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ABSTRACT

We detive and study an SEIS deterministic differential equation model for endemic malania with varnable
human and mosquito populations. Mosquito deaths in earlier life stages and a delay, T, to cater for the time
lapse between egg laying and adult mosquito eclosion ate explicitly included. For T=0, oscillatory solutions are
not possible. Conditions are derived for the existence, uniqueness and stability of the equilibria in the model.
We show that the stability or instability of the positive vector equilibrium solution depends strongly on the size
of the parameter T. We identify a threshold parameter R , and show that the disease free equilibrium always
exists and is locally and asymptotically stable when R < 1. We show that the prevalence of malaria in endemic
regions can be discussed simply by measuring the proportions of susceptible humans and mosquitoes at
equilibrium.
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RESUME
Nous avons dévivé et étudié un modéle déverminatif d'énation différentielle (SELS) ponr I'1 30tude du plandisme endémique avee
comme variables les populations bumaine et de moustique. La mortalité des moustiques anx stades larvaires et le délai, T de
développement entre la pointe des oenfs et la mine imaginale ont 6t explicitement considérés dans la modéle. A T=0, 7l n’y a pas
de solntion oscillatoire. Les conditions démontrons que la stabilité on linstabilité de la solution positive du vectenr a paramétre
seutl, R et démoniré que Uéguilibre des populations non infectées existe toujonrs et est localement et asymptotignenent stable
guand R, < 1. Nons démontrons que la prévalence du paludisme en Jone endémiqne pent étre comprise simplement par estimation

des proportions des humains et des moustiques susceptibles @ l'équilibre.

Mots clés: Equilibre endémiqne, senil, délai

Introduction
Malaria is a parasitic vector-borne disease endemic in
many parts of the world. At present, at least 300 million
people are affected world wide and there are between 1 -
1.5 million malana related deaths annually Bradley (1996).
The incidence of malaria in many utban centres of the
wortld is increasing and almost all areas of high endemic-
ity lie in developing countries where inadequate drainage
provides large stagnant water reservoirs which are ideal
breeding sites for disease vectors such as the Anopheles
mosquito (Giles and Wartel (1993), WHO Reports (1980-
1999), Elizabeth et al. (1992)). An excellent source of
medical information on various diseases is found in
Benenson (1990).

The literature on the biology of malana is vast.
See, for example, Ngwa and Shu (2000) for a good re-
view and the references therein. Today we are faced with
the need to predict the dynamics and transmission of
indirectly transmitted diseases with greater accuracy and
over longer periods of time, and more often with limited
empirical data. Itis clear that the assumption of constant
population size in epidemiological models, which is rela-
tively valid when studying diseases of short duration with
limited effects on mortality, may no longer be valid when
dealing with endemic diseases such as malaria. With such
diseases, the effects of changes in population size and
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disease induced mortality are far from negligible can cru-
cially influence discase dynamics. Here, we focus our at-
tention on an endemic region and derive a deterministic
mathematical model for the dynamics of malania trans-
mission in varying human and mosquito populations; fac-
tots which have hitherto been omitted in most mathemat-
cal models. Disease induced deaths are also explicitly in-
cluded. Our model also incorporates mosquito deaths in
life stages prior to the adult stage and a delay T to ac-
count for the time lapse between egg laying and adult
mosquito eclosion. This delay could also be regarded as
a parameter to capture seasonality. In fact, vanations in
climatic conditions have a profound effect on the life of
mosquitoes, the development of the malaria parasite and
consequently the incidence of malaria. The regular
changes in mosquito population density caused by sea-
sonality also explain interesting patterns in the overall
dynamics of malaria. It is obvious that a rise in mosquito
population can lead to a malaria epidemic in the human
population, but less obvious when the prevalence of
malania amongst mosquitoes will occur Aron and May
(1982).}. Hence, dependence of malaria transmission on
the population density of mosquitoes results in epide-
miological patterns that usually vary with the seasons. See,
forexample, Ross (1911) and Macdonald (1950, 1952, 1957).
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The rest of the paper is organised as follows: In section 2 we present the essential as-
sumptions, terminology and the derivation of our model. An analysis of the model in the
absence of the disease is presented in Section 3 where we examine the existence, uniqueness
and stability of the equilibrium solutions for the equations governing the total human and
mosquito populations. In Section 4, we examine the entire model in the presence of the
malaria disease. Then, we rescale the model and then proceed to examine the conditions
for the existence, uniqueness and stability of endemic and disease free equilibrium solutions.
We round up the paper with some concluding remarks in Section 5.

2 Derivation of the basic model

In this section we briefly derive the mathematical model studied in this paper. We define
the following contact parameters.

chy = the infectivity of an infectious human. Defined as the probability that
a bite by a susceptible mosquito on an infected human
will transfer the infection to the mosquito.

¢, = the infectivity of an infectious mosquito. Defined as the probability
that a bite by an infected mosquito on a susceptible human will
transfer the infection to the human.

a, = the man-biting rate of the mosquitoes. Defined as the average
number of bites given to humans by each mosquito per unit time.

The basic unit of study is the parasite?. However, since protozoans are micro-organisms
with the ability to multiply rapidly and directly within the host’s system, measuring the
number of parasites within the host populations is usually difficult. Consequently, the in-
fected host provides a most convenient unit of study. So we divide the human and mosquito
populations into states (classes or compartments) representing disease status. The states
contain susceptible, incubating and infectious individuals. At time ¢, there are Sj, suscep-
tible humans, Fj incubating humans, I; infectious humans, S, susceptible mosquitoes, E,
incubating mosquitoes and I, infectious mosquitoes. The infected mosquito’s period of in-
fectiousness ends with its death. N, = Sy + Ej, + I, and N, = S, + E, + I, are respectively
the total human and vector populations at time £. The model assumes that all new-borns are
susceptible in both populations (no vertical transmission) and a uniform birth rate. The per
capita recruitment rates for humans and mosquitoes are K; > 0 and K, > 0 respectively,
where K. is assumed to be a monotonic decreasing and continuously differentiable function of
the total population. The per capita natural removal rate for humans and mosquitoes are y;,
and u, respectively, where . is a continuously differentiable and monotonic increasing func-
tion of the total population. Incubating individuals in both populations become infectious
with rates v, > 0 and v, > 0. Infectious and infected human individuals recover with rate
r, to join the susceptible class or die from the disease at the additional rate vy, > 0. Vector
recruitment into the susceptible class is not instantaneous; i.e., mosquitoes that are recruited

2For malaria, it is possible to obtain qualitative measures not just for the prevalence (presence or absence
of infection) but also for the intensity of infection (based, for example, on the number or proportion of
infected red blood cells per sample). Further more, infection does not mean infectiousness since a patient
may harbour many liver and blood stages of the parasite but no gametocytes. In other words, a more
relevant quantitative measure of infectiousness is provided by the counts of gametocytes per unit blood
sample Anderson and May (1979, 1991)
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into the susceptible class at time ¢ are from eggs laid by adult mosquitoes at the earlier time
t—T,T > 0. This time interval can be significantly long when compared with the life span
of the mosquito, and so is included in the model. Hence, the mosquito recruitment at time
t is a function of the total mosquito population at the earlier time ¢ — T'.

The effective contact rates between the two populations, which may be defined as the
average number of contacts per day that will lead to the infection of one party if the other
party was infectious, depends on a number of factors: the man-biting rate?® of the mosquitoes,
the transmission probabilities between the species and the number of individuals in both
populations. The exposure rates to the infection have previously been derived; Ngwa and
Shu (2000). These are:

a,l,
humans infected per unit time = (C"’}V v) Sh, (1)
h
Chy Oy ]
mosquitoes infected per unit time = ( h’}v” h) Sy. (2)
h

We model the equation for the mosquito population as follows: Each mosquito goes
through four life stages: egg — larva — pupa — adult. Suppose that initially there are N,
adult mosquitoes each of which lays eggs at a rate K,(N,). Suppose that 7} > 0 is the time
that elapses before the eggs hatch into larvae. Also suppose that these eggs have a natural
death rate p;, > 0. Then the expected number of eggs (total density of eggs), E., from time
t — T, to time t is

E,(t) = ) Ko (Ny(8)) Ny (5)e M0 E=9) s, (3)

t—T

where N, represents the current mosquito population size, and e #+Tt is the survival prob-
ability of the eggs during the time interval 7. On differentiating (3) and rearranging, we
obtain the rate of production of larvae as

Kv(Nv(t - T]))Nv(t — Tl)e—uluTl_

Continuing in the same manner, we obtain the rate of entry into the adult mosquito com-
partment (the adult mosquito eclosion rate) as

Ky(Ny(t = Ty = Ty = T3))Ny(t = Ty — Tp — Ty)e #roTt~eavTe=panTs

where T; and p;y, ¢ = 1,2, 3 are respectively the time spent in life stage ¢ and the death rate
constant for life stage 7, excluding the adult life stage. We assume, for simplicity, that ceath
in all previous life stages occurs at the uniform rate p, for all ¢ (i.e. g1y = poy = t3y) and
that 7' = T} + T» + T3. Then we may model the recruitment rate into the adult mosquito
compartment as

adult mosquito recruitment rate = K, (N,(t — T)N,(t — T)e 7. (4)

3We are assuming that the populations are confined in a particular geographic area, small enough so that
each bite has an equal probability of being taken from any particular human. Since the man-biting habit of
the mosquito controls the transmission of the parasite, these assumptions, are in fact, a restricted form of
homogeneous mixing based on the idea that the mosquitoes have a man-biting rate.
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Now, using standard mass action laws, we write the equations that describe the temporal
spread of the disease within the human and mosquito populations in the form:

dS, ok Oy Iy
=% = Kn(Na)Np + rily ~ pn(Ny)Sh — Cohv ) Sp;
dt Ny
dE Cyntyly,
Tliﬁ = ( v’}Vh ) Sp = (Un + pn(Ni)) Ep;
dl,
'd?h = vpEp = (ra + 0 + pa(Nn)) In; (5)
dS«U _ —1oT Chvavlh
= K,(Ny(t — T))Ny(t — T)e =~ (N ())Sy — | —— ] Sy
dt Ny,
dEv _ chvav]h .
2= (PR s, - ) B
dl,
E = ykE, - ll'v(Nv)Iv;
with appropriate initial conditions at time £ = (. Here,
dN,
Ftﬁ = Kp(Np)Nb — pn(Np)Np — Yol (6)
dN,(t
dvt( ) Kv(Nv(t - T))Nv(t - T)C_MUT - Mv(Nv(t))Nv(t); (7)

where all parameters in the model are assumed positive and the equations for N, = Sy +
Ey + I, and N, = S, + E, + I, are obtained by adding up the relevant equations in (5).
These equations are valid for N, > 0 with 0 < S,/Ny, I,/ Ny, Ry /N;, < 1. We interpret those
quantities involving division by N, as zero whenever N, = 0; cf. Greenhalg (1997).

It can be shown using standard techniques described in Hale (1969) that if initial condi-
tions are specified for each of the state variables at time t = 0 with S,(0) + E,(0) + I;,(0) =
N(0), then there exist a unique solution satisfying these initial conditions for all ¢t > 0
with Sp(t) + En(t) + In(t) = Np(t) for all ¢ > 0. It can also be verified that if N,(0) > 0,
then Nj(t) > 0 for all ¢, whereas if N,(0) = 0 then N(t) = 0 for all £. Of course, for ap-
propriate initial data, similar arguments apply to the vector’s equations with corresponding
expressions. Thus the system (5) is well posed from a mathematical and physical standpoint.

The analysis of a simplified version of system (5) for which T = 0, K,(N,)N, = Kj,
Ky(Ny)Ny = Ky, un(Np) = pr and py(N,) = py where Kp, Ky, pp and p, are positive con-
stants, was done by Bigina (1999) who established that under these conditions, the model
(5) cannot exhibit oscillatory solutions and that the system possesses a unique disease free
equilibrium, E,, which is locally and asymptotically stable when a unique threshold param-
eter Ry <1 and an endemic equilibrium, £, which exists and is locally and asymptotically
stable, for all £ > 0, when Ry > 1. R, was also explicitly calculated?, and in our notation
may be written in the form

P2Kn (o + o) (i + vn) (g + T + )

In this paper, we study and analyse the model (5) under more general conditions. To do
this we make the following assumptions:

4The quantity R is dimensionless and determines an invasion criterion for the infection. We shall discuss
its epidemiological importance and interpretation in Section 4.
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Assumption 1 For Nj € (0, 0c) we assumne that Kj, and p, satisfy the following conditions:

(i) Kn(Ny) > 0 and pp(Ny) > 0, where K, and p;, are monotonic functions of their
arguments with K monotonically decreasing and pp monotonically increasing.

(i1) Kn(Ny) > 0 and pp(Nn) > 0 are continuvously differentiable with Kj(Ny) < p,(Np),
VN.

(111) Kp(0+) > pn(0+) and Kp(oc) < pp(00).

It is easy to verify that Assumption 1(iii) ensures that when v = 0 Equation (6) has a nonzero
equilibrium solution®. Assumptions 1(i) and 1(ii) ensure that such an equilibrium solution
is globally and asymptotically stable to small perturbations. A similar set of assumptions
can be derived for the equation governing the total mosquito population.

3 The basic model in the absence of the disease

In this section we analyse the basic model in the absence of the disease. Since the only
dynamic coupling between the two populations (mosquitoes and humans), at least in the
context of our model, arises as a result of the presence of the disease, malaria, it is necessary
that, to be able to quantify the relative abundance of the disease within the population,
we must analyse the behaviour of the total populations in the absence of the disease. This
first analysis must be detailed enough to be able to serve as a tool to ascertain the effect
and consequences of the disease in the population. To this effect, we need suitable forms for
the functions K, K,, un and p,. An analysis of an SEIR model with generalised density
dependent death rates may be found in Greenhalgh (1997). Here for positive parameters
Alhy A2k, Av, Hih, Mon, M4y and m, we select the following forms for K and p:

Kn(Ny) = %}S + Aog, Un(Np) = pin + pon Ny
) (9)
K (N, (t=T)) = Xe ™7 1 (N,) = pgy a constant.

Here, A\, is a rate representing a constant human migration term, Ay, and A, are respec-
tively the linear birth rates and u, is the vector’s linear death rate, m measures how fast
K, decreases. If we apply the principle that requires that we interpret the quantities in-
volving division by the total population as zero whenever the total population is zero, then
Assumption 1 (iii) implies that Ay, > pyp and A, > pg,. With the forms chosen in (9),
Assumptions 1 (i) & (ii) are automatically satisfied and in this case, the dynamics of the
total mosquito and human populations in the absence of the disease are modelled by the
decoupled equations

dN Alh
W _ (Alr: 4 Ag,,) Na — (uin + pi2nNp) Na; (10)
N,
d ;t(t) Ape N ETING (8 — The #eT — 11y, Ny (2). (11)

5This is clear since the conditions specified in the Assumption imply that the curves of K} and u; will
intersect once, and only once, for some Ny € (0,00). Ny is the unique positive equilibrium solution in the
absence of the disease.
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We put forth the following definition.

Definition 2 In the context of this paper, we call a solution Nj(t) or Ny(t), t € [0,00) of
(10) or (11) realistic if the solution is non-negative for all time.

We proceed to show that the equations (10) and (11) that describe the dynamics of the
total human and vector populations do indeed have realistic solutions when the foregoing
conditions are met.

3.1 Analysis of the equation governing the total human popula-
tion

In this subsection we show that under certain conditions, equation (10) has a globally
stable steady state solution which may be identified as the environmental carrying capacity.
To establish this result, we shall restrict ourselves to immigrations into our region of interest.
That is A1y is always positive. It is immediate that if A;; < 0, then we must require that
the linear birth rate should outweigh the linear death rate at all times.

Theorem 3 For given positive parameters Ayp, Aon, pin and pan, equation (10) has realistic
equilibrium solutions N = 0 and N, = Ny > 0. Moreover, the unique positive equitibrium
solution Ny always exists and is globally stable when Aip > 0 and Aop > pip.

Proof: The equilibrium solutions are easily obtained by equating the right hand side of (10)
to zero and solving for Nj,. This gives the positive equilibrium solution as

_ (Aon — p1n) + v/ (Dan — pan)? + 4 npion

N*
h 2p2n

(12)

Now, by using standard techniques®, (10) can be solved explicitly to obtain the solution

K [(A2n — pan) + My] — [(A2n — pin) — My] exp(—Mt)
24z [ — exp(—Mit)] ’

. Nu(t) = (13)

where

M; = /(Aap — p1n)? + 4ilan

and « is a constant that can be determined from the initial condition at time ¢ = 0. It is now
a trivial matter to see from (13) that N, (t) — N (given in (12)) as t — oo Y N,(0) € (0, 00).
[ |

How the solution (13) approaches N; depends on whether N,(0) is bigger or smaller
than Nj;. Hence, if N,(0) < N; (N,(0) > N;), then for the appropriate parameter regime
as indicated in Theorem 3, N,(t) grows (decays) monotonically to Ny for all time ¢ > 0.
The behaviour of the solution of Equation (10) is characteristic of a class of models with a
density dependent regulatory mechanism that compensates for the effect of overcrowding.

8Observe that (10) is an ordinary differential equation of Riccati type with evident solution N} given by
(12).
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3.2 Analysis of the equation governing the total mosquito popu-
lation

In this subsection we show that under certain conditions, the equation (11) can exhibit
oscillatory solutions. The basic idea being that these oscillations in the population density
of the mosquitoes will in turn induce oscillations in the prevalence of the disease, malaria,
in the community. This is significant since malaria is transmitted from person to person by
mosquitoes and the whole transmission cycle is driven by the mosquito’s man-biting rate.

On examining equation (11), we note that the presence of the delay parameter, 7', in the
model assumes that the past history of the mosquito population, prior to time ¢ = 0 say, is
known. That is, we must specify an initial condition on some interval, at least of length 7',
on (—o00,0]. To proceed, we set N,(t) = yo(t), —T < t < 0, for some positive; continuous
and bounded function y,, regardless of whether or not yy(t) satisfies (11). We then seek a
continuous extension of yy(t) into the future, to the function N,(t) that satisfies (11) V¢ > 0.
We note that N (0) is interpreted as a right hand derivative at 0. We can therefore formulate
a solution procedure for the equation (11) on the intervals [(k — 1)T,kT], k = 1,2,3,--- as
follows: for a given function yy(t), ¢t € [T, 0], set

Ny(t) = we(t), te[lk—1T,kT], k=1,2,3,-
Then (11) can be solved in a hierarchical manner through the equations:

dyi(t)

il AU Ape ™e-1ETy, (¢ —TYe T t € [(k—1)T,kT],  (14)

yk((k - 1)T) = yk—l((k - 1)T)7 k= 1:27 Yy (15)
Yo(t) given.

Now, proceeding in time intervals of length T, (14) can be applied as often as desired and
a solution, up to any required time ¢, for the delay differential equation can be constructed.
Note that to ensure continuity, in addition to the condition (15), we require that N, have
right derivatives at t =0, =T,t=2T,t{=3T ---.

A few steps of the solution procedure outline above shows that the integrals quickly
become cumbersome and one cannot draw any general conclusion concerning the behaviour
of the resulting solution. Hence, to get an insight into the nature of the solution, we perform
a linear stability analysis about the steady state solution. We easily verify that if N is the
positive equilibrium solution of (11), its value is

N} = 1 (—i\”—;) . (16)

m N4ve’“"

Since we are primarily interested in determining whether or not there exists a parameter
regime for which the parameter T' can induce oscillations” in the solution of equation (11),
we perform a linear stability analysis in the neighbourhood of N;. The following results
show that there exists a parameter regime for which the steady state N; will be stable to
small perturbations and one for which it is not. We shall need the following definition, cf.
Cooke et al. (1999).

It is a simple matter to prove that a single autonomous non-delay differential equation of the form
¥’ = f(y), ¥(0) = yo cannot exhibit periodic solutions. See, for example, Murray (1989).
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Definition 4 Let o and p*, with o € (3,), be the solution of the equations

sino ~ocoso  20p1,C080

sing = —coso ocoso + p°sing - = - 17
(m., P ) o —sinocoso 4y Sin O tp (17)
For f": > p* + 1, define T* and T** by
z -
==L, =2, (18)
Hay Hay

where %, and T, > I, are the two positive solutions of the equations

- A
F=—0r, 2 =:i:(ln( ")-—E—lz:i'). (19)
tano sino Haye€ Hav
Theorem 5 Let N be the unique positive steady state of equation (11). Then for positive
parameters )y, 1, and p4,, we have

(i) If 2 —'5"— < €' *!, then the unique positive equilibrium N of equation (11) is locally and
asymptotzcally stable independent of T.

() If ; 2o > e"+!, then there exists 0 < T* < T** such that as T increases from zero,
Ny looses stabzhty at T =T*. As T further increases from T*, stability is regained at
T =T

Proof: The linear stability of the equilibrium N of (11) is studied by linearising about
the steady state N,. That is, we write N,(t) = N, + n(t) where |n(¢)] < 1, substitute in
(11) and expand the nonlinear terms in a Taylor series about N; retaining only first order
terms in n(t). This gives the equation

é%(ttl = —Mn(t —T) — paon(t); (20)
MT = w,T (p— ”—(muT)) p=In ( ,:;’e) . (21)

Hence, linear stability or instability of N depends on whether or not n(t) as defined by (20)
grows unbounded as ¢t — 0. To determine this, we seek solutions of (20) of the form

n(t) = nge* (22)

where ng is a proportionality constant that can be determined from the initial conditions
and £ is an eignenvalue that measures the temporal growth (or decay) of the solution as time
evolves. Substitute the form (22) into (20) to obtain the dispersion relation

€T = —MTe T — p,,T. (23)

Notice that £ = 0 is not a solution of (23) and that (21) defines a parabola in the (4, T, MT)-
plane. If € is real and MT > 0, then (23) assures us that £ < 0 and that n(t) — 0 as t — oc.
That is, N} is linearly stable VT > 0. Also, if £ is real , MT < 0 and MTe™ T < py,T, then
€ < 0 and Ny, is linearly stable to small perturbations for all T. However, all we wish to
know is whether there are solutions of (23) with R(¢) > 0 which will thus imply instability
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with growing oscillations as ¢ increases. To examine this, set £ = u + ww in (23) and equate
real and imaginary parts to have the two equations

uT = —~MTe T cos(wT) — pswT, wT = MTe T sin(wT). (24)

Observe that |£]2 — oo as p — —oo. Therefore, there exists a real number pg which
bounds R(¢) from above. We also observe that if w = 0 and MT > 0, then £ is real and
(23) shows that ¢ < 0 for all T. We also observe that if w # 0 is a solution of (24), so
is —w. Hence, without loss of generality, we assume that w > 0 and determine conditions
on the parameter T that will guarantee the existence of solutions of (23)with R(£) > 0 in
anticipation of limit cycle solutions.

The limiting case where u = 0 gives

wT —wT

~ sin(wT)’ HaoT = tan(wT)’ (25)
We note that neither wT nor sin(wT) is zero at a root of (24). We easily verify, by examining
(24), that when MT > 0, wT € (n/2,7) since w > 0. In this case, (25) gives that part of
the solution of (23) for which ¢ is purely imaginary with p4,T > 0 in the (u4,T, MT)-plane.
Substituting (25) with 0 = wT and p = p* in (21) gives the first equation of (17). This
gives the condition for the curve (21) and that defined by (23) when £ is purely imaginary to
intersect at p* which is the critical value of p in the (u4, T, MT)-plane. These two curves must
be tangential at p = p* for the unique solution p*. Differentiating (21) and the parametric
equations of (25) with respect to u4,7" in order to impose the condition of tangency leads to
the second equation of (17) with ¢ = wT and p = p*.

It is now a trivial matter to see that if p, as given in (21) is such that p < p* (that is,
Av/pay = €P°F1) then the intersection of the curves described in the last paragraph is not
possible and Theorem 5(i) is proved. Also, if p > p* then the two curves will intersect at
points where p4, T = papyT* and pa,T = pa, T**. These points are given in (18) and (19) and
are obtained from (21) and (25), with 0 = wT, MT = ¢/sino and T = ps,T. As T passes
through T, stability is lost and as T passes through 7**, stability is regained. This proves
(ii) of the theorem.M

Corollary 6 Assume m > 0, A\, > pay, p1y = 0 in (11) with positive initial data. Then

stable for all T > 0.

(i) if M/pay < €2, then the unique positive equilibrium N, is locally and asymptotically

(11) if Ao/ pay > €2, then there exists T, > 0 with

1 _ 7= cos~ (/M)

such that the unique positive equilibrium is stable when T < T, and unstable when
T>T,.

(ii) For T > T, and \,/p4y > €%, N} is linearly unstable to small perturbations and the
instability is by growing oscillations with the period of oscillation approzimately given

by 27l'/v M? '—“211
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Proof: We take each item in turn

(i) Set g1, =0 in Theorem 5. M in (21) reduces to

MT = pus,T, p=ln( i )
Hav€

and (21) thus reduces to a straight line in the (4T, MT)-plane and the result then
follows from the prove of Theorem 5.

(ii) All we need is to verify that T, is as given. Now, consider the first of (24) and |¢|2 at
u = 0 to have the solution

p= =0, wcTc=1r—c0s“l(%), we =/ M? — . (26)

Clearly, M? > u2, since by hypothesis \,/pa, > €2. The result then follows.

(iii) The solution ¢ = u + iw with largest real part when T =T, is p = p. =0, w = w, =
VM2 — g, If we write T = T, + € for |¢] < 1, we expect 4 and w to also differ from
e and w, by some small quantities. Let these be u =0, w =w.+7n, 0< |0],|7] € 1,
where 6 and 7 are to be determined. Now substitute these into (24), expand the non-
linear terms in a Taylor Series about u., w, and T, retain only first order terms in the
small quantities to have the linear approximations

(1 + pa4yTe)0 — weTen = wle, wTel + (1 + papTe) = —papwee. (27)
Solving these simultaneously gives the first order approximations
0= wf ¢ = __wc[u'ttv(l + N4vTc) + wc2:TC] (28)
(1+ paTe)? + 2127 (1 + panTe)? + W2T2

where w, are T, are given in (26). Thus near the bifurcation point T = T, we have
the linear approximation

Ny(t) = N, + R {noexp(8 + i(w. + n)t)},
where 6 and 7 are given in (28). This shows that when € > 0, instability is by growing
oscillations with the initial period given by
2 N 2
=y 0 M,

Hence, for T < T, (T > T,) we will observe damped (growing) oscillations with the
initial period of oscillation given by (29). W

to O(1) for small e. (29)

The above analysis shows that there exists a realistic parameter regime for which oscilla-
tory solutions of equation (11) are possible; a situation which is not possible when there is no
delay in the model (that is T = 0). Hence, including delay in the model increases complexity
and allows for a wider range of possibilities. Our results also demonstrate that y;, plays a
significant role in the dynamics of the mosquito population. For example, we have shown
that when i, > 0, an instability window wherein T* < T' < T** exist so that for T' < T*
and/or T > T™** the unique positive equilibrium solution N; is locally and asymptotically
stable to small perturbations and unstable otherwise.
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4 The basic model in the presence of the disease

In this section, we examine and analyse the basic model derived in Section 2. It is
easier to analyse the model in terms of proportions of susceptible, incubating and infectious
individuals; so we make the change of variables:

we= v—-Eh w= :1:—5" =B b (30)
—Nh, —Nh, —Nh’ —Nv, y—Nv, _Nv)
so that
u+v+w=1=>v=1-u—-w, z+y+z=1l=>y=1-z—y. (31)

We also arbitrarily scale time ¢ with the quantity 1/us, by setting 7 = p4,t, and scale the
total populations with their respective positive disease free equilibrium states by setting
N, = N;N, N, = NN, where N} and N} are given by (12) and (16) respectively. Hence,
we introduce the following dimensionless parameters:

R B N
MHay /-“4th vy Hay
Aon — M1 ConGy N, por Ny Ty
o = 12T Hn L Ghlelly g=" 32
pan Ny Mau Ny P Pay Hay (32)
b= Mo P o
Hay Havy
The system (5) becomes:
d _
= Q-+ (B +yu)w ~ RN, N)uz
dw v(l—u)+ (yw — S(N))w
dr
g—f—_ = a(N;T)(1 - z) — brw (33)
dz _
o = c(1=z) - (a(N;T) +¢)z

where

aiT) = e“"’””‘”)‘@%ﬁ)ﬂ, Q) = A+ ¢

S(N)=v+v+8+Q(N).

N
: ‘N
We have also used (31) to eliminate v and y from the system and have written Q(NV),
R(N,N), S(N), and a(N;T) as such to emphasize the density dependence in the contact
and transition rates. For notational simplicity, we simply write @, R, S, and a to represent
these density dependent quantities. We note that our representation is meaningful as the
total populations are observables that can be measured in a given situation. The equations
for the total populations, which in fact determine the behaviour of Q(N), R(N,N), S(N)
and a(N;T), now take the form

R(N,N) =

dN dN g _ _
- =L -=N)(N+a)=9Nw, - = e -NTDIN(r —~T) - N(r).  (34)
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Now, the model in terms of proportions, (33), is defined in the subset £ x [0, 00} of Ri where
Q={v,w,z,2: 0< u,w,2,2<1,0<u+w<1,0<zr+2<1} (35)

and the original quantities can be recovered from the proportions through (30), (31) and
(32).

4.1 Existence of steady state solutions

In this subsection we present some results concerning the existence of equilibrium or
constant solutions for the model formulated above. To do this we shall make use of a
threshold parameter, which we shall denote by Ry,. We give the following modification to
Definition 2.

Definition 7 We shall call a solution of the problem formulated in terms of proportions
realistic if it lies in the compact interval [0,1].

Proposition 8 The model formulated in terms of proportions has at least one equilibrium
solution E : (u,w,z,2) = (u*,w*, z*, 2*) with u*, w*, z*, z* all nonnegative, whose existence
and properties are determined by the threshold parameter Ry where

_ Rvbe
ala+c)(Q+vNQ+ B +7)
Moreover when Ry > 1 and vy = 0, there is a unique non-trivial realistic equilibrium solution

E.—o that is expressible in terms of Ry. When Ry < 1, the only realistic equilibrium solution
is the solution Ey : (u,w,z,2) = (1,0, 1,0) which is called the disease free equilibrium .

Ry

(36)

Proof: Let (u*,w*,z*,2*) be a constant solution of the model (33). We easily express u*,
z* and z* in terms of w* in the form

v+ (yw* - S)w*

u(w*) = ” ,
a
.’L'*(w*) — m’ (37)
.rowy bew*
F(wT) = (a + c){a + bw*)

Substituting these in the first equation of (33) and equating to zero yields a fourth order
polynomial in w* of the form

w* (Asw* + Agw*® + A w* + Ay) = 0; (38)
where

As = 7%aB}B;B;Ry,

Ag vaB; (v — By B3Ry(B;(RByc + Bsv) + Rc)),

A, aB; B2 B3Ry(B\(v(B + v) + QS) + SRc) — vaB(vB3 + RBsc),
Ay = aveB ByBs(l — Ry),
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and

Bi=(a+0), B=2, p=9%8%7

¢R v
Clearly w* = 0 is a solution. Notice that Aj is positive while the sign of Ay coincides with
that of (1 — Ry) so that if Ry > 1, Ay < 0 in which case we have at least one sign change
in the sequence of coefficients {As, A2, A1, Ag}. Hence, by Descartes’ rule of signs, there
exists at least one positive real root for (38) aside from the root w* = O whenever Ry > 1.
When w* = 0, we get the disease free equilibrium point Ey = (1,0,1,0). When v = 0, (38)
reduces to a first order polynomial from which w* is easily calculated. In this case we have
the endemic equilibrium solution E,—¢ = (u*,w*,z*, z*) with 0 < u*, w*, z*,2* < 1 given by

wm o @Rl btaSRy L vbe(R —1)
" Rz "~ vb+aSRy’ ’ " Rp(bv +aS)’ “ " BiRy(bv +aS)’

E, -y is clearly unique when Ry > 1. When Ry < 1 the only realistic solution is the disease
free equilibrium solution. M

(39)

Remark: Observe that when v = 0, the quantity Ry — 1 appears only in the expressions for
the proportions of infectives. This is the reason why (39) is called an endemic equilibrium.
Also observe that the relation u*z* = 1/ Ry gives a measurable index which indicates that
we can discuss the prevalence of the disease in the population simply by measuring the
proportions of susceptible humans and mosquitoes in the population (at equilibrium). The
next result indicates that there exist a parameter regime such that the polynomial (38) does
indeed have a realistic solution aside from the disease free equilibrium® when 7 # 0.

Proposition 9 Let Ry > 1 and Q+v— > 0, then there exists at least one value w* € (0,1)
that solves (88). That is, when Ry > 1, the model formulated in terms of proportions has at
least one realistic equilibrium solution different from the disease free equilibrium, called the
endemic equilibrium.

Proof: Counsider the function g : R — R defined by
g(w*) = A3’UJ*3 + AQ’U)*Z + A]'w* -+ AQ

where the coefficients A4;,7 = 0,1,2, 3 are those of (38). We easily verify that ¢(0) = Ay and
see that g(0) < 0 when Ry > 1. Some algebraic manipulation then shows that

9(1) = (@ + B)(Bi(a + b)(Q + v — v) + Rbc)

It is now a trivial matter to see that when the condition @ + v —« > 0 holds, g(1) > 0. The
existence of the root w* € (0,1) then follows from the intermediate value theorem. B
There are two distinct ways of considering a disease as being brought under control
in a population of varying size. The stricter way is to demand that the total number of
infectives (ie, the reservoir of infection) here I, I, — 0 with increasing time, while a weaker
demand is that the proportions w, z, tend to zero with increasing time; cf. Busenberg and
van den Driessche (1990). Thus we shall seek conditions for the stability of the endemic

8Results earlier established; Ngwa and Shu (2000), can be used to show that when any of N, R, v, b or
¢ is zero, then the only realistic solution of (38) is the solution w* = 0.
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proportional state (u*,w*,z*,2*) with w* > 0 and 2* > 0 and for the stability of the
DFE (u*,w*,z*, 2*} = (1,0,1,0). We will see in Subsection 4.2 that the stability of these
equilibria depend critically on the parameter Ry, defined by (36). The parameter Ry is the
basic reproduction ratio. It is usually defined as the expected number of secondary cases
produced, in a completely susceptible population, by a typical infected individual during its
entire period of infectiousness, and mathematically as the dominant eigenvalue of a positive
linear operator; Diekmann et al. (1990).

In our formulation, some of our parameters are not constant, but rather depend on a
variety of factors such as the size of the total populations in the respective populations.
Hence the behaviour of the proportions depend strongly on the behaviour of the total vector
and human populations. These total populations are observable, and can be measured
in a given population, making our representation meaningful. Here Ry will increase with
increasing vector population.

4.2 Stability of the Equilibria

In this subsection we examine the local stability of the steady states derived above.

Theorem 10 If Ry < 1, then the disease free equilibrium, Ey, is locally and asymptotically
stable while the equilibrium E,—q is also locally and asymptotically stable when Ry > 1.

Proof: The local stability of the equilibrium solutions can be examined by linearising system
(33) about the equilibrium solution (u*, w*, z*, 2*). This gives the Jacobian matrix

~A B 0 —Ru*(w*)
—v -C 0 0
Te = 0 —bz*(w*) —-D 0 (40)
0 0 —C -B,

where

A = Q+ R (w*) —yw", B=p+yu"(w"),
B, = a+¢, D=a+bw*, C=5-2yw"
Observe hat the quatities A, B, C, D and B so defined are all positive since Q +v —v > 0

and 0 < w* < 1. The eigenvalues of Jg are the solutions of the fourth order polynomial
equation "

¢*+ail® +a2® + as( +ag = 0; (41)
where,
a, = A+C+D+31
as = D(A+C+ B)+ Bi(A+C)+ AC + By
as = D(Bv+C(A+ B,))+ B(Bv + AC)

as 2 DB\(Bv+ AC) — Rvbeu*(w*)z* (w").

Now, from a stability point of view, all we wish to know is whether there exist a value (,
that is a solution to (41) with Re(¢) > 0. If such a ( exist, then the equilibrium solution
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is locally unstable to small perturbations, otherwise it is locally and asymptotically stable.
Observe that a;, a; and a3 are all positive since the parameter groupings are positive.
However, a4 may or may not be positive. We easily establish using (36) and the expression
for a4 that in the case where w* = 0, that is where we have only the disease free equilibrium,
as = avcRB, By B3(1—Ry) and when w* € (0, 1) with v = 0, a4 = avcRB,; B; B3(Ry—1) where
vB; = Q + B. 1t is then a trivial matter to deduce from Descartes’ rule of signs that when
Ry < 1, the disease free equilibrium is locally and asymptotically stable and when Ry > 1
the endemic equilibrium is locally and asymptotically stable. The local and asymptotic
stability of the endemic equilibrium is concluded by applying the Ruth Hurwitz conditions
on the coefficients of the polynomial (41). The straightforward but tedious calculations are
omitted. W

Notice that the second equation of (34) is a scaled version of (11) and now contains only
the parameters d and T'. In this case, M in (21) becomes d — 1. The analysis of the equation
(11) then carries over and we observe that the oscillations in the mosquito population will
induce oscillations in the prevalence of the disease in the community. Equation (29) shows
that the initial period of oscillation in the system may be written in dimensionless terms as

27 /+/d(d — 2) and the critical bifurcation parameter is T, = 7 — cos™!(1/M)/+/d(d — 2).

5 Concluding remarks

The results presented above show that there are two possible realistic equilibrium points:
One where the disease has died out proportionally and the other, if Ry > 1, where there
is a unique endemic equilibrium. Ry is a unique threshold parameter which determines the
behaviour of the system. Assuming that the stability results are global, then assuming that
initially there is at least one infectious mosquito (or human), then if Ry < 1, we expect
the disease to die out proportionally, whereas if Ry > 1, then we expect the disease to
tend proportionally to the unique endemic equilibrium, thereby establishing itself in the
community.

In this paper we have developed an SEIS model for the dynamics and transmission of
malaria which can be used to study other vector/indirectly transmitted diseases. We started
off by briefly reviewing available literature on previous work in this area. Though mathemat-
ical models in malaria in particular and vector borne diseases in general are well established,
the unrealistic assumption of a constant population size or the pseudo-equilibrium hypoth-
esis is often made. Though our primary objective had begn to sjydy malaria transmission,
our model has applications to other infectious diseases of humans such as dengue fever, yel-
low fever and sleeping sickness. We have demonstrated that it is possible to use a single
equation to study the population dynamics of an organism whose dynamics are known to be
oscillatory, provided we introduce a delay in the model. Our study of the delay parameter
shows that such a delay can indeed induce oscillatory phenomena in the dynamics of the
mosquito population and that the death rate of the mosquitoes at earlier life stages plays a
significant role in the dynamics of the mosquito population.

We reformulated the differential equation model in terms of proportions of susceptible,
incubating and infectious individuals in both vector and human populations. We next ex-
amined the existence of equilibrium solutions to this model and gave conditions that are
sufficient for the existence of realistic equilibria. The results of our model fit into the pattern
of previously analysed models. There is a threshold parameter R, and the disease can persist
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if and only if Ry exceeds one. The disease free equilibrium always exists and is locally stable
if Ry < 1 and unstable if Ry > 1. We showed that the endemic equilibrium is locally and
asymptotically stable when it exists.

Due to the oscillatory nature of the dynamics, our model provides a plausible framework
for studying the control strategies for the containment of malaria. For example, continuous
application of control measures, (such as the use of insecticides or impregnated bed nets)
when the mosquito population is at its maximum amplitude may result to a substantial
decrease in this population and in extreme cases may lead to extinction. On the other
hand, instantaneous application of a control measure may not be effective because the ini-
tial application will normally lead to a depression in the prevalence of the infection in the
population and the number of cases will start to rise again, once the mosquito population
recovers, because of its oscillatory nature. We have thus demonstrated that it is important
to pay sufficient attention to the dynamics of the mosquito population, especially taking into
account the time lapse between egg laying adult mosquito eclosion. Given that the malaria
parasite has displayed its ability to build up resistance to anti-malarial drugs, and that there
is presently no vaccine for the disease, mosquito based control strategies remain one of the
few methods available, despite current debate about its long term effectiveness.

The steady state relation when v = 0, namely u*z* = 1/Ry is of much significance. It
indicates that in an endemic region, we could discuss malaria prevalence simply by measuring
the proportions of susceptible humans and mosquitoes in the population. We have not
presented analytic global stability results for the equilibria in the model. This and other
aspect of the model such as numerical simulations, the modification of the recovery rates to
include the use of anti malarial drugs are aspects under investigation.
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