Journal of Applied Science and Technology

The AJOL site is currently undergoing a major upgrade, and there will temporarily be some restrictions to the available functionality.
-- Users will not be able to register or log in during this period.
-- Full text (PDF) downloads of Open Access journal articles will be available as always.
-- Full text (PDF) downloads of subscription based journal articles will NOT be available
We apologise for any inconvenience caused. Please check back soon, as we will revert to usual policy as soon as possible.

DOWNLOAD FULL TEXT Open Access  DOWNLOAD FULL TEXT Subscription or Fee Access

Three dimensional simulated modelling of diffusion capacitance of polycrystalline bifacial silicon solar cell

S Mbodji, M Dieng, B Mbow, F.I Barro, G Sissoko


A three dimensional (3-D) simulated modelling was developed to analyse the excess minority carrier density in the base of a polycrystalline bifacial silicon solar cell. The concept of junction recombination velocity was ado-pted to quantify carrier flow through the junction, and to examine the solar cell diffusion capacitance for three illumination modes (front side, back side and both front and back sides). Plots of diffusion capacitance against grain size, grain boundary recombination velocity, junction recombination velocity and illumination wavelength were used to study the influence of cell parameters on the capacitance. The results indicated that junction and grain boundary recombination velocities played determinant roles, especially, for small grain size and long wav-elength. Hence, high diffusion capacitance was obtained for high junction recombination velocity, large grain size and long wavelength; while small grain size led to increased recombination centers and corresponding decrease in the diffusion capacitance

Full Text:

No subscription journal articles available during site upgrade.
AJOL African Journals Online