑗 = 𝐻𝑖−1,𝑗  and 𝐻𝑖,𝑗+! = 𝐻𝑖,𝑗−1   

 𝐻2,1 = 𝐻0,1 and 𝐻1,2 = 𝐻1,0    

For Row Iteration at p = o,  

𝐻𝑚−1,𝑛
(1) − 4𝐻𝑚,𝑛

(1) + 𝐻𝑚+1,𝑛
(1) = −𝐻𝑚,𝑛−1

(0) − 𝐻𝑚,𝑛+1 
(0) (46) 

For Column Iteration at p = o, 

𝐻𝑚,𝑛−1
(1) − 4𝐻𝑚,𝑛

(1) +𝐻𝑚,𝑛+1
(1) = −𝐻𝑚−1,𝑛

(0) − 𝐻𝑚+1,𝑛
(0) (47) 

And for the pumping node, using equations (16) and (17) 

For Row Iteration at p = o,  

𝐻𝑚−1,𝑛
(1) − 4𝐻𝑚,𝑛

(1) + 𝐻𝑚+1,𝑛
(1) = −𝐻𝑚,𝑛−1

(0) − 𝐻𝑚,𝑛+1 
(0) − 5 (48)  

For Column Iteration at p = o, 

𝐻𝑚,𝑛−1
(1) − 4𝐻𝑚,𝑛

(1) + 𝐻𝑚,𝑛+1
(1) = −𝐻𝑚−1,𝑛

(0) − 𝐻𝑚+1,𝑛
(0) − 5    (49)  

Alternating the row and the column, the results converge after iteration 209 

 
Table 3: Results of ADI after 209 iterations 

 
Method 3: IADI 

Using Table 1 and equations (18) and (19), generate the equations for the Improved Alternating Direction 

implicit method (ADI) At p = 0 and k = 1.1, applying the boundary condition as in the second method 

the row equation becomes 

𝐻𝑚−1,𝑛
(1) − (3.1)𝐻𝑚,𝑛

(1) + 𝐻𝑚+1,𝑛
(1) = −𝐻𝑚,𝑛−1

(0) −𝐻𝑚,𝑛+1
(0) + (0.9)𝐻𝑚,𝑛

(0)  (50) 

the column equation becomes 

𝐻𝑚,𝑛−1
(2) − (3.1)𝐻𝑚,𝑛

(2) + 𝑢𝑚,𝑛+1
(2) = −𝐻𝑚−1,𝑛

(1) − 𝐻𝑚+1,𝑛
(1) + (0.9)𝐻𝑚,𝑛

(1)   (51) 

At the point of the well, for p = 0, k=1.1, using equations (20) for row iteration and equation (21) for column 

iteration 

𝐻𝑚−1,𝑛
(1) − (3.1)𝐻𝑚,𝑛

(1) + 𝐻𝑚+1,𝑛
(1) = −𝐻𝑚,𝑛+1

(0) − 𝐻𝑚,𝑛−1
(0) + (0.9)𝐻𝑚,𝑛

(0) − 5 (52) 

While the column iteration uses 

𝐻𝑚,𝑛−1
(2) − (3.1)𝐻𝑚,𝑛

(2) + 𝐻𝑚,𝑛+1
(2) = −𝐻𝑚−1,𝑛

(1) − 𝐻𝑚+1,𝑛
(1) + (0.9)𝐻𝑚,𝑛

(1) − 5   (53) 

30 30 30 30 30 30 30 30 30 30 30 30

29.91 29.92 29.92 29.93 29.96 30 30 30 30 30 30 30

29.82 29.83 29.84 29.86 29.89 29.92 29.95 30 30 30 30 30

29.73 29.73 29.75 29.78 29.81 29.86 29.9 29.95 30 30 30 30

29.62 29.63 29.65 29.69 29.73 29.78 29.83 29.89 29.95 30 30 30

29.49 29.5 29.54 29.58 29.64 29.71 29.77 29.83 29.9 29.96 30 30

29.35 29.36 29.41 29.47 29.55 29.62 29.7 29.78 29.85 29.92 30 30

29.17 29.19 29.26 29.35 29.45 29.55 29.64 29.73 29.81 29.89 29.96 30

28.93 28.98 29.09 29.22 29.35 29.47 29.58 29.69 29.78 29.86 29.93 30

28.6 28.71 28.9 29.09 29.26 29.41 29.54 29.65 29.75 29.84 29.92 30

28.03 28.37 28.71 28.98 29.19 29.36 29.5 29.63 29.73 29.83 29.92 30

26.78 28.03 28.6 28.93 29.17 29.35 29.49 29.62 29.73 29.83 29.91 30

30 30 30 30 30 30 30 30 30 30 30 30

29.91 29.92 29.92 29.93 29.96 30 30 30 30 30 30 30

29.82 29.83 29.84 29.86 29.89 29.92 29.96 30 30 30 30 30

29.73 29.73 29.75 29.78 29.81 29.85 29.9 29.95 30 30 30 30

29.62 29.63 29.65 29.68 29.73 29.78 29.83 29.89 29.95 30 30 30

29.49 29.5 29.54 29.58 29.64 29.7 29.77 29.83 29.9 29.96 30 30

29.35 29.36 29.41 29.47 29.55 29.62 29.7 29.78 29.85 29.92 30 30

29.16 29.19 29.26 29.35 29.45 29.55 29.64 29.73 29.81 29.89 29.96 30

28.93 28.98 29.09 29.22 29.35 29.47 29.58 29.68 29.78 29.86 29.93 30

28.6 28.71 28.9 29.09 29.26 29.41 29.54 29.65 29.75 29.84 29.92 30

28.03 28.37 28.71 28.98 29.19 29.36 29.5 29.63 29.73 29.83 29.92 30

26.78 28.03 28.6 28.93 29.16 29.35 29.49 29.62 29.73 29.82 29.91 30
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Alternating the row and the column, the result after iteration 48 is presented in Table 4 

 
Table 4: Results of ADI after 

 
 

Problem 4: Transient Groundwater Flow 

A rectangular aquifer is divided into a 7x7 grid with uniform grid-distances of 100m in both x and y direction.  

The Transmissivity is homogeneous at a value of 0.1m2/s.  The Storage coefficient is 0.001. The North and South 

Boundaries are impervious with zero flux.  The west and East boundaries are constant head boundaries with head 

values at 50m, which is also the initial head at all nodes at time t = 0.  The discretized recharge due to precipitation 

is zero (0).  There is a pumping well, starting operation at time t = 0 at a constant rate of 1m3/s and it is located in 

the node (4,4), take ∆t = 10s,  Compute heads for the interior nodes at time t = 50s and 100s  (Kinzelbach, 1986). 

 

Given: T = 0.1m
2

/s; S = 0.001; R = 1m
3

/s; H
 
(east and west)

 
= 50m; H

y 
(north and south) = 0; 

∆t = 10s, and ∆x = ∆y = 100m 
 

Table 5: Mathematical application of Transient flow 

 
 
𝑅

𝑇
=

1

0.1
= 10, 𝛾 =

𝑇∆𝑡

𝑆(∆𝑥)2
=

0.1∗10

0.001∗10000
= 0.1 and for pumping, 

𝑅(∆𝑥)2

𝑇
=

0.0001∗1002

0.1
= 10 

Method1: EFDM 

Using table 5 and equation (54) for the nodes without a well at time t = 0, 𝛾 = 0.1 

𝐻𝑚,𝑛
1 = 𝐻𝑚,𝑛

0 + 0.1(𝐻𝑚+1,𝑛
0 + 𝐻𝑚−1,𝑛

0 + 𝐻𝑚,𝑛+1
0 + 𝐻𝑚,𝑛−1

0 − 4𝐻𝑚,𝑛
0 )             (54) 

And equation (55) for the nodes with the pumping well (Note that pumping takes place at node 18 that is 

H18)

𝐻𝑚,𝑛
1 = 𝐻𝑚,𝑛

0 + 0.1(𝐻𝑚+1,𝑛
0 +𝐻𝑚−1,𝑛

0 + 𝐻𝑚,𝑛+1
0 + 𝐻𝑚,𝑛−1

0 − 4𝐻𝑚,𝑛
0 − 10) (55) 

All initial values = 50 and applying the boundary conditions 

Using the result of time t = 0, compute the results at the next time step of time t = 10, and the results at time t = 

100 seconds are presented in the tables 6. 

30 30 30 30 30 30 30 30 30 30 30 30

29.91 29.92 29.92 29.93 29.96 30 30 30 30 30 30 30

29.83 29.83 29.84 29.86 29.89 29.92 29.96 30 30 30 30 30

29.73 29.73 29.75 29.78 29.81 29.85 29.9 29.95 30 30 30 30

29.62 29.63 29.65 29.68 29.73 29.78 29.83 29.89 29.95 30 30 30

29.49 29.51 29.54 29.58 29.64 29.7 29.77 29.83 29.9 29.96 30 30

29.35 29.36 29.41 29.47 29.55 29.63 29.7 29.78 29.85 29.92 30 30

29.17 29.19 29.26 29.35 29.45 29.55 29.64 29.73 29.81 29.89 29.96 30

28.93 28.98 29.09 29.22 29.35 29.47 29.58 29.69 29.78 29.86 29.93 30

28.6 28.71 28.9 29.09 29.26 29.41 29.54 29.65 29.75 29.84 29.92 30

28.03 28.37 28.71 28.98 29.19 29.36 29.51 29.63 29.73 29.83 29.92 30

26.78 28.03 28.6 28.93 29.17 29.35 29.49 29.62 29.73 29.83 29.91 30
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Method2: Crank Nicolson Method 

Using equation (56) for the nodes without the pumping well at time t = 0, 𝜑 = 0.1 

𝐻𝑖,𝑗
1 = 𝐻𝑖,𝑗

0 +
1

2
0.1(𝐻𝑖+1,𝑗

1 + 𝐻𝑖−1,𝑗
1 +𝐻𝑖,𝑗+1

1 + 𝐻𝑖,𝑗−1
1 − 4𝐻𝑖,𝑗

1 + +𝐻𝑖+1,𝑗
0 +                

+𝐻𝑖−1,𝑗
0 + 𝐻𝑖,𝑗+1

0 + 𝐻𝑖,𝑗−1
0 − 4𝐻𝑖,𝑗

0 ) (56) 

And equation (57) for the nodes with the pumping well (Note that pumping takes place at node 18 that is H18)                                                      

𝐻𝑖,𝑗
1 = 𝐻𝑖,𝑗

0 +
1

2
0.1(𝐻𝑖+1,𝑗

1 + 𝐻𝑖−1,𝑗
1 + 𝐻𝑖,𝑗+1

1 + 𝐻𝑖,𝑗−1
1 − 4𝐻𝑖,𝑗

1 ++𝐻𝑖+1,𝑗
0 + 

+ 𝐻𝑖−1,𝑗
0 + 𝐻𝑖,𝑗+1

0 + 𝐻𝑖,𝑗−1
0 − 4𝐻𝑖,𝑗

0 − 2(10)) (57) 

Use the result of time t = 0 to compute the results at the next time step of time t = 10 seconds, and the results of 

distribution of heads at time t = 100s are presented in the tables 7. 

 
Method3: Fractional Step Method 

Applying the boundary condition and using equation (58) is for row iteration without pumping well while equation 

(59) is for row iteration with pumping well. at time t = 0, 𝛼 = 0.1 

𝐻𝑖,𝑗
1 = 𝐻𝑖,𝑗

0 + 0.25(0.1)(𝐻𝑖+1,𝑗
1 − 2𝐻𝑖,𝑗

1 + 𝐻𝑖−1,𝑗
1 + 𝐻𝑖+1,𝑗

0 − 2𝐻𝑖,𝑗
0 + 𝐻𝑖−1,𝑗

0 )                       (58) 

𝐻𝑖,𝑗
1 = 𝐻𝑖,𝑗

0 + 0.25(0.1) (𝐻𝑖+1,𝑗
1 − 2𝐻𝑖,𝑗

1 + 𝐻𝑖−1,𝑗
1 + 𝐻𝑖,𝑗+1

0 − 2𝐻𝑖,𝑗
0 + 𝐻𝑖+1,𝑗

0 − 2(10))   (59) 

Using equation (60) is for column iteration without pumping well while equation (61) is for column iteration with 

pumping well. at time t = 0, 𝛼 = 0.1 

𝐻𝑖,𝑗
1 = 𝐻𝑖,𝑗

0 + 0.25(0.1)(𝐻𝑖,𝑗+1
1 − 2𝐻𝑖,𝑗

1 + 𝐻𝑖,𝑗−1
1 + 𝐻𝑖,𝑗+1

0 − 2𝐻𝑖,𝑗
0 + 𝐻𝑖,𝑗−1

0 )                            (60) 

𝐻𝑖,𝑗
1 = 𝐻𝑖,𝑗

0 + 0.25(0.1) (𝐻𝑖,𝑗+1
1 − 2𝐻𝑖,𝑗

1 + 𝐻𝑖,𝑗−1
1 + 𝐻𝑖,𝑗+1

0 − 2𝐻𝑖,𝑗
0 + 𝐻𝑖,𝑗−1

0 − 2(10))         (61) 

 Impose boundary conditions and apply equations (58) to (61) alternatively and the results at time t =100 seconds 

are shown in the table 8    

50.00 50.00 49.98 49.96 49.98 50.00 50.00

50.00 49.97 49.91 49.80 49.91 49.97 50.00

50.00 49.91 49.64 49.14 49.64 49.91 50.00

50.00 49.81 49.14 49.85 49.14 49.81 50.00

50.00 49.91 49.64 49.14 49.64 49.91 50.00

50.00 49.97 49.91 49.80 49.91 49.97 50.00

50.00 50.00 49.98 49.96 49.98 50.00 50.00

Table 6: Result of EFDM at t = 100secs

50.00 49.99 49.97 49.95 49.97 49.99 50.00

50.00 49.97 49.90 49.80 49.90 49.97 50.00

50.00 49.91 49.65 49.17 49.65 49.91 50.00

50.00 49.81 49.17 46.91 49.17 49.81 50.00

50.00 49.91 49.65 49.17 49.65 49.91 50.00

50.00 49.97 49.90 49.80 49.90 49.97 50.00

50.00 49.99 49.97 49.95 49.97 49.99 50.00

Table 7: Result of CNM at t = 100secs
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RESULTS AND DISCUSSION 
The results of the problems were plotted and presented in figures 5, 6, 7 and 8 respectively 

Problem 1: 

 
Fig 5. Comparison of the three methods in problem 1 

 

 

For the steady-state flow, Figure 5 showed that the results of the three methods used yield the same results but in 

table 9, IADI converged faster than the other two methods, this showed IADI is the best method of solution. 

Problem 2: 

 

 
Fig 6. Comparison of the three methods in problem 2 

 

Figure 6 showed that the results of the three methods used yield the same results but in table 10, IADI converged 

faster than the other two methods, this showed IADI is the best method of solution. 

 

Problem 3: 

 

50 50 50 50 50 50 50

50 50 50 49.97 50 50 50

50 50 49.95 49.62 49.95 50 50

50 49.98 49.7 46.73 49.7 49.98 50

50 50 49.95 49.62 49.95 50 50

50 50 50 49.97 50 50 50

50 50 50 50 50 50 50

Table 8: Result of FSM at t = 100secs
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           Fig 7. Comparison of the three methods in problem 3 
 

Figure 7 showed that the results of the three methods used yield the same results but in table 11, IADI converged 

faster than the other two methods, this showed IADI is the best method of solution. 

Problem 4: 

 

 
Fig 8: Comparison of the three methods of problem 4 

 

For the transient flow, in figure 8, the three methods are reliable for the solution of groundwater flow but the 

explicit finite difference method gives the same result 

as the existing solution. 

 

Conclusion: In this study we have been able to 

combine the mathematical modeling of both the 

transient and steady-state groundwater flow and 

applied three different methods of solutions for each 

state. The problems considered showed that the three 

methods used are efficient and reliable in solving 

transient and steady-state groundwater flow and can be 

used for all partial differential equations of real-life 

problems and that the direction of flow of groundwater 

is from higher hydraulic head to lower hydraulic head. 
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