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ABSTRACT

In this paper we describe completely the closed ideals of the Banach
algebra of functions f analytic in the unit disc such that their Taylor

coefficients [ satisfy the condition

A+ m) =1l ]P<+e0
n €IN

for 2n+1 > o> 2n -1, (n €IN* fixed), when the skeletons of the closed ideals under
consideration are at most countable.
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RESUME

Dans cet article nous décrivons complétement les idéaux fermés de
I’algebre de Banach D, de fonctions f analytiques dans le disque

A

unitaire dont les coefficients de Taylor f  satisfient la condition

Ya+m 7@ k=17P<+o0
nelN '

pour 2nt1>a& >2n-1, (n €IN* est fixe), quand les squelettes des idéaux considerés sont au
plus denombrables. '

Mots clés: Idéaux fermés, Algebres de Banach, K-algebre, Squelette, Facteurs intérieurs,
Idéaux étandards.
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Introduction:

For 0elR, let Dy be the set of all complex functions f
analytic in the unit disc A of the complex plane such

that their Taylor coefficients f satisfy the condition

YA+l @l E=l A%< 4.
nelN

It is known that under pointwise operations each Dy is

an algebra if and only if oo > 1 [1]. In 1972

B.LKorenblum gave a complete description of the
closed ideals of the Banach algebra D, [2] and later
that same year, he, very sparsely, sketched the
description of the closed ideals of the Banach algebras
D, , for ne IN* [3].

In this paper we describe completely the closed ideals
of Dy for 2n + 1 > o > 2n — 1, (ne IN* fixed), when
the skeletons of the ideals under consideration are at

most countable.
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Following V.M. Faivyshevskii, we shall say tl.lat the
Banach algebra R with pointwise operations, of
functions continuous on the unit circle, is called a
K-algebra if the trigonometric polynomials are dense
in R and (5“’ (0A) c R.
Let R, be the analytic subalgebra of R consisting of
those functions ¢ in R which can be extended to
functions in the disc algebra Ao. Such a Banach
algebra is called a K,-algebra. The K,-algebra R, will
be said to be a KD-algebra of order n-1 (for some
ne IN*) 1f

a) R, c Ao™": ={ feHA)| f*" ¢ Ao} and

b) for any fe R, such that

£ 9 (e = 0 (for some fixed e ' in JA),

(G=0,1,2,...., n-1), there is a sequence (gy) in R,

such that g, (¢ ) =0 for all ke N

and| | gkf-fl | o — > 0ask ———> oo,
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For any f in Ao, Z(f) and E (f) will denote its zero set
on A =AU 0dA and A respectively.
If 1 is a proper closed ideal of R,, let Z; = n Z(f) and
fe I
EI =N E(f)
fel
E, is called the skeleton of I.
Let I be a closed ideal in the K, -algebra R, < A,
and G; be the greatest common divisor of the inner
factors of the functions in I. The “frame of order n-1”

of the closed ideal I — R, is the collection R,; (I),

consisting of

1) Gy

2) EI =ZI M aA

and B, (I) = n Z(Y) noA, (k=1,2,..., n-1).
i<k
fel

It is known [4,3,5,6,7] that

a) SuppscE, (Dc... B DHcED,
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where o is the measure which determines the singular
factor of the inner funption G

b) E () \E ,..; () is an isolated set.

Conversely, given the collection

Ryi={G; Ep Ef,...., Eni},

where G is an inner function and Ey, E;,...... E .. are
closed subsets of dA satisfying a) and b) above, the‘
set {fe R, I G divides the inner factor of f and
E, CZ (f ™) ~ A} forms a closed ideal I (R,;) in R,.
Ideals of this type are said to be standard [6].
The statement of our maiﬁ result, which we have
called the Ideal Structure Theorem forA Dy, is as
follows:
Theorem:
Let I be a nonzero closed i1deal in D, for 2n+1>0>2n-1,
vwhere n €IN* and o are fixed. Then if E; is at most

countable, I is a standard ideal.
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We prove this Do Ideal Structure Theorem with the
aid of the following result, which is due to V.M.
Faivyshevskii [6, Theorem 5]:

Let the K,-algebra R, be a KD —algebra of order n-1
for s‘or'ne fixed ne I-N*. Then every closed ideal Ic R,
whose skeleton is at most countable, is standard.

To prove our theofem, it will thus suffice to show that
for 2n+1>a$2n—1, D, is a KD-algebra of order n-1.

To do this, let R = L%, where L%, is the set of all
complex functions Y oﬁ dA whose Fourier coefficients

¥ satisfy the condition:

> A+l w2 =]yl 2 <o,
ke Z

for 1< o< o0. One uses the fact that if 1< o< +oo, then
a) Dg 1s a Banach algebra,
b) L,> < C (94),

. . . . 2
c) trigonometric polynomials are dense in L, and
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d) C”(0A) c Ly’
to see that if 2n + 1 > o >2n-1, (neIN*), R = Lm2 is
a K-algebra and R, = D,. Now, for a > 2n-1,
D, < A, since f € Dy, if and only if
£V e Dy s )y © Ao
| It is thus left to pro?e
Lemma 1: Suppose that neIN* and aeR are fixed
and 2n+1>0>2n-1. For each f € Dy such that

f9 @) =0forj=0,1, ....., n-1,
(e " €A i‘s fixed), there is a sequence (gy) in D,, such
that g (%) = 0.l (ke IN*), and g,f converges to f in
D,.
We remark that B.I. Korenblum and V.S. Korolevitch

obtained this lemma for the particular case when

o =2n [8].
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The proof of this lemma is a little lengthy and so we
shall only sketch it here.
First of all, observe that one can take 6, to be O.
Assuming then that 6, = 0, we consider hy and g,
ke IN* ), glven on A by
| he (z) = (z-1-K)"
and
gk (2) = (z-Dhy (2).

Furthermore, let Gy = g f-f = k™ f hy, (ke IN¥).
Since gi (1) = 0 for all ke IN* and

| gk (2) '—"k 1+ = 1+ (4 + kD)™ 2"

- me IN*

(ke IN*), we see that gye Dp for each real number 3.
Hence we need show only that
Gl Iy —— 0 ask —— . (1
To establish (1), we consider two cases .

Case 1: n=1 and so 3>0>1. We need two propositions

Proposition 1: If ge Dg for B <1, then
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B-1

le@l=ow@-lz) * ) |z| —— 1.

Proposition 2: If fe D, for 3>0>1 and f (1) =0, then

-1

t@| =odz1l ), lztl—0. @

Proposition 1 is an improvement of a result of Leon
Brown and A.L. Shields [9]. Proposition 2 follows
from Proposition 1 and the Hardy-Littlewood
Theorem that if f is analytic in A, then

£/ @) | =0 ((1-12]) ™), (0<Y <1), if and only if f
satisfies a “little 0 Lipschitz condition (of order Y)
(page 429 of [10]).
Apart from the two propositions above, we also need
the following lemma.
Lemmé 2: If B is a real number and he Dy, there exist

two positive numbers m () and M () such that

m@l Il 12p -Ih@l% <l vl 12 p
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M@ (| In] Pp -lh@ %) 3)

The proof of this lemma is routine. |
By virtue of (3), to establish (1), it is enough to show
that

eIl p  — 0ask —> = (@
By a result of G.D. Taylor [1],

| |G| | Dy is equivalent to

(57 b 16" e ) |7 (1-r%) >* rdrdB}

Since

16" () |2 <cK? { by @) |° | £ @) | %+ [ @ |*]£7 (2]

+ he @ [P1£7 @)%}, (*)
where C is an absolute constant, to prove (4), it suffies

to show that

27

K2 { £ E Ihe (e )| 2] £ (re ) |2 (1) ** rdrde} — 0, (5)
o ,,

k2 { J; jj Ihy (re ) 4] £ (re ®) | 2(1r%) ** rdrdo}—— 0, (6)

and
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27
k2 { L £ e e @) 18 [ (e ®) 12 (1% ¥ rdrde} — 0, (7)
as k —— oo, Statement (5) holds by the Lebesgue

Dominated Convergence Theorem.

With the aid of Proposition 2, Lemma 2 and the fact

that if z-1=se ® for n<¢ <3m, then |z-1-k"[*is
2 2 |

comparable to s* + k™ one can show that each of (6)
and (7) holds as k — oo,

The proof of Lemma 1 is thus sketched forn = 1.

Case 2: n €IN* is arbitrary and so 2n+1>a>2n-1.

We reason here as in Case 1, replacing Proposition 1,
Proposition 2, Lemma 2 and (*) by Proposition 3,

Proposition 4, Lemma 3 and (**), respectively.

Proposition 3: If f € D, and a<2n+1, then

’f(")(z)‘z o((1—|z|)ﬁ%:l }|z| — 1.
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This is clear by Proposition 1 since f €Dyop -

Proposition 4: If f € D, for 2n+1>0>2n-1 and

f®1)=0forj=0,1, ..., n-1,

then for ¢=2,3,....n+1, wehave

ari-2n-3

lﬂ”“’”(z)’zo(lé—l[ : )lz~l[—>0. +)

Proof: By Proposition 3 and the Hardy —Littlewood

theorem cited on page 3, (+) is ‘Valid for ¢ =2. Hence,

for 1 =34,..., n+1, we have
flot1-£) (z) = I fo-f) (w) dw and by finite induction

we get the result.

Lemma 3: If 2n+1>0>2n-1, then as k—» oo,

| 64| l,, =0

if and only if

A — 0.

Drx~2n~1
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We now state (**).

If 2n+1>0>2n-1, then

(n+l-0)

I Gk(n+1)(z)| 2« k-zZ,nH d(lhk (Z)lz“zlf

¢=0

@)%+,
where eachdy, (¢ =0, 1 ...., n+1), is an absolute

constant.

Proof: Since & -2n -2 < 0, by Lemma 2 of [7],
, , Gk (M])’ l 2Da~2n-2 =z K,

where

<[]

and so we need show only that the integral on the

: n+1-&) .
G e (1 =) rdrde,

right tends to 0 as k —» + co. By (*%), it suffices to
show that lim I, (¢ )=0 (£=0,1,...,n+1), (++) 

Kk—» +
where k* I, (£ ) equals the integral

f’[ E(lrem ~-1-k"

Since ™Y €Dy op0 (Ix (0)) 1s a null sequence by the

2(1= )9 1 drd .

f+l)~—ZIf(n+l—€)(rei0)

Lebesgue Dominated Convergence Theorem (since
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| hkl <k and b (z) )k —> 0inA). By virtue of
the fact that

| £ (0e®) = o ((1-1) @22y p 1

I, (1) ——> 0ask — +oo. To prove (++) for

¢ =23,..,n+l, we use Lemma 4.

The proof of Lemma 1 is thus sketched.

Remark: If gi is defined as in the proof of lemma 1,
then there exists a function f in D5, such that

fP1)y=0,(G=0,1,...., n-1),

but gif does not tend to f in Dy,.g.
We have two corollaries to our main result.

Corollary 1: If 2n+1>a>2n-1, I is a nonzero closed
ideal in D,, andvits skeleton Ej is At most countable,
then I is a principal ideal.
‘One way to see this is to use three results of B.L
Korenblum, V.M. Faivyshevskii and

" Leon Brown — A.L. Shields [11,6.9].
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Corollary 2: If 1< a<w and feD, is an outer function

with E(f) at most countable, then f is cyclic in D;.
This is a generalization of a result of

Leon Brown — A.L. Shields [9, Theorem 3].

Acknowledgement: I am grateful to Professor Leon

Brown who introduced me to Ideal Structures of
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