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ABSTRACT

The paper is concerned with the finite element analysis of the stokes problem in domain with corners. The error estimate is estab-
lished for the nonconforming P1/P0 approximation by adding special basis. associated o the corners. The influence ol the polygonal
approximation ol a smooth domain on the error estimates of the finite element approximation is studied. We established that for the
P2/P1 conforming approximation of the stokes problem thraugh polygonal approximaton,we have Hu-u 1, W =O¥e) for any
positivreal ¢ which is better than the O(h"?) obtained so far for scalar elliptic ,equations.This result can be extended to any second
order elliptic problem.
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RESUME

Le probicme de Stokes dans un domaine avec singularité est approximée par la méthode des ¢léments finis. Les estimations des
crreurs sont données 1" aide de bases spéeiales associées aux singularités pour I’ approximation non conforme P1/P0. Linltuence de
I” approximation polygonal de domaines régulicrs sur les estimations d ‘erreurs est évaluée. Nous obtenons pour [ approximation
conforme P2/PI que ; Hu-u I, W =O(h¥"c) Pour tout réel >0 qui améliore | estimation O(h*) admise jusqu’ & présent.. Ces
estimations peuvent s étendre & tous les problemes elliptiques de second ordre.

Mots cles : Probleme de Stokes-Eléments finis-Estimations d’erreurs-domaines avee singularités-Approximation polygonale.

Introduction

The finite element method is one of the most used numeri-
cal methods in solving partial diflerential equations gener-
ally obtained in the modelisation of natural phenomena
(Biochemistry, fluid flow, economic sciences, etc...).

The finite element analysis of elliptic problem (linear and
non linear) has drawn the attention of many autors, includ-
ing : Ciarlet (1978), Glowinski (1984), Pironneau (1989),
Feistauer (1987, 1993, 1999).

The eflects of polygonal approximation of nonpolygonal
domains and of numerical integration has been studied by
Strang and Berger (1973), Thomee (1973) Feistauer (1990).
Stang established in particular that for finite element ap-
proximation of second order and for convex domains we
have the {ollowing error estimates ITu -y II, W = O #%).

We establised for a general smooth domain the estimate
Mu - u, Il W = O(h¥>e) for any positive real ¢ which is
better than the O(L*?) obtained so far.

Finite element analysis of the stokes problem in domains
with corners is studied.
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The classical result known for the scalar second order el-
liptic problem is extended to the finite element approxima-
tion of the stokes problen.

We proved in particular by adding some special basis
associated to the corners that the error estimate for the linear
non conforming finite element approximation of the stokes

problem is of order O (h) although the solution is only in
H*>a(W) 1 <a<g

Numerical results and experiments in confirming these
theorical results are given in TCH [13].

IL1, Preliminaries

LetX=H'W),Q~- 12 (W) X, and Q, two discret

spaces with
Xh I L (Wh) 4 Qh I 164 (Wh)
Define

Q.10 b @v) =~ dOWdiv ). vdx for ul X
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We can express b (u,v) as
b (u,v) = (Bu,V)g o with 1 Bull g ¢ c1Tully
B is a bounded operator from X to Q’ and b (u,v) a continuous bilinear form on X x Q

set
@12y M= sup b(u,v)
ueX ,veQ IIUI]X .IIV]IQ

For any space X, satisfaying assumption (H2)

We set

XXy = Xp + X and by(u,v) =X J; div (u) vdx for all u € XX,
Te 3, ve Q

by, (u,v) is a continuous bilinear form on XX, x Q with 11 b, 11 .M
M given by (2.1.2))

3y, any triangulation of Q

As in the continuous case we have by, (u,v) = (Byu,v) Q’,Q and B,
is a bounded operator from XX, to Q’

Assuming that the condition (H3) is satisfied i.e

(2.13) Sup b(u, v) > p B>0
Ilull, Ilull, ,

ueX,
veQy
B is independent of h and u
V1, being the kernel of By, in X,

1

(2.1.3) implies that By, is an isomorphism from Vh into Q° and

QIHUB g <1/B
Following Girault [S] for the conforming case we can state :

Lemma 2.1.1

There exists a constant ¢ > 0 such that

Infllu—-wv, I, <c.infllu—¢,1l, for all u e V

¢ independent of u and h,

Proof

Letu e V

For any vy, € Xy’ thereexists a ¢, € V! such that

Bndn -By(u-vy, ) and by (2.1.4) Wehave 11 ¢ LI < 1/BT] u-vy 1l 5
<cli u-v, 11 (*) by

lemma 1.5.1

in TCH[13]

Setting Wy = 04+ vy, we have

(Bnr(On+vn).gn) = Bu(u.vy qn) + (Bavy, qn)

=<Byu qp > =0 since u € V and
Oh+vh€Vh
We have
I U-(Oh+V|-,) M<Hu -Vhy Hh + 1 Zh”h

<cll u-v I by (¥

The result follows O

23




REVUE DE L’ACADEMIE DES SCIENCES DU CAMEROUN VOL.. 1 N° 1 (2001)

Lemma 2.1.2.
Under the assumptions (H1) and (H2) we have :
Forallp € H' (Q),u e H(Q) n H'( (Q),

. éu -
Q12)1-) 1, j paiv(y,)ds + [ Svds+ [, Py n)dsl

<ch (plyl g+ Mullpg) v
for all v, € Xoy
¢ independant of u, p and h..
Proof

By hypothesis (H1) we have [ [ vlds = 0 for any interior side K of triangle and any
v e Xon
Where[ v]=v+-V
and also |, vds =0 for any boundary side .
we have

; ou (ou —
I_L—— v,dsl = IL(————(——) ).(v, —v;,)dsI < Il—a;—[é;)lll}m Alv, —v,,IILz(K)

by Cauchy Schwarz inequality

where
6_’ = ~—— | @dx
I K I '[K
From the fact that

168 1% (x)~ 16 I >(;) whereT is any triangle having K as side
and the estimates.

1-1/n
Hu—ull (%I—J UDull,  for any ueH'(Q)

Q) = 7 (Q)
Q convex (see GT [1])
We obtain

Hu—ull,  <ch*INull

L}(K) (1)

using the same argument we obtain
ou 112 o 2
II——( )[ 2K <ch "IN ull

and the estimates

L2(Q)
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13) I L v, .% dsl < chllull , Ilv, I,

With lemma 1.5.1
Using assumption (H2) and the definition of V;, we have

jp.div(vh )dx = L(p —J, p)div(v,)dx + _[ J, pdiv(v,) dx for all

veVibut [ g,.div(v,)dc=0 forall g <Q

hence Ij pdiv(v,)dxl <cllp—J,pll , , .11, 1T
<chllpll @ A, I, .

Summing on all triangles we obtain together with lemma 1.5.1

(2.1.4) 1;3: _[r pdiv(v,)dx < chlipll ,, ., 1Ipll ,, ., 11, 1I,,.
Using the same argument as above we have

@15 1Y [ p@, n)dsl < chllpll
4

HY(T)

H'(Q)

v, 11,

H'(Q)

From (2.1.3);(2.1.4) and (2.1.5) we obtain the resuit

Remark 2.13

The terms in lemma (2.1.2) are identically zero for conforming approximation.
An immediat consequence of the preceeding lemmata is:

Theorem 2.13
Under the assumption (H1),(H2) and (H3) we have

DIHu—-u,ll, <cinf Ilu-v,II,
v,eX,

< c[inf Hu—v, Il +inf Ip~gq,11

iiy Ip-p,l @ )]

Q)
Where (u; p)e (H) "H?)* xH' (Q)
(uysp0,) € thQ;? being

respectively the solutions of the problems (P) and (Py,).
¢ independant of , u.

11.2 - Finite elements analysis of the stokes problem in domain wit corners

It is to note that the flows in singular domains are more natural and the analysis of great importance. We
can cite between others the flow between the wheels of a car, the flow in a lock as shown in figure. We can note for
this last problem that the theoretical setting is not complete.

Fig 2.1

A

We generalise in this section the result obtained in the case of simple strong elliptic problem to the case of stokes
problem for non-conforming approximation.

The regularity of the solution of the stokes problem in domain with corners has been studied in Kellog [9] Grisvard
[t1] Dauge [10] and Jensen [12].
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One way of recovering the loss of accuracy in F.E.M in this case is to augment the trial space by some
singular solutions of the equations (supposedly known) at the cost of more complexity in the discret system (sparsity
and condition number of the stiffness matrix could change).

This method does not seem to work in the case of the stokes problem. This is due mainly to the
incompressibility condition div (u) = 0.

We recall that the structure of the singular solution as given in [11] is :

(2.1.1) u=u, + u, where u, € H* (Q)and u,=b r* 0<a<l
With r=lix-all a is a corner.
The preceding technique consist of considering the space W, =V, @ T, where V, is a

regular trial space and

Ta={Ar*%A eIRz} 0<a<l a one dimensional vector space

In (2.1.1) uy and Ar* are not necessary divergence free in which case

liuy-ug 113 is not optimal

Our investigation in the direction of mesh refinements is in consideration of those difficulties.

2.1 Some appropriate functional spaces :

We introduce the following Banach spaces which characterization can be found in [11].
We suppose that Q is a polygonal domain with a finite number of corners :al;a2;....an
We set H*(Q)={ueH' (Q)/r*ZDPuclX(Q)}

ri=Ila,-xIl ;xeQ2

Since all the spaces are topologically isomorphic, we recall the main properties of
Hy* (@)= H*>

It should be noted that

@.1.2) Hull® yre = Iull® 1oy + ) Ir* D7 ull* 2 @)

181=2

. 2.
isanorm on H

The following lemma is partially proved in [11]
Lemma 2.1.1.

The space H J* is compactly imbedded in H '(C2) and continuously in

W2(Q) for 1<p<<2/(1+a).
Proof
Let ue HF* (Q) and 1B1=2;BeIN?

IID”uIII,,(Q) =sup(D?u;v); p* = —p—QP >1
’ p

veLP (Q)yIvll . =1
LP (Q)

but 1 [ D"uvdsl < lir* D’ ull , IWII,, 11 ~n,
’ r

with (2.1.2) l+l=l
P q 2

by Hoélder inequality.

But I11/r*1 %<+ ifand only if aq<n i.e q<2/a for n=2
But q=2p/(2-p) valid for 1<p<2;which yields 1<p<2/(1+a)
For IBI<1  we obtain by Holder inequality

npull , , <D ull Jmes(@)]"" <+

24 12(Q)

2
g=-—L
2-p

and the result follows.
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The compact imbedding in H' (Q)follows by Sobolev imbedding theorem.
Remark 2.1
By Sobolev imbedding theorem we have

H*>*(Q)> W] (Q) > C°() all the imbedding being compact.

2.2 Interpolation operator _in H**(Q)

Let us recall the following theorem proved in Gri [11] p. 392.
Theorem 2.2.1

There exists constant ¢ >0 such that

set of linear functionon T

0 being a vectice of T for every u independent of u and T.
Definition of an interpolation operator

~

Let 7' be a reference triangle that we suppose for simplicity with a vectex at O.
We define the operator :

ITfrom H*>*(T ) into P,(T) by :

A

[Tu e P (T) and T1u = u at midsides of T (this has a sense since

H24 () - C(T)

(2.2.0) is obviously a continuous operator from H>*(T') into H'(T")

noting that (I- I1)P = 0 for all pe P, (T). We deduce from the preceding result that

there existsa ¢ > Osuch that :

22.1) |- nH H' (@) < el p| J (7 for all pe P (T ). It follows that

(2.2.2) H'(T<c inf e, o Ju = P H (1)

Let 3, be a regular triangulation of Q

u—H{

A

Al the triangles of 3, are affine equivalent to a single reference triangle T' that we suppose without loss of
generality with a vectice O.

This means that for all T of J, there exists a non-singular matrix By and a vector b € R? such that :
F: T —-»T

x> B, x+b

n

F transforming vectices of 7 into those of T.

Define T1,u=TI(uo F™")
Using relation (2.2.0), chain rule and change of variable formula we can obtain the following lemma.
See also Gri [11] p. 391.

Lemma 2.2.1

There exists a constant ¢ 0 independent of h such that :
=110 <87 | |8, |- 1 —a*|D?u|" dx

Foralluin H%*(T)
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We state now a result on interpolation of elements of H>*(7")
under some refinement assumptions.
We suppose in all the sequel that Q is a polygonal domain with a single cornera € I” with opening 7 <@ <27 .

Set a=1—77
(0]

Assumption A,

(a) The triangulation is regular say 3,

(b) There exist constants c; >, C2»9 such that

1/(1-a) 1/(1~a)

If d(a,T)< 7, then c,h <h, <c,h

¢, ¢; independant of h.

Assumption A,

(a) The triangulation Jy, of Q is regular

(b) For each triangle with a vectice at the corner we have
1/(1-a) 1/(1-a)

ch <h,<c,h

¢, ¢ two positive constants independent of h.

Comment 2.2.3

We state assumption A, to recover the order of accuracy for linear elements for domain with corners.

In case where the corners appear by approximation of nonconvex smooth domains by polygons and for
which @ =1—7 /@ tends to zero for fine grids, the refinement is merely done for triangles with vectices at a
corner. This is done in view of reducing the number of triangles which could become very large under assumption
A,. That is the aim of assumption A,. _

Under assumption Al we obtain an order of approximation h for nonconforming linear elements and

A" with £ = for assumption A,. Unfortunately not interest. 1 — ¢ <1-a

l-a
We also recall that for u € (T, a counterpart of lemma 2.2.1 is given by :
@23) Ju-T1,4), <dB7'[ |, |' || 2 @)

We state now the main result on interpolation of H>* functions.

Theorem 2.2.4
Let there be a bounded polygonal with one corner and J;, a regular triangulation of Q.
1) If 3, satisfies assumption A,, then there exists a constant ¢>0, independent of h such that :

e —11,4|, < chlu|H>*(Q) forallu e H>*(Q) -
2) If assumption A, is satisfied then there exists a constant ¢>0, independent of h such that :

le =1, < ch' """ |u| H>* () forallu € H>*(Q)

3) If 3y, is merely regular we have
D "" "Hhu" p = ch'™® "u"H 2% (Q) forallu € H**(Q)

Proof
Let T be a triangle of such that : d (a,T)> r, in case of assumption A; and with no vectice at the corner a.

We obtain by (2.2.3)
2
[ 7V -1t ) dx < | B7'| |8, | Juf|* > (T)

c

2a
o

<

B[ B | " 1 @)

in case of A;

< ch 087 B, | Ju” 17 (1)
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Using the estimates “B ! “ <ch™'
and we obtain
2 2 2 2a .
J’T |V(u - HT”)’ <ch ||uH H ~%in case A,and
< ch*7e) Gh case A,
For satisfying d (a,T) <7, in case A, and with a vectice a we obtain by lemma and assumption A; or A,
2 1 12+2a 4 2
[rV@-1u de < BB Jul 5 ()
< ch®|lul” H** (T

The result follows by summing up on all the triangles.

3) The result in case of regular triangulation follows exactly as above replacing R by b,
2.3 An interpolation operator in H “* ()
We define H ' (Q) = {u € L7(Q),r“Vu e L* ()} and

231 J,u j%' J.Tudx for all u € H"*(T)

It is easily verified that J , is a continuous operator from H"“*(T) into L*(T)
We have the following result

Theorem 2.3.1
If 3, is a regular triangulation of then

1) There exists a constant ¢ > 0, independent of h such that : Nu -J, u“L2 (Q)<ch™ ||uHH L (Q) for all

ue H"(Q)
2) If 3y, satisfies assumption A1 then
Nu ~J ,,u”L2 Q< ch"u”H M (Q) for all u € H"*(Q) cindependent of h and u.

Proof
We can prove as in theorem 2.2 .4. that

(2.3.2) H"(Q) > W (Q) continuously for 1<p<2/(1+a). Appling the classical result
P

a)n

7

172
< (“’" J (diamT)* Jul H"“ (T by 2.3.3)

1-1/2
”u»—.],,u“L’K(T)S[ ] (diamT)* |Va||L"

7|
< chlulH' ()
for regular triangulation or satisfying A, using the imbedding
w ,} (Q)— L1(QY)
p<qg<2/(2—-p)
and interpolation propricties of type ”u”L" < ”u”j7 ”u

we obtain [u —J ,ul[L* (Q) < chlu|| H ““ ()

Tp<qgs<rand A=(1/p-1/q)1/q-1/r)

2.4 Influence of polygonal approximation on the accuracy in F.E.M.

We note that most theoretical analysis on stokes and Navier-Stokes equations have been done for polygonal domain.
Our aim is to give the exact error analysis when approximating smooth domains by polygonals.

Any polygonal approximation of non convex smooth domain yields domain with non convex angle.
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The discret solution on €2, is in reality an approximation of the continuous problem posed on 2, which solution

did not possess the required regularity.
Due to this fact we study particularly the lowest order ; the P!/P° nonconforming approximation and the P*/P"
conforming approximation.

It is proved that inf ;t—-v,, 2;—-¢h H'(Q,)+ div(l;)

, s C[¢heﬂg(szh) inf L (€2, )]

When € isconvex €, < Q and wetake # =u and u denotes a regular extension of u.
We have in particular

12 - 12 ~12
div(u) ds= [ oqdiv(w) dv<ch’|ul H’(Q,)

(24.0) j o,

at the best for # € H* () such that divu =0 in Q

We foresee in (2.4.0) a necessity in case of higher approximation to construct an extension in such a way that
divu=0in Q;

€ being some small neighbourhood of

The existence of such extension is given in theorem 2.4.1
We use mainly theorem 2.4 of BS[3] which we recall here.

Theorem 2.4.1
Let Q be a bounded Lipschitz domain of R". Let 1<r< +o0,

m 1N, then there exists a linear operator R = R,”" from H " (Q) into (H gL (Q))n with the following
proprieties :

@ divRES for all fe Hy™ (Q) with [, fde=0
@ V"R < V"], foran fe Hy (Q) where oo, 1)

Remark 2.4.2
It is easy to verify that ifue (H o (Q))n then _‘Q div(u)dx =0 by divergence theorem.
In all the sequel when € is a nonconvex domain, we choose a neighbourhood € ;0f€2 such that any polygonal

approximation €, of ) satisfies :
242) Q, cQ; for 0 <h < hy for some & >0 and A, fixed with o < A <1

Theorem 2.4.3
Let 2 Q beabounded smooth domain of R" u € (H2 (Q)), pe H' (Q), f e L*(Q) with divu=0in Q Q

then there exist extensions u € H2(Q), p € H'(Q), f I* () such that :
1) ue HX(Q,), pr HA Q)

2°) divu =0 in Q,

2@ < el @+ 1 @+ |71 @]

3) [~ Au+V p- f

¢=C(8,Q2) a constant independent of u
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Proof

Extensions 1 € H* (Q s)»p€ H' (Qy), f e L*(Q) are classical and are done by localization and reflection
as in [10] theorem 3.10 p. 80 [10] and 3°) is satisfied.

Let then 1;, }N), } be such extension satisfying 3°).

Set Dy =Q,\Q

We suppose without lost of generality that Dj is as smooth as € and is connected.
{The following being possible on each connected component).

We have divu e HY(Q,)

Since divu I, =divu =0 by some modification on exterior part of 0D, we can obtain divue H s(Dy)
with 3°) still satisfied. By theorem 2.4.1 and remark 2.4.2 there exists w € H, (D) such divw = divu in D 5
1X(D) ¢=C(D,)>0

and [V2W]L* (D) < c(D,){divu

~ u(x) if xeQ
UilLx) = -
Set ( ) u(x)+w(x) if xeD;
Since we H2(D,) , we have u(x) € H2(Q,)and diva, =0 with [ul H* (Q,) < C(S, Q)u|H* ()

Comment 2.4.4
1.) We suppose in all what follows that Q is a bounded smooth domain of class ¢” [m b 2]

Any polygonal approximation €2, of (2 satisfies :
(2.4.4.1) All boundary vectices of €2, belong to I" = 0Q2

2.) For any regular triangulation 3;, of 2, , the number of vectices on is of order
h™ (h = max diamT)
Te3;
3.) X, and X .4 denoting the discret spaces approximating respectively H ' (2, )and H (l, (€2,,) defined in 1.4
4.) We have dimXy, - dimX , = 0 (h™)
Hence in general d(u,Xh) is not of the same order as d(u, X ,,) When u ¢ H (; (Q)
This fact is rigorously examined in the foliowing sections.

Proposition 2.4.5
There exists a constant ¢>0 such that

i

~ N
We can write Q,\ Q = Q; S, where each S, is formed by a face (side) of a boundary triangle

2 2 )
u dx] <ch® VOl HY (Q ) forany ue HY (Q; )N H(Q)

Proof

and an arc belonging to 8Q

We assume that each S; has the representation S, = {(x' X)X ew cR7TO0<x, £Z,(x )}

31



REVUE DE I’ACADEMIE DES SCIENCES DU CAMEROUN VOL. 1 N° 1 (2001)

'
Where W, is an open set of 8" the arc on 8Q given by X, = Z1 (x ) and the side or face by x,=0,

X'el,
x € w, with }Zl (x' )} < c¢h?, ¢ depending only on Q

, Zy(x7)
Let ve C'(Q)NCy(Q) and 0< @< Z (x)wehave v(x',a) = I g(x',f)dé‘ and by Holder

a

inequality and the fact that v(x', Z(x")) =0 for all x'e w,

2/q
2 1 1
“ } with —+-— =1 Integrating on W, and applying one

q
2
Dy
C

' Z(x")
hx', )| <|Z(x)~af""’ { [ |pove.o

Z(x%

DX” V(x' . q)

more line Holder inequality, we obtain I Iv(x',a)l2 dx'<ch*'? J\‘ dx' I
W, w 0
depending only on 9Q

2
Summing on all S, and applying Jensen’s inequality ,[F» Mz ds <ch*'’ ||uH H"™(Q,) hence

(e, o ] < e ac@,)

for all q>1
using proprieties of X;, defined in 1.4 and dealing as in Lemma 2.4.5 we have

Lemma 2.4.6
There exists a constant ¢>0 such that

[ Vel ax <ch?|ulH>(2,)

Q,\QuQ,

2
] o,
Q,\Q
Forallu e H*(Q;) Hy(£2) cindependent of u and h.

forallve Xg
Comment 2.4.7
Let us note that for any polygonai approximation {2, of 3 (2 sufficiently smooth) the error analysis is done for

continuous solution posed on €2, which in case of nonconvex domain did not possess the regularity of the solution

on Q. The exact lost of accuracy is obtained via the estimates of : |[u— 8, || H ' (Q ») 0, being the exact solution

on 2, and u an extension of u ; the exact solution on 2, to Q
The following first estimates can be obtain from the general existence theorem as expressed e.g. in[]:

u—0, %h H'"*(T) T, =0Q,
The second member of (2.4.7.1) gives the main difference with the classical case.

It is also to note that (I r, ‘u| 2 ds)m # ”u”H”2 (I', ) in general.

(2.4.7.1) H'(Q,)<c
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The estimates of ”u”H 12 (I",, ) is done via the concept of interpolation of Sobolev spaces as defined in Lions [36],
[ 1. Each polygonal domain €2, is approximated by a set of smooth domain €),,, n > 1tending at least in C 0.1

to €2, uniformly in h.

We have in particular for v € H”(Q,)

i/ r; ufr,

We recall here some proprieties of interpolation of Banach spaces.

Let X and Y be two Hilbert spaces with X continuously imbedded in Y.

It is proved that there exists a positive definite operator A densely defined in Y such tat
DA=X

For any 0<0<! ones defines the intermediate space[X,Y];=D,"?

(2.4.7.2) H'"* (1) > H'*(T,) uniformly in h.

which is a Banach space under the norm
(2.4.7.3) IIuII[X;y]‘9 = {Tull + 1A' Cull
We have (2.4.7.4)

Xclx;y], cr

With continuous injections.

we can easily deduce from (2.4.7.3) and (2.4.7.4) that :
(2.4.7.5)

Hully y, < cHull’ Hull]
¢ depending only on 0

(2.4.7.5) can also be deduced from the moment inequality :
- B-a
HAP ull < clIA®ull 7 JIA ull 7™“

for 0<a<P<y
In particular if Q is a bounded domain of IR" sufficiently smooth with boundary I"
Lions[1] proved the following properties

(2.4.7.6) le (Q),H' (Q)J: HO05+8 ()

@417y |H* @), H' (O)|= B (1)
For piecewise smooth domain (2.4.7.6) and (2.4.7.7) have been established by Jensens [10] for the spaces H, °

(€2),for any seIN. ‘
The definition of the spaces H¥(I') for any piecewise domain can be found in Grisvard [11].

We have in particular for any bounded ue W™P(Q),ull’e W™""/(I")
With

Il =inf 4,

P = ull’

We state now the main lemma in proving our main result of this work

< IIuIIu

m/,:.p(r) /m.p(gl)
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Lemma2.4.8
Q being a bounded domain of class C*,Qsa neighbourhood of  such that :
any polygonal approximation Q such of Q satisfying O, <Q
there exists a constant ¢>0,independent of h such that :

Imir, 11 )< Il ymiay Il 1% 12,

Hl/Z(rh
for any
u e H"(Q,);where 9=ET;2— m21
2m -1

Proof

Since Q is of class C",there exists for each polygonal approximation Q, of Q satisfying ), <Q

A set of smooth domains Q," nelN such that Q," <,Q; for all neIN
Q" tend to Q uniformly in h as n tend to infinity in C*' therefore we have for sufficient large n
2.4.8.1)

Il 11 <clhill forall & € H™(Q,)

HlIZ(rh) Hl/Z(rhn)
¢ independent of h and u.

By (2.4.7.7) and (2.4.8.1) we have

Hﬁlrn IIH‘”(I‘”,,) < el wrq,y I " W 11 12y < 111711]-011'/2(96).IIﬁIl—‘"hIIeLZ(r,,) for all
e H"(Q,)

The last inequality is obtained by (2.4.7.2) and (2.4.7.8) with s, =0, s;=m1/2 and
0=(2m-2)/(m-1).

The following two theorems give the error estimates in the energy norm both for polygonal approximation of
smooth domain and for domains with finite many corners.

The error estimates lp-p, iy on, for the pressure is deduced from that of the velocity by the classical duality
argument that yields

Ilp-ph HLZ(Qh) SChHU-Uh].Ih

:l"heorem2.4.9

Let © be a bounded domain of class C™,€};, a set of polygonal approximations of Q) satisfying (2.4.2) and (2.4.4.1)
If (u,p) e [H el (Q)]Zx "(€)/ IR is the solution of the stokes problem (P) on

(uy,py) the corresponding discret solution on €, then there exist a constant ¢>0 independent of h such that :

Hu-ull, o < clp"Hull,,,. o |+ LS, B0
(2.4.9.1) ) for all 1<r<+o
with 0= m
2m+1

Comment 2.4.9.2
(a) The first term of the second member of (2.4.9.) estimates the regularity of the solution on Q
and the second effect of the domain approximation.
(b) For m=1,we obtain for the P'/P® nonconforming approximation that no lost of accuracy is observed as already
proved for the linear conforming approximation for scalar elliptic problems.
(c) for m=2 we obtain the order (8/5 )-& £>0 which is better than the 3/2 till now admitted as
the best order.
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Proof of theorem 2.4.9
Let (u,p) be the solution of the stokes equation (P)

We have :

Lupw)= [ (~Au+Vp—fyvdc=0 for all v, eX,
h
Applying the Green formula on each triangle T3y we obtain

ou . -
L,(u,p,v,)=a,u,v,) - Z LT—a;.vhds - J; p.div(v,)dx + LT p-(v,.n)ds — Lh fvdx

==
Te3,

where 7 is the exterior normal to T.

(2.4.9.3) can be written into the form :(2.4.9.3”)
|

h

v, ) =a,(,v,) Z _[ - 1 pdiv, Ydx+ B, (u, p,v,) whereB, (4, p,v,)= L pAv, A)ds— Lh Sy, de— Z

Te3,
(

[Lg’%.vhdsj
We have for all v,eX,,

Hu-uhllhsllu-vhl I+l i up-vill; an d
Hu-vy, 1P%=ay(up-u,up-vy ) +an(u,u-vy).

From which follows :

I, < Jnf  [u—v,Il,+sup —— 1w, Hh

v, € X,
Noting that Ly(u,p,vy)=0 for all v, eX;, we deduce from (2.4.9.3°) that

la,(u—u,,v)I <1 Z j;vp.div(vh)dxl +IB,(u,p,v,)I for all v,eX,

Te3,

Let 8, be the solution of :
{-A6,+Vq, =0inQ,
div(0,)=0 in Q,
6,0, =ull,

By theorem 1.3 and remark 1.4 in |13] there exists a unique
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@,,9,) € H"(Q)xH" (Q,)/ IR such that 110,11 <clluly 1l

H () H'Y(T,)

¢ independent of h and u

and 116,11

H™ (Qh)

<cllul, 11

Hm‘/2(

r <cllull,

Ly " (S!)

Q;, being convex.
It follows that

u—0,e H"(Q,) N Hy,(Q)nV

Using assumptions (H!),(H2) and (H3) we deduce that

. m-1
@494 Inf Iu—0,—v, 11, <ch Uu——@h]]Hm(Qh)

Vhexh

We have :

From lemma (2.4.8) and relations (2.4.9.4) and (2.4.9.5) we deduce
inf Thu—v, 11, <|e( B" Il + B°C' O 1’ )|

Hlll
Vh € X 0h

for any r>1
For conforming approximation X;, we have X,cH'(Q) and By(u,p,v;,)=0 for all

V, €Xj, the result follows immediately by noting that :

1Y [ pdiv(y,)dxl < ch" lpll

A Hm-J(Qh)
€~y

A 11,  for v, eV,

For the linear nonconforming case the result follows from lemma 2.1.2.

Corollary 2.4.10
If Q is a bounded convex domain of class C* for a P2/P1 conforming approximation we have for any
polygonal approximation of Q satisfying (2.4.2), (2.4.4.1).

Hu—u, 1l <ch® > Hull

H(Q,), H3()
¢ independent of h and u for any £>0.

Proof
This is an immediate consequence of theorem (2.4.9) with m = 3 and 8 = 4/5 by noting that

H?*(Q) — H" (Q) for all 1<r<+w

By Sobolev imbedding theorems 0.

We state now a counterpart of theorem 2.4.9 for the case of nonconvex domains and for domain with
corners.

The results here are just proved for linear nonconforming case.
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This restriction is justified by the fact that any polygonal approximation of 2 possesses some corners with angle
greater than m and the discret solution is in reality approximates the solution of (P) posed on, O, which
unfortunately did not have the H’ regularity.

Theorem 2.4.11

Suppose Q is a bounded nonconvex domain of class C” ; (u,p) the solution of the stokes problem (P) on Q
with second member f €L.? (Q)

Let (¥ p; ?) be the extensions of (u,p.f) given in theorem 2.4.3.

Let (uy, ;pn) be a discret solution of (p) on €, .a polygonal approximation of Q satisfying (2.4.4.1) and (2.4.2) then
DIl —ull,, <chllull

if the triangulation of €, satisfies assumption Al
¢ a constant independent of h and n

) —uyll . <ch"™*Hull

HY ()

HY(Q)

a=min(1-7z/w,)

w, >r for each i
w; being the opening angle of corner a;
N being the total number of corners of

Remark 2.4.12

Theorem 2.4.11 states that the classical order h for the velocity is obtained only under some refinements
constraints in the neighbourhood of corners.
An order of h'” is obtained at least for arbitrary regular triangulation.

Proof of Theorem 2.4.11

Let
@413y L,(#; P f3v,) = L(—Amva—f).vhdx for all v,eX, < H)\(Q)

By Green formula on each triangle Te 3, we have
(2.4.13%)

— T ~ ou ~ 7. _ ~
L, G;p; fiv,)=a,(;v,)— Z[L‘a—l’;.\rhds - E p.div(v, )dx + J; p-(v, .n)ds..)— L f.v,dx
Te3 h

E;‘h

=a, (#;v,)+ B, @ P;v,) + 3.~ | peiv(v, )dx
Te3,

noting that
repeating word by word the line in theorem 2.4.10 we have : 2.4.14
Since satisfies 2.4.4.1) we can write where a triangle with a side on
Recalling that the elements in Xoh are continuous at midpoint of triangle sides and vanishing at boundary midpoints
we have on each S1. An
being constant on the midside of boundary side of T1.
Integrating and summing on all S1 we obtain (2.4.16)
From theorem (2.4.3), relations (2.4.13), (2.4.16), it follows The second part of theorem follows as consequence of
theorem (2.4.4),
A corresponding result for polygonal domain with finite number of corners can be obtained as in theorem (2.4.10
and theorem (2.2.4) and it reads.

Theorem 2.4.17
Let Q be a polygonal domain with a finite number of corners al....an
DIf the triangulation of 2 satisfies Al then there exists a constant ¢>0 such that

Hu-u,ll, < ch[z Ilu 11
i=1

2.a
Hnl

+ 1wl |, ( Q)} ¢ independent of h and u

1) If 3, only regular we have
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Hu—u,dl, <ch™ Y Hudl  +Iwll
i=1 H,2

The solution u of (P) given by:

u -——§:ul +w with u, e H3*(Q); we H*(Q)

i=1

HY(Q)
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