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RESUME

Les modéles théoriques élaborés dans cet article ont permis d’évaluer précisément et simultanément, 20 paramétres
de YHamiltonien de spin électronique des défauts dans le phosphure d’indium dopé au fer (InP:Fe), irradié aux
électrons de 16 MeV, altaide d’un micro-ordinateur PC. Lalgotithme d’ajustement consiste a minimiser les ¢carts
quadratiques entre un spectre expérimental et son modéle théorigue, jusqu’a ce qu’un minimum de 10 soit
obtenu. Ce modéele théorique est un ensemble de fonctions multiparamétriques qui décrivent la symétrie locale
d'un centre paramagnétique. Cette nouvelle méthode d’analyse des données RPE, basée sur la symétrie locale dun
centre paramagnétique, permet didentifier des structures inconnues. Par ailleurs, elle pesmet de suivre le comportement
des défauts pendant les traitements thermiques post-implantation requis pour contrdler I'activation électrique des
atomes implantés dans un matériau substrat.

Mot clés: I P:F , RPE, défaut d’irradiation.

ABSTRACT
The theoretical models elaborated in this paper have enabled us to accurately and sumultaneously evaluate, 20
electronic spin Hamiltonian parameters of defects in 16 MeV electron-irradiated iron-doped indium phosphide
(InP:Fe), using a micro computer PC. The fitting algorithm consists in minimizing the quadratic differences
between an experimental spectrum and its theoretical model, until a minimum of 10 is obtained. This theoretical
model is a set of multiparametric functions, which describe the local symmetry of a paramagnetic center. This new
ESR data analysis method, based on the local symmetry of a paramagnetic center, allows one to identify the
unknown features. Furthermore, it allows one to monitor the behavior of the defects during the post-implanta-
tion thermal treatments required to control the electrical activation of the implanted atoms in a substrate material.
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Introduction

The use of semi-insulating matenals for electronic devices requires a detailed knowledge of their behavior dunng
usual processing techniques, such as the ion implantation reported by Favennec (1993), and its associated thermal
treatments. In fact, the thermal treatments for removing particle-induced defects and for achieving the electrical

activation of the implanted atoms are well monitored if these defects are identified.
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Fig. 1: Fitting diagram of ESR spectra to theoretical methods
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Among the magnetic resonance techniques, electron spin resonance (ESR) is the most common one for the
identitication of paramagnetic centers in bulk materials. However, in [[I-V semi-insulating materials, the ESR lines
are not resolved because of the large line-width due to interaction of the d-electrons with the nuclear spin of atoms.
Furthermore, Kamta ef al. (1998) have reported on electron irradiated iron-doped indium phosphide that the ESR
spectra of radiation defects overlapped for particular directions of the static magnetic field, (e.g. H // [001]).
Therefore, the identification of paramagnetic centers in such a material requires a very well elaborated analytical
method.

Usually, the spin Hamiltonian parameters of defects in the semi-insulating materials are determined by
several computer diagonalization and fittings, as reported by Nistor ef al. (1997). Unfortunately, this analytical
approach has failed in the case of several overlapped ESR lines.

In this paper, a new analytical method of ESR spectra is elaborated, for the paramagnetic centers of well-
known local symmetry. The corresponding theoretical models are the multiparametric functions that enable one to
separate several intertwining ESR lines. Therefore, the ESR parameters of several defects should accurately and
simultaneously be determined.

Approach and definitions
The quantitative analysis of complex ESR spectra is done using a minimization program, the so called
“MINUIT” (CERN PROGRAM LIBRARY OFFICE. CERN-CN DIVISION, CH-1211 Geneva 23, Switzerland).
This program in FORTRAN searches the minima of a given multi-parametric function and analyses its shape in the
vicinity of these minima.

Magpnetic field (kG)

Fig.2. Angular dependence of the ESR spectrum of 16 MeV electron-irradiated SI InP:Fe in the (1 | 0) crystal
plane. T=4.2 K, P=1mW, 9.28 GHz.
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The sub-programs have been written in accordance with the diagram sketched by Fig. 1, for the whole figures
in this paper. For the ESR lines close to a gaussian shape, the multi-parametric function is the first-derivative
gaussian, as given by J. E. Wertz and J. R. Bolton (1972)

2
YI =-2/n2x Ymaxliwilexp —17’12-[1{—’”——ff—(ngI (1
AH? AH?

Yoax is the peak amplitude.

AH is the half-width at half-height.

H, is the magnetic field at which the resonance condition is met.

H(0) is the magnetic field in a direction 6 with respect to the symmetry axis of defect.

Since the defect is in a cubic crystal (e.g., the semi-insulating InP:Fe), the directions [001], [010] and [100] are
all equivalent.

The 9 GHz ESR spectra were recorded in the dark, at 4.2 K, using a rectangular TE,,, cavity and a ﬁnger—type
helium immersion cryostat. Fig. 2 shows the angular dependence of the ESR spectrum for a sample rotating in the
(11 0) crystal plane. Whereas many bands are split by the rotation of the sample in the (11 0) crystal plane, this still
leaves several unresolved features. The spectrum attributed to the Fey, (3d°) ion in cubic symmetry, as first reported by
Stauss, ef al. (1977) is observed. Furthermore, the spectrum attributed to the Fey,-In;y, pair in trigonal symmetry, as
reported by Kennedy and Wilsey (1981) is observed too. _

These spectra taken at different angles in the (11 0) plane were fitted to the theoretical models elaborated in
this paper. The principle of the analysis was to allow for as many individual Gaussian lines as needed to remove all
structures from a smooth baseline. Each Gaussian was defined by a set of three independent parameters, corresponding
to its amplitude, width and position. The fitting procedure was carried out in an interactive way, by first fitting the
baseline to a polynomial function, and then, the strongest and the weakest lines to the Gaussian functions. The aim of
this procedure was to avoid artifacts. So, it should be possible to determine the experimental resonance positions, and
to plot them as a function of rotation about a crystalline axis. Therefore, one could monitor the angular variation of the
experimental resonance positions, for the magnetic field rotating in the (11 0) crystal plane. As a result, the local
symmetry of paramagnetic center could be shown, and the corresponding electronic spin Hamiltonian could be
expressed.

Solutions
Theoretical model for a paramagnetic center of cubic symmetry.
The Landé g factor is isotropic. The electronic spin Hamiltonian were given by Abragam et al. (1970).

He=gBH,S, + —Z—[Sg‘ +8, + 8 - % S(S+1)(387 +3S -1)] 2

The first term of the second member of eq.2 represents the Zeeman interaction and the second, the fine
structure term due to a crystalline field of cubic symmetry.

For an ion 3d’ (L. = 0 and S = 5/2) in a crystalline field of cubic symmetry, the 5S fine structure lines are not
isotropic. So, for a diagonalized Zeeman term, Bleaney ef al.(1953), Matarrese et al.(1956), Chihiro et al. (1960)
and De Wit et al. (1963) had shown that the crystalline potential (second term of eq.2) could be expressed in terms
of spherical harmomcs Yim:

VF_—— ZFm(O)Ym
@ 120 .=,

where 4 is the degree and m, the order of the spherical harmonic. 0 is the angle between the magnetic field
and the quaternary [001] axis. Fy(0) (-4 < m < 4) are the associated Legendre polynomials. Form eqgs. (2) and (3),

the (2S+1) Zeeman levels of the fundamental state 63, were calculated, and the results can be expressed as :
2

5 a
=*+—gBH+—0* o
EiS/Z 2gB 8 gBH 3
3 3a a’
H-—oaox o 4
Et:&/?_ 2gB 8 gBH 3 ()
2a a’
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Where oy, o1, o3 and o5 are the angular factors :

0o =15c0s*(8)~10cos(8)~1
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o= %(3600 cos®(0)— 4800 cos®(0) + 544 cos' (0) + 704 cos* (0) — 48)
os = —%g(— 2025co0s*(0) + 2700 cos® (0) — 342 cos* (0) — 372 cos’(0) + 87) (5)

as = %(— 1017 cos®(0) +13560s°(0) — 374 cos’ () ~ 52 cos*(0) + 135)

The magnetic dipolar transitions occur when :

hv= EM——EM,] (6)

where # is the Plank’s constant and v, the microwave frequency.

Therefore, the theoretical resonance positions for an ion 3d° (L = 0 and S = 5/2) in a crystalline field of cubic
symmetry is deduced from eqs. (4) and (6) :

HS/Z(@zzglﬂ)[( | 4 aza”)“l-\/( 14 a2a0)2—402( (lS‘(ZS)j|

H%/z(g) 2ef [( V+5aa0)+\/( V+—g5“)7 4a2(a3—a|)j|

Hy, (0) = 2gBO[V+M}
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Fig.3: Rotation pattern of the theoretical resonance positions 25 1 [0'01] | | [ 110] §
or a paramagnetic center of cubic symmetry. _— % = %

Angle (degree)

Fig.3 is an illustration of theoretical model Hy(0) for a paramagnetic center of cubic symmetry, with g =
2.002, a=224x10" ecm™, v =9.28 GHz, Bo =B / h = 1.3996x10° (s.kG)"".

The above parameters are typical for a neutral iron atom substituted at an In site in InP:Fe, (i.e., Fe,,,° in
electrical notation).

Theoretical model for a paramagnetic center of axial symmetry.

The Landé g factor is not isotropic. The electronic spin Hamiltonian were given by Abragam et al. (1970).

Ha = Ble/H,S, + gi(H,S, + HySy] + D[S, - S(S+1)/3] ®)

The first term of the second member of eq.8 represents the Zeeman interaction and the second, the fine
structure term due to a crystalline field of axial symmetry. The indexes z, x and y represent the quantum axes and
its perpendiculars, respectively. The coefficient D is the zero field splitting factor. g, and g, are the g factors
appropriate to the orientations H, and H, of the magnetic field when it is respectively parallel and perpendicular to
the symmetry axis of defect. For an unperturbed paramagnetic center, assuming that D is greater than Av , the
electronic spin Hamiltonian of eq. 8 is reduced to the Zeeman term. Therefore, the shape of the curves H;(0) is given
by:
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%
Hi(0) = wherei=1,2,3 )
O som
Centers of trigonal symmetry.
The g factor whlch reflects the mgonal symmetry is given by :
g (9) g// cos (54 6-0) + g, sm (54 6-0)
& X0)= & ’cos (54 610) + gl sin (z 54. 6+9) (10
g3 (9) g/, cos (54 6) cos (9) +g,°(1- cos ’(54.6) cos’ (8))
From egs. (9) and (10), the theoretical resonance positions are deduced.
4 n T T | B T T T

Magnetic filed (kG)
[\]

Fig.4: Rotation pattern of the theoretical resonance positions
for a paramagnetic center of trigonal symmetry. [ [001] [110]7]
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Fig. 4 is an illustration of theoretical model Hy(0) (with i = 1, 2, 3), for a paramagnetic center of trigonal
symmetry, with g, = 2.047, g, = 8.276. lts symmetry axis is a ternary axis [111], or its equivalents.

The above ESR parameters are typical for a pair involving the Fey, atom and a nearby interstitial atom in a
Tssite, at the center of a cation tetrahedron-denoted In;p,, for InP:Fe. This pair has been labeled Fey~In;;, by
Kennedy and Wilsey (1981).
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Fig.5: Rotation pattern of the theoretical resonance positions for 2.0
paramagnetic center of tetragonal symmetry. " [001] [110]7]
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For the following theoretical resonance positions, the ESR parameters have been chosen, considering the
results reported on 16 MeV electron-irradiated InP:Fe by Kamta et al. (1998).

Centers of tetragonal symmetry.

The g factor whu,h reﬂects the tetragonal symmetry is given by :

g (9) g// cos (9) + gmn ’(©)

2,(0) = g/ cos*(45)sin*() + g, [ 1-cos’(45) sin’(0)] (an
From egs. (9) and (11), the theoretical resonance positions are deduced.

Fig.5 is an illustration of theoretical model H; (9) (with i = 1, 2), for a paramagnetic center of tetragonal
symmetry, with g, = 2.25, g, = 3.52. Its symmetry axis is a quaternary axis [001], or its equivalents.
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Centers of second order perturbed trigonal symmetry.

In the case where the Zeeman term of eq.(8) is greater than the term due to crystalline field, the later term
being considered as a perturbation, the resonant field at which the allowed conditions occur were evaluated by
Abragam and Bleaney (1970) :

hv=gfH + 168, - 85, + &3 (12) where
(31, 8,) and &; are the second order perturbed terms due to an axial and a cubic crystalline field respectively. With a
good accuracy, the term g; can be neglected. Therefore, the terms §,, 3, are expressed by :

2

D 2 s 2
& = cos (a)sin“(a)
' gpH

2

D...
4gp
here, o is the angle between the magnetic field and the ternary axis [111]. From the egs. (12) and (13), the shape of
the curves Hi(a) ( wherei=1,2,3 ) is given by :

Hi(a) = v+\/v2—8D2 sinz((x)[8cos2((x)—sinz((x)” (14)

5= sin*(a) (13)

1
Zg.((x)Bo
The gi(a) factor is given by eq.10, where o is replaced by 54.6 - 0, 54.6 + 6 and 0 for the following values of
i:1,2and 3, respectively.
Fig.6 is an illustration of theoretical model Hy(0) (withi = [, 2, 3), for a Paramagnetic center of second order
perturbed trigonal symmetry, with g, = 2.564, g, = 4.827 and D = 403x10™ ecm™.
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Fig.6: Rotation pattern of the theoretical resonance positions for [001] [110]
a paramagnetic center of second order perturbed terigonal symmetry. 10 b vty
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Centers of second order perturbed tetragonal symmetry.

The shape of the curves Hy(a) ( where i = 1, 2 ) is given by eq.14. The gi(a) factor is given by eq.11, where
o, is replaced by 0.
Fig.7 is an illustration of theoretical model Hy(0) (with i = 1, 2), for a paramagnetic center of second order
perturbed tetragonal symmetry, with g, = 2.25, g, = 3.52 and D = 493x 10* em™.
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Fig.7: Rotation pattern of the theoretical resonance positions for a 001 110
paramagnetic center of second order perturbed tetragonal symmetry. I [ . ] L [ ) ] Ly
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Theoretical model for a paramagnetic center of orthorhombic symmetry.

The Landé g factor is not isotropic. Gehlhoff ef al. (1990) have suggested that the spin Hamiltonian could be
expressed by :

Ho = BlgH.S, + g.H S, + g,H,S)] + D[S,” - S(S+H1)Y3] + E (S, - 8,) (15)

If 2(D° + 3E%)" is very greater than 4v, then, the allowed transitions occur between the [+1/2> and |-1/2>
states. The shape of the curves H(0) ( where i = 1, 2, 3, 4 ) is given by eq.9. The effective g’ factor which reflects
the orthorhombic symmetry is given by :

g1%(0) = g, "cos’(0-0) + g, ’sin’(t-6)

£2°(0) = g’ cos’ (o) + g, 'sin’(a+0) (16)
g’32(9) = g’zzcosz(45)sin2(a—6) +g.%1- cosz(45)sin2((x-6))
£’ 4(8) = g, *cos*(45)sin*(a+0) + g’ *(1- cos’(45)sin’(a+0)) where o is a

slight deviation of the symmetry axis of defect with respect to crystalline axes. This distortion of the local symmetry
of the paramagnetic centers is attributable to the particle irradiation.
Gehlhoff ef al. (1990) have expressed the g’ factor in terms the Landé g factor, for S = 3/2 :

1434
g, =8,(+ 1+ ——=)
V1+3A7
g'=g(i1+——2 ) with A=E/D )

1-3A

g, =g,(lt—)
14307

D and E are the fine structure parameters of axial and orthorhombic symmetries, respectively.
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Fig.8 is an illustration of theoretical model Hy(0) (with i = 1, 2,3,4), for a paramagnetic center of

orthorhombic symmetry, with g’,=2.338, g’,=1.425, g’,=1.475, E/D=0.29.

Discussion

The ESR parameters are determined in minimizing the quadratic differences between an experimental
spectrum and its theoretical spectrum defined by a multi-parametric H(0) function. The starting parameters of H(6)
are given before running the program “MINUIT”, For a particular direction of magnetic field, where most of the
ESR lines are not overlapped, the constant parameters such as the Landé g factor, the fine and hyperfine structure
constants, (i.e. : D(em™) and A(cm™) respectively), are fitted to experimental data. Once these ESR constant
parameters are determined with a good accuracy, they are constrained during the following fits. Then, the free
parameters such as : the half-width at half-height AH(G) and the peak amplitude Y s, are fitted, according to the
diagram of Fig.1. These parameters enable one to identify a paramagnetic center. For example, the five lines fine
structure attributed to Fey, (3d5) in cubic symmetry have to be in aratio of : 8, 5, 9, 5, 8.

Fig.9 is an illustration of the fitting procedure elaborated in this work. The upper plot (a) shows the
experimental data after cavity baseline subtraction. Curve (b) is the theoretical models of electron spin resonance
spectra of cubic and trigonal symmetries respectively. Curve (c) is the error trace, which is almost flat at the
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vicinity of 3.2 kG. On the other hand, the error trace is not flat at low magnetic field. In fact, the ESR lines at low
magnetic field are narrow, and the baseline needs to be fitted to a polynomial of high degree.

Fig.9: [llustration of the fitting of ESR spectra to the theoretical models.
(a) : experimental data; (b) : sum of theoretical spectra of cubic and trigonal
symmetries respectively; (c) : error trace. L

Systematic use of the theoretical models of ESR spectra elaborated in this work results in rotation patterns as
those shown in Fig.10. The rotation patterns of the experimental resonance positions are very closed to the rotation
patterns of theoretical resonance positions.

5 [ T T L T N T T T T T T T

Magnetic field (kG)

[ [001] [111] [110]
0 L i | I S il 1 1 | 1 1 i |
0 20 40 60 80 100 120
Angle (degree)

Fig.10: Rotation pattern of the individual Gaussians as derived from the fit of the ESR spectra of 16 MeV electron-
irradiated InP:Fe and corresponding modelings (solid lines).

Indeed, the resulting ESR parameters are in good agreement with those reported by Stauss (1977) and
Kennedy (1978) on the paramagnetic centers of cubic and trigonal symmetries respectively. The new ESR data
analysis method, based on the local symmetry of a paramagnetic center, allows one to identify the unknown
features, whether they are resolved or not.
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