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ABSTRACT: In this paper, the effect of coefficient of viscous damping on the dynamic analysis of Euler-Bernoulli 

beam resting on elastic foundation was investigated using Integral-Numerical method which reduces to an ordinary 
differential equation with series representation of Heaviside function. The dynamic responses of the beam in terms of 

normalized deflection and bending moment has been investigated for different velocity ratios under moving load and 

moving mass conditions. Generally, closed-form solution to the generalized mathematical model for prismatic beam 
was computed by means of symbolic programming approach through MAPLE 18. Results obtain revealed that the 

presence of an elastic foundation and the provision of sufficient reinforcement in beams and beam-like structure reduces 

vibration intensity and ensure safe passage of load and prolong the beam life.  
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Beam is an important mechanical element that is also 

used as a simplest and accurate model for analyzing a 

complex engineering component structures like 

turbine and compressor rotor blades, airplane wings, 

robot arms, spacecraft antennae, structure of buildings, 

bridges and vibrating drilling can be modeled as a 

beam. The study of dynamical behavior of structures 

such as beams and plates, under the action of moving 

loads has attracted the attention of several researchers 

in Engineering, Applied Physics and Applied 

Mathematics. Notable among such researchers are 

Kolousek (1961), Eisenberger and Clastornik (1987), 

Sadiku (1987) and Leipholz (1987) and so on. In this 

moving load bearing problem, the influence of the load 

mass is very important because the position of the load 

changes continuously. Extensive work has been done 

on this class of dynamical problems when the 

structural members have uniform cross-sections.  

 

Recently, a number of researchers have made great 

efforts in studying the dynamics of structures 

subjected to moving loads, including Usman (2019), 

Gbadeyan and Oni (2018), Jimoh (2021), Savin 

(2019). 2001), Ogunbamike (2012). The flexural 

motions of elastically supported beams sitting on 

winkler elastic foundations with stiffness variation 
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were really taken into consideration by Oni and 

Awodola (2010). The technique was based on the 

generalized Galerkin’s method and integral 

transformations and the beam was assumed to have 

uniform cross section. In all of these, considerations 

have been hunted to cases of uniform beams and where 

non-uniform beams are considered, they are 

considered only for classical boundary conditions.  

 

There is also the work of Oni (1996), who examined 

the response of a thin, heterogeneous beam placed on 

a constant elastic foundation to some moving mass. To 

solve the problem, he used Galerkin's versatile 

technique to produce a complex quaternary partial 

differential equation with variable and singular 

coefficients at a set of ordinary differential equations. 

The set of ordinary differential equations was later 

simplified and solved using modified asymptotic 

method of struble. Although noteworthy, this work 

was merely based on a beam with the conventional 

simply supported end circumstances. Other studies on 

non-uniform beam include Mehmet (2014), Oni and 

Awodola (2011), Oni and Omolofe (2011).  

 

We remark that most of the studies in this area have 

been treated only for classical boundary conditions. 

Nevertheless, for practical applications in many cases, 

it is more realistic to consider non-classical boundary 

conditions because the ideal boundary condition can 

seldomly be realized. Bridge-vehicle interaction is the 

most common problem in moving load analysis and it 

has been the vast area of research. If the speed of the 

vehicle is very low, it could not be treated as moving 

load problem because, at low speed it behaves as a 

static load condition.  

 

Traditional methods can be used to rectify this issue. 

If the vehicle is moving at constant speed then it will 

be treated as moving load problem. By using 

mathematical and computational analysis, this issue 

can be resolved. Vibration of structure arises due to 

motion of vehicles, earthquake, flow of stream and 

winds.  

 

There are various factors needed to be considered for 

design safety purpose such as mass of the moving 

body and the structure, inertia of moving mass of 

structure due to eccentric load. Hence, the objective of 

this paper was to investigate the effect of coefficient 

of viscous damping on the dynamic analysis of Euler-

Bernoulli Beam resting on elastic foundation. 

 

MATERIALS AND METHODS 
Mathematical Formulation: In this section, the 

equation of motion for Euler-Bernoulli beam lying on 

a two-parameter Pasternak foundation and subjected 

to a moving load or mass, is depicted in Figure.1 

below. The resulting vibrational behavior of this 

system is described by the following Partial 

differential equation.  

 

 
Fig 1: Beam on Pasternak foundation subjected to moving load. 

Source: scholarsmine.mst.edu 

 

𝐸𝐼𝐿𝑥𝑥𝑥𝑥(𝑥, 𝑡) + 𝑚𝐿𝑡𝑡(𝑥, 𝑡) + 𝑐𝐿𝑡(𝑥, 𝑡) −
𝑘1𝐿𝑥𝑥(𝑥, 𝑡) + 𝑘𝐿(𝑥, 𝑡) = 𝑃(𝑥, 𝑡)      (1) 

 

Where 

 

P(x, t) = 𝜌𝛿(𝑥 − 𝑣𝑡)                          (2) 

 

Where 𝑥 (0 ≤ 𝑥 ≤ 𝐿)  is the distance along the 

beam 

 

𝑡 is the time in second 

 

𝐼(𝑥) is the moment of inertia of the beam cross 

section at a distance 𝑥 

 

𝜇(𝑥) is the external axial load acting on the beam 

cross section at a distance 𝑥 

 

𝐿(𝑥, 𝑡) is the beam lateral displacement 

 

Convective acceleration operator Ltt is given as: 

 

                𝐿𝑡𝑡 = 𝐿𝑡𝑡(𝑥, 𝑡) + 2𝑣𝐿𝑡𝑥(𝑥, 𝑡) + 𝑣2𝐿𝑥𝑥(𝑥, 𝑡)        
(3) 

 

For simply supported beam of finite length 𝐿, the 

boundary conditions may be described 

Mathematically as 

 

L(0,t) = L(L,t) = 0  (4) 

 
𝐿′(0, 𝑡) = 𝐿′′(𝐿, 𝑡) = 0  (5) 
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The supported beam is considered to be initially at rest. 

Hence the corresponding initial boundary conditions is 

 

L(x, 0) = Ltt(x, 0) = 0                    (6) 

 

Method of Solution: The overall equation of the 

problem under consideration is the partial derivative 

of the fourth order. To solve the problem, techniques 

called integral numerical methods are used to reduce 

fourth-order partial differential equations with 

variable and singular coefficients to a series of second-

order ordinary differential equations. From equation 

(1) becomes, 

 

𝐸𝐼𝐿𝑥𝑥𝑥𝑥(𝑥, 𝑡) + 𝑚𝐿𝑡𝑡(𝑥, 𝑡) + 𝑐𝐿𝑡(𝑥, 𝑡) −
𝑘1𝐿𝑥𝑥(𝑥, 𝑡) + 𝑘𝐿(𝑥, 𝑡) = 𝜌𝛿(𝑥 − 𝑣𝑡)     (7) 

 
 

𝐿𝑥𝑥𝑥𝑥(𝑥, 𝑡) = ∑ 𝑋𝑛
𝑖𝑣∞

𝑛=1 (𝑥)𝑇𝑛(𝑡)                   (8) 

 
 

𝐿𝑥𝑥(𝑥, 𝑡) = ∑ 𝑋𝑛
11∞

𝑛=1 (𝑥)𝑇𝑛(𝑡)                      (9) 

 
 

𝐿(𝑥, 𝑡) = ∑ 𝑋𝑛
∞
𝑛=1 (𝑥)𝑇𝑛(𝑡)                          (10) 

 
 

𝐿𝑡𝑡(𝑥, 𝑡) = ∑ 𝑋𝑛(𝑥)𝑇
..

𝑛(𝑡)∞
𝑛=1                         (11) 

 
 

𝐿𝑡(𝑥, 𝑡) = ∑ 𝑋𝑛(𝑥)𝑇
.

𝑛(𝑡)∞
𝑛=1                        (12) 

 
 

𝐸𝐼 ∑ 𝑋𝑛
𝑖𝑣

∞

𝑛=1

(𝑥)𝑇𝑛(𝑡) + 𝑚 ∑ 𝑋𝑛

∞

𝑛=1

(𝑥)𝑇
..

𝑛(𝑡)

+ 𝑐 ∑ 𝑋𝑛

∞

𝑛=1

(𝑥)𝑇
.

𝑛(𝑡) − 

𝑘1 ∑ 𝑋𝑛
11∞

𝑛=1 (𝑥)𝑇𝑛(𝑡) + 𝑘 ∑ 𝑋𝑛
∞
𝑛=1 (𝑥)𝑇𝑛(𝑡) =

𝜌𝛿(𝑥 − 𝑣𝑡)    (13) 

 

For free vibration 

 

∑ 𝑋𝑛
iv(𝑥)𝑇𝑛(𝑡) = 𝜇𝜔𝑛

2𝑋𝑛(𝑥)𝑇𝑛(𝑡)∞
𝑛=1            (14) 

 

𝐸𝐼𝜇𝜔𝑛
2𝑋𝑛(𝑥)𝑇𝑛(𝑡) + 𝑚 ∑ 𝑋𝑛

∞
𝑛=1 (𝑥)𝑇

..

𝑛(𝑡) +

𝑐 ∑ 𝑋𝑛
∞
𝑛=1 (𝑥)𝑇

.

𝑛(𝑡)  

−𝑘1 ∑ 𝑋𝑛
11∞

𝑛=1 (𝑥)𝑇𝑛(𝑡) +
𝑘 ∑ 𝑋𝑛(𝑥)𝑇𝑛(𝑡) =∞

𝑛=1 𝜌𝛿(𝑥 − 𝑣𝑡)     (15) 

 

𝑚𝑇
..

𝑛(𝑡) + 𝑐𝑇
.

𝑛(𝑡) + 𝐸𝐼𝜇𝜔𝑛
2𝑇𝑛(𝑡) + 𝑘𝑇𝑛(𝑡)

+ 𝑘1 ∫
𝑛2𝜋2

𝐿𝛼

𝐿𝛼

0

sin
𝑛𝜋𝑥

𝐿𝛼

sin
𝑘𝜋𝑥

𝐿𝛼

𝑇𝑛(𝑡)𝑑𝑥 

= ∫ 𝜌
𝐿𝛼

0

𝛿(𝑥 − 𝑣𝑡)sin
𝑘𝜋𝑥

𝐿𝛼

𝑑𝑥        (16) 

 

RESULTS AND DISCUSSION 
The differential equation for beam motion is a non-

homogeneous partial differential equation of order 4 

with coefficients of variation and heterogeneity. The 

solution of the dynamic beam problem is obtained, 

representing the displacement response of the beam, 

using the integral numerical method. Therefore, a 

numerical illustration of the results obtained from this 

analysis is represented by graphed curves. The graphs 

reveal that for the stiffness of the fixed foundation, as 

the axial force values change more and more, the 

magnitude of the deflection will decrease accordingly. 

In addition, for different values of the fixed axial force 

of the foundation stiffness, the horizontal deflection of 

the beam decreases as the value of the foundation 

stiffness increases. Therefore, for higher values of 

foundation stiffness, the stability and reliability of the 

structural design is guaranteed. 

 
Table 1: Time against Deflection at c=0, c=1, c=2 

TIME(s) 𝑐 = 0𝑁𝑠𝑚−2 𝑐 = 1𝑁𝑠𝑚−2 𝑐 = 2𝑁𝑠𝑚−2 

0 0 0 0 

1  0.0554376 0.0510953 0.0473501 
2  0.0199872 0.0246042 0.0278671 

3  0.0332862 0.0315279 0.0306974 

4 0.0389097 0.0366096 0.0350753 
5 0.0207978 0.0265076 0.0293215 

6  0.0440338 0.0367032 0.0338069 

7 0.0221181 0.0290222 0.0311997 
8  0.0383328 0.0334531 0.0322817 

9 0.0297576 0.0318412 0.0321160 

10 0.0309432 0.0315690 0.0318820 

Table 2: Time against Deflection at 𝑐 = 0, 𝑐 = 1, 𝑐 = 2. 
TIME(s) 𝑐 = 0𝑁𝑠𝑚−2 𝑐 = 1𝑁𝑠𝑚−2 𝑐 = 2𝑁𝑠𝑚−2 

0 0 0 0 

1 3.90990 3.90990 3.90990 

2 9.49352 9.49352 9.49352 

3 7.96824 7.96824 7.96824 

4 1.63485 1.63485 1.63485 

5 0.29167 0.29167 0.29167 

6 5.96105 5.96105 5.96105 

7 9.73752 9.73752 9.73752 

8 5.67085 5.67085 5.67085 

9 0.04237 0.04237 0.04237 

10 1.57370 1.57370 1.57370 

 

Table 3: Time against Deflection at c=0 𝑁𝑠𝑚−2, c=1 𝑁𝑠𝑚−2, 

c=2 𝑁𝑠𝑚−2 

TIME(s) 𝑐 = 0𝑁𝑠𝑚−2 𝑐 = 1𝑁𝑠𝑚−2 𝑐 = 2𝑁𝑠𝑚−2 

0 0 0 0 
1  0.0473501 0.0510953 0.0554376 

2  0.0278671 0.0246042 0.0199872 

3  0.0306974 0.0315279 0.0332862 
4 0.0350753 0.0366096 0.0389097 

5 0.0293215 0.0265076 0.0207978 

6  0.0338069 0.0367032 0.0440338 
7 0.0311997 0.0290222 0.0221181 

8  0.0322817 0.0334531 0.0383328 

9 0.0321160 0.0318412 0.0297576 
10 0.0318820 0.0315690 0.0309432 
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Fig 2: Dynamic response of the beam at various values of c for 𝑚 = 3𝑘𝑔𝑚−1, μ = 1𝑘𝑔𝑚−1, I = 3𝑘𝑔𝑚2, 𝜔𝑛
2 = 1𝑟𝑎𝑑𝑠−1, , 𝐸 =

1𝑁𝑚−2, 𝐿 = 1𝑚, 𝑐 = 1𝑁𝑠𝑚−2, 𝑔 = 10𝑚𝑠−2, 𝑤1 = 0.1𝑟𝑎𝑑𝑠−1, 𝑘 = 1𝑝𝑎 

 

 
Fig 3: Dynamic response of the beam at various values of 𝑐 for 𝑚 = 3𝑘𝑔𝑚−1, 𝜔𝑛

2 = 1𝑟𝑎𝑑𝑠−1, 𝜇 = 1𝑘𝑔𝑚−1, 𝐼 = 3𝑘𝑔𝑚2, 𝐸 = 1𝑁𝑚−2,
𝐿 = 1𝑚, 𝑔 = 10𝑚𝑠−2, 𝑤1 = 0.1𝑟𝑎𝑑𝑠−1, 𝑘 = 1𝑝𝑎 

 

 
Fig 4:  Graph of moving mass and moving load for 𝑚 = 3kgm−1, 𝑣 = 3.3𝑚𝑠−1, 𝜇 = 1kgm−1, 𝐿 = 1𝑚, 𝐸 = 1𝑁𝑚−2, 𝑔 = 10𝑚𝑠−2, 𝑤1 =

0.1𝑟𝑎𝑑𝑠−1, 𝜔𝑛
2 = 1𝑟𝑎𝑑𝑠−1 
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Conclusion: The solution of the dynamic beam 

problem is obtained, representing the displacement 

response of the beam, using the integral numerical 

method. Therefore, a numerical illustration of the 

results obtained from this analysis is represented by 

graphed curves. The graphs reveal that for the stiffness 

of the fixed foundation, as the axial force values 

increases, the magnitude of the deflection will 

decrease accordingly. In addition, for different values 

of the fixed axial force of the foundation stiffness, the 

horizontal deflection of the beam decreases as the 

value of the foundation stiffness increases.  
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