

* Corresponding Author: Asagba, Prince Oghenekaro

JASEM ISSN 1119-8362
All rights reserved

J. Appl. Sci. Environ. Manage. December, 2008
Vol. 12(4) 41 - 46

Full-text Available Online at
 www.bioline.org.br/ja

A Comparative Analysis of Structured and Object-Oriented Programming Methods

ASAGBA, PRINCE OGHENEKARO; OGHENEOVO, EDWARD E. CPN, MNCS.

Department of Computer Science, University of Port Harcourt, Port Harcourt, Nigeria.
pasagba@yahoo.com, edward_ogheneovo@yahoo.com. 08056023566

ABSTRACT: The concepts of structured and object-oriented programming methods are not relatively new but
these approaches are still very much useful and relevant in today’s programming paradigm. In this paper, we
distinguish the features of structured programs from that of object oriented programs. Structured programming is a
method of organizing and coding programs that can provide easy understanding and modification, whereas object-
oriented programming (OOP) consists of a set of objects, which can vary dynamically, and which can execute by
acting and reacting to each other, in much the same way that a real-world process proceeds (the interaction of real-
world objects). An object-oriented approach makes programs more intuitive to design, faster to develop, more
amenable to modifications, and easier to understand. With the traditional, procedural-oriented/structured
programming, a program describes a series of steps to be performed (an algorithm). In the object-oriented view of
programming, instead of programs consisting of sets of data loosely coupled to many different procedures, object-
oriented programs consist of software modules called objects that encapsulate both data and processing while hiding
their inner complexities from programmers and hence from other objects. @ JASEM

Structured programming can be viewed as the pulling
together, or synthesization of such ideas as program
modularity and top down design, and the concrete
representation of them at the program-coding level. It
is a manner of coding and organizing programs that
makes them easier to understand, to test and to
modify. Results have demonstrated that employed
together with other improved programming
technologies, can lead to spectacular increases in
programmer productivity and correspondingly
spectacular decreases in the error rate of resultant
code (Champeaux, 1990), and (Istatkova, 2001).
Structured programming methodology tries to resolve
the issues associated with unconditional transfers to
enable programmers follow the logic of programs.

Much of a program’s complexity arises from the fact
that the program contains many jumps to other parts
of the programs - jumps both forward and backward
in the code. Furthermore, as a program undergoes
change during its development period, as it gets
further debugged during its maintenance period, and
as it gets modified in subsequent new projects, the
complexity of the program grows alarmingly. New
jumps are inserted, thus increasing the complexity. In
some cases, new code is added because the
programmer cannot find existing code that performs
the desired function, or is not sure how the existing

code works, or is afraid to disturb the existing code
for fear of undoing another desirable function, and
the result, after many modifications, is a program that
is nearly unintelligible. This is the software
equivalent of being shop-worn, the time when it is
better to throw the whole thing out and start over
(Louden, 1993), and (Owolabi, et al, 2005).

Indeed, structured programming concepts discourage
the use of ‘GO TO’ statements and encourage
program blocks, modularity, top-down design
approach and reusability amongst others. Programs
written with the structured approach are more
readable and more reliable. Also, the cost and time of
developing software is less when structured
programming is adopted since smaller units of
programs can be written independently (sometimes
by different, individuals or groups) and then
combined to achieve the desired end product. The art
of programming is made flexible by structured
programming especially in the area of program or
software maintenance. Programs can easily be
modified and updated to suit prevailing circumstances
(Louden, 1993).
In structured programs, any function can be
performed using one or a collection of three control
structures: sequence, selection, and repetition as
shown in Fig. 1.

Fig 1. (a) Simple sequence (b) Selection (c) Repetition

OR

A Comparative Analysis of Structured and Object-Oriented Programming Methods

* Corresponding Author: Asagba, Prince Oghenekaro

42

These control structures are quite adequate for any
kind of processing, or any combination of decisions,
or any type of logic manipulations without exhibiting
back-tracking. Pascal, PL/I, Ada, and ALGOL are
perhaps some of the better known structured
programming languages.
Object-oriented programming (OOP) is a
programming paradigm that uses "objects" and their
interactions to design applications and computer
programs. Programming techniques may include
features such as information hiding, data abstraction,
encapsulation, modularity, polymorphism, and
inheritance. It was not commonly used in mainstream
software application development until the early
1990s. Many modern programming languages now
support OOP (Wikipedia, 2008). Some of the better
known OOP languages are C++, Object Pascal, and,
Java.

Modular Programming
Many programs can be decomposed into a series of
identifiable subtasks. It is a good programming
practise to implement each of these subtasks as a
separate program module. The idea of modular
programming is to sub-divide a program into smaller
units that are independently testable and that can be
integrated to accomplish the overall programming
objective (Abott, 1993). The use of modular
programming structure enhances the accuracy and
clarity of a program, and it facilitates future program
alterations (Louden, 1993).
One motivation for modularizing a program into
methods is the divide-and-conquer approach, which
makes program development more manageable by
constructing programs from small, simple pieces.
Another is software reusability - using existing
methods as building blocks to create new programs.
Often, you can create programs mostly from

standardized methods rather than by building
customized code. A third motivation is to avoid
repeating code. Dividing a program into meaningful
methods makes the program easier to debug and
maintain (Champeaux, 1990), and (Deitel, et al,
2007).

Top-Down Approach
When developing a new program, the overall
program strategy should be completely planned out
before beginning any detailed programming. This
allows you to concentrate on the general logic,
without being concerned with the syntactic details of
the individual instructions. Once the overall program
strategy has been clearly established, the details
associated with the individual program statements can
be considered. This approach is generally referred to
as “top-down” programming. With large programs,
this entire process might be repeated several times
with more programming details added at each stage
(Louden, 1993).
In top-down design, the main program is first defined
and then the remaining modules or units are
specified. The central idea in top-down programming
is that the design must progress from the general to
the specific, each program unit being progressively
refined. Usually, the main modules drives or co-
ordinates the other modules specifying what each
subprogram should do. It is also expected that the
main module be the interface between the entire
program and users. The hierarchical relationships
existing among modules of a program are often
displayed in a structure chart. This chart conveys the
sense of orders and module or task is represented
with a rectangle and modules are sub-divided at each
level until they can no longer be sub-divided further.
Fig. 2 shows a structure chart.

Fig. 2 Structure chart

As seen from the structured chart above, the main
program is at level 0. This main program is divided
into three modules as the application requirements
grow. This is a major advantage of modular
programming. The top-down design methodology
often employs a process referred to as stepwise
refinement or divide-and-conquer whereby the

situation is progressively refined till the lowest level
in the structure chart is reached. This process of step-
wise refinement is also very often applied to the
specification of the lower level procedures.
Top-down design is often referred to by other names -
structured design, composite design, programming by
stepwise refinement, and so on. Though the names

Module 1 Module 2 Module 3

Module 1.1 Module 1.2 Module 1.3 Module 3.1 Module 3.2

Main program

A Comparative Analysis of Structured and Object-Oriented Programming Methods

* Corresponding Author: Asagba, Prince Oghenekaro

43

differ, a uniform approach is generally agreed upon:
we identify first the major function to be
accomplished, then we identify its sub-functions,
their sub-functions, and so on, proceeding from the
major function to any number of lesser functions until
we are satisfied that we fully understand the nature of
our solution algorithm. The top-down design process
consists of a series of steps to define the functions
required for the solution of a problem, in terms of the
problem itself (Pressman, 2005).

Bottom-up Design
This method may be useful for programs that make
use of independent program modules (that is, user-
defined procedures and functions). The bottom-up
approach involves the detailed development of these
program modules early in the overall planning
process. The overall program development is then
based upon the known characteristics of these
individual modules (Owolabi, et al, 2005). The
bottom-up design is the opposite of top-down design.
It involves writing a modular program from specific
to general. That is, modules are built up from the least
level upward until the general solution is obtained.
This is not a very acceptable methodology in modular
programming. However, it is a useful design method
when the task at hand involves just the modification
and updating of an already existing program to obtain
the needed result.

Object Oriented Programming
In some time past, language design was often based
on the size of the programs, which were generally
small, however, when programs became very large,
the focus changed. In small programs, the most
common statement is generally the assignment
statement. However, in large programs (over 10,000
lines), the most common statement is typically the
procedure-call to a subprogram. Ensuring parameters
are correctly passed to the correct subprogram
becomes a major issue. The concept of object-
oriented analysis (OOA) is to define all classes (and
the relationships and behaviour associated with them)
that are relevant to the problem to be solved (Biddle,
et al, 1994), (Booch, 1986), (Pressman, 2005), and
(Istatkova, 2001). A number of small programs can
be handled using hierarchical structures. However, in
large programs, the organization is more of network
structures.
Although, structuring a program into a hierarchy
might help to clarify some types of software, even for
some special types of large programs, a small change,
such as requesting a user-chosen ripple-effect with
changing multiple subprograms to propagate the new
data into the program’s hierarchy. The object-
oriented approach is allegedly more flexible, by
separating a program into a network of subsystems,
with each controlling their own data, algorithms, or
devices across the entire program, but only accessible

by first specifying named access to the subsystem
object-class, not just by accidentally coding a similar
global variable name. Rather than relying on a
structured-programming hierarchy chart, object-
oriented programming needs a call-reference index to
trace which subsystems or classes are accessed from
other locations (Hubbard, 2000).

The state of an object in an object-oriented language
is primarily internal, or local to the object itself. That
is, the state of an object is represented by local
variables declared as part of the object and
inaccessible to components outside the object.
Secondly, each object includes a set of functions and
procedures through which the local state can be
accessed and changed. These are called methods, but
they are similar to ordinary procedures and functions,
except that they can automatically access the object’s
data (unlike the “outside world”) and therefore can be
viewed as containing an implicit parameter
representing the object itself. Calling a method of an
object is sometimes called sending the object
message.
Objects can be declared by creating a pattern for the
local state and methods. This pattern is called a class,
and it is essentially just like a data type. Indeed, in
many object-oriented languages, a class is a type and
is incorporated into the type system of the language
in more or less standard ways. Objects are then
declared to be of a particular class exactly as
variables are declared to be of a particular type in a
language like C or Pascal. An object is said to be an
instance of a class.

The central concept of object-oriented programming
is the object, which is a kind of module containing
data and subroutine. An object is a kind of self-
sufficient entity that has an internal state (the data it
contains) and that can respond to message (calls to its
subroutines). A student-records object, for example,
has a state consisting of the details of all registered
students. If a message is sent to it telling it to add the
details of a new student, it will respond by modifying
its state to reflect the change. If a message is sent
telling it to print itself, it will respond by printing out
a list of details of all registered students.
The object-oriented programming approach to
software engineering is to begin by identifying the
objects involved in a problem and identifying the
messages that those objects should respond to. The
solution that results is a collection of objects, each
with its own data and its own set of responsibilities.
The objects interact by sending messages to each
other ([Louden, 1993).

Properties of OOP
The following properties are exhibited by OOP: Data
abstraction, encapsulation, inheritance, and
polymorphism.

A Comparative Analysis of Structured and Object-Oriented Programming Methods

* Corresponding Author: Asagba, Prince Oghenekaro

44

Data Abstraction
Data abstraction is a methodology that enables us to
isolate how a compound data object is used from the
details of how it is constructed from more primitive
data objects (Ryan, 2000). Data abstraction is the
enforcement of a clear separation between the
abstract properties of a data type and the concrete
details of its implementation. Data Abstraction is
simplifying complex reality by modeling classes
appropriate to the problem, and working at the most
appropriate level of inheritance for a given aspect of
the problem. Abstraction is also achieved through
Composition. For example, a class Car would be
made up of an Engine, Gearbox, Steering objects, and
many more components. To build the Car class, one
does not need to know how the different components
work internally, but only how to interface with them,
that is, send messages to them, receive messages from
them, and perhaps make the different objects
composing the class interact with each other
(Wikipedia, 2008).

Encapsulation
Encapsulation is the ability to package codes and data
together in a place and hide (or prevent) that data
from external contact thereby forcing anyone who
wants to access it to pass through the associated code.
Structured programming encourages code everywhere
to deal directly with data structures.

Inheritance
This is the ability of an existing class to create new
classes. Thus existing class is referred to as a base
class and the newly created classes are called derived
class. The derived class inherits all the features
inherent in the base class. Inheritance is perhaps one
of the most powerful features of object-oriented
programming paradigm. Inheritance can support
program (or software) reuse, reliability, and
modification of the base class (Asagba, 2002).
Inheritance is a powerful programming tool and it
supports reusable component. Inheritance establishes
a parent-child dependency relationship between
objects in a class. The inheritance graph is a tree. A
single inheritance is a case when each derived class
can inherit from only one base class, whereas a
multiple inheritance is a case in which a class may
inherit from two or more base classes. Newer object-
oriented languages such as Java and C++ provide
multiple inheritances. In a language with multiple
inheritances, its graphs can be acyclic instead of a
tree. Multiple inheritances can be useful but its
approach can be complex. One issue is that methods
may be inherited in more than one way. For instance,
a method from class A is inherited by class D in two
separate ways. Fig. 3 shows multiple inheritances
graph.

Fig. 3 Multiple inheritances graph

Polymorphism
Polymorphism is a mechanism that allows objects of
different types to respond differently to the same
function call. Overloading and template can be
considered primitive polymorphisms because the
decision of invoking a particular function is made at
compile time rather than at run time. At compile time,
the exact nature of some objects cannot be
determined. Such objects had to be delayed until run
time where decisions on which function to invoke (or
call) will be available. This is a technique that brings
out true polymorphism (Asagba, 2002).
Polymorphism is the ability to identify certain aspects
that several data types have in common, and write
code that works equally well with all of them by
ignoring the differences in situations where they do
not matter (Biddle, el al, 1994).

Other Differences of Structured Programming
and Object-Oriented Programming
Structured programming is task-centric while object-
oriented programming is data-centric, that is,
structured programming is based around data
structures and subroutines.
Object-oriented programming, on the other hand
shifts your primary attention to the data itself. Instead
of asking “what do I want to do and what will I need
to know to do it”, you ask “what kind of things do I
want to have and what can those things do for me”.
Instead of designing your functions first and then
coming up with data structures to support them, you
design types first and then come up with the
operations needed to work them (Booch, 1986), and
(Liang, 2001).

 Class A

B, C class D

A class B A class C

A Comparative Analysis of Structured and Object-Oriented Programming Methods

* Corresponding Author: Asagba, Prince Oghenekaro

45

Again, object-oriented programming is a superset of
structured programming. A pseudo code of a
structured programming is as follows:

... Program start
var
var
var
function {...}
function {...}
function {...}
main {...}
... Program End

Here, you have units of code which operate on
variables and are called in references to those
variables, to follow a structure, acting on those
variables.

A pseudo code of an object oriented programming is
as follows:

... Program start
Object {
Var
Var
function {...}
function {...}
function {...}
}
var
var
function {...}
main [...}
... Program End

Variables can be objects, which have their own data
and functions. Thus, instead of referencing a function
(a block of code) and telling it to operate on a
variable q, you reference an object and tell it to
perform an operation, most often on itself, specific to
itself, using its own data. Instead of creating units on
them, you create objects and have them perform
operations (on themselves) (Booch, 1986).

Similarities between Structured Programming and
Object oriented Programming

Both structured programming and OOP require
rudimentary understanding of programming concepts
and basic control flow. Loops, conditional statements,
and variables are concepts that are important whether
you are using a procedural language or an OOL.

Conclusion: In this paper, we have discussed the
concepts of structured programming and object-
oriented programming and pointed out the similarities
and differences between them. We have pointed out
that object-oriented programming is an approach to
software design that facilitates rapid development of
complex applications and software reuse. Object-
oriented language is developed from the necessity to

organize the programming process into a language.
We also pointed out that object-oriented
programming is a technique of writing programs
using objects. Object-oriented programming
languages provide general mechanisms for building
software modules whose behaviour can be
customized or specialized.
Traditionally, programmers would write programs
that were called structured programs. The program
would be designed to solve one big problem, but the
programmers would break the problem down into
smaller, more manageable problems and write small
sections of code to solve each one. Object-oriented
programming is the natural successor to this
traditional way of programming. Instead of simply
breaking the problem down into smaller problems,
object-oriented programmers break the problem down
into objects, each with a life of its own. The
programmer then has to figure out what properties an
object needs to function, and the methods necessary
to bring it to life. Like most interesting new
developments, object-oriented programming builds
on some old ideas, extends them, and puts them
together in novel ways. The result is many faceted
and a clearer step forward for the art of programming.

With the traditional, procedural-oriented/structured
programming, a program describes a series of steps to
be performed (an algorithm). In the object-oriented
programming, instead of programs consisting of sets
of data loosely coupled to many different procedures,
object-oriented programs consist of software modules
called objects that encapsulate both data and
processing while hiding their inner complexities from
programmers and hence from other objects. This can
make object-oriented programs more flexible and
easier to maintain.
Finally, in terms of similarities, both require
rudimentary understanding of programming concepts
and basic control flow. Loops, conditional statements,
and variables are concepts that are important whether
you are using a procedural language or an OOL.

REFERENCES
Abott, R. (1993), Program Design by Informal

English Descriptions, CACM, Vol. 26 No. 11,
pp. 892 - 894.

Asagba, P. O. (2002), Understanding C++

Programming, Port Harcourt, Gitelle Press (Nig.)
Ltd., pp. 157 - 175.

Biddle, R. L. and Tempero, E. D. (1994), Teaching

C++ Experience at Victoria University of
Wellington. In Proceedings of Software
Education Conference, Dunedin, New Zealand,
pp. 274 - 281.

A Comparative Analysis of Structured and Object-Oriented Programming Methods

* Corresponding Author: Asagba, Prince Oghenekaro

46

Booch, G. (1986), Object-Oriented Development,
IEEE Trans. Software Engineering, Vol. SE -12,
No. 2, pp. 211.

Cashman, M., (1989), Object-Oriented Domain

Analysis, ACM Software Engineering Notes,
Vol. 14, No. 6, pp. 67.

Champeaux, D. D. (1990), Panel: Structured Analysis

and Object Oriented Analysis, ECOOP/
OOPSLA ’90 Proceedings, pp. 135 - 139.

Deitel, P. J. and Deitel, H. M. (2007), Java How To

Program, USA, Pearson Inc., 7th Ed., pp. 421 -
423.

Hubbard, J. R. (2000), Programming with C++

Schaum’s Outlines, New York, McGraw-Hill
Companies, Inc., pp. 273 – 299.

Istatkova, G. (2001), Algebra of Algorithms in

Procedural and Object-Oriented, structured
Programming, Automatica & Informatics, Vol.
3, No. 4, pp. 56 - 62.

Liang, Y. D. (2001), Introduction to Java
Programming, New Jersey, Prentice-Hall, Inc,
pp.

Louden, K. C. (1993), Programming Languages:

Principles and Practice, Boston, PWS
Publishing Company, pp. 300 - 345.

Owolabi, O, and Ndeekor, C. B. (2005), Structured

Programming with Pascal, Aba, Granite
Ventures Nig. Ltd, pp 19 - 21.

Pressman, R. S. (2005), Software Engineering: A

Practitioner’s Approach, New York, McGraw-
Hill International 6th Ed., pp. 217 - 218.

Ryan, B (2000), Introduction to Data Abstraction,

http://mitpress.mit.edu/sicp/full-
text/sicp/book/node27.html, last accessed in
Oct., 2008.

Wikipedia (2008), the Free Encyclopedia,

http://en.wikipedia.org/wiki/Object-
oriented_programming, last accessed in Oct.,
2008.

