Morphological and microchemical signatures of alluvial gold and electrum grains from the Tcholliré gold district, northern Cameroon: Insights to potential epithermal gold system in the area

1,2*Ralain Bryan Ngatcha, 3Kevin Ijunghi Ateh, 4,5Akumbom Vishiti, 1Ephesians Nchinda Ntantan, 1Ngum Nelson Nsake, 1Olivier Anoh Njoh, 6Cheo Emmanuel Suh

1Department of Geology, Mining and Environmental Science, Faculty of Science, The University of Bamenda, P.O. Box 39 Bambili, North West Region, Cameroon
2Department of Geology, Pan African University Life and Earth Sciences Institute (PAULESI), University of Ibadan, Ibadan, Nigeria
3Department of Mining and Mineral Engineering, National Higher Polytechnic Institute (NAHPI), The University of Bamenda, P.O. Box 39, Bambili, North West Region, Cameroon.
4Department of Civil Engineering, The University Institute of Technology (IUT), University of Douala, P.O. Box 8698 Douala, Littoral Region, Cameroon.
5Laboratory of Geosciences, Natural Resources and Environment, Department of Earth Sciences, Faculty of Science, University of Douala, P.O. Box 24157, Douala, Littoral Region, Cameroon.
6Economic Geology Unit, Department of Geology, University of Buea, P.O. Box 63, Buea, South West Region, Cameroon

*Corresponding author: bryangatcha@gmail.com

Abstract
The Tcholliré district, located in the Adamawa-Yadé Domain (AYD) of the Neoproterozoic Fold Belt of Cameroon (NFBC), hosts some alluvial gold mining sites. The morphological and chemical signatures of the alluvial gold grains from these mining sites are yet to be described. Thus, we describe for the first time the morphology, microtexture, and chemical features of gold and electrum grains and other heavy minerals, notably cassiterite, recovered from stream sediments from the Tcholliré district drainage system, discuss distance-to-source, and trace the possible source(s) of gold mineralization and type. A total of 33 gold-electrum grains recovered from the gravel layer in two pits dug along stream channels were analysed by scanning electron microscopy (SEM)-energy dispersive spectroscopy (EDS) and electron probe microanalyses (EMPA). The gold grains display angular, irregular to sub-rounded morphologies, indicating a close distance hypogene source. Gold in the concentrate is associated with phases such as zircon, cassiterite, and sulfides (e.g., anglesite and tetrahedrite). Inclusions such as quartz, clay minerals, and ilmenite occur in the gold grains and point to a granitoid-related host. Gold grains are mainly alloyed with Ag and Cu with contents as high as 67.17 wt.% Ag (electrum) and 23.54 wt.% Cu. These are the highest combined Ag and Cu values reported in gold grains in Cameroon thus far. The variation in the concentration of Au and Ag from core to rim is slightly heterogeneous. Such elevated Ag contents in the rim section reflects recently liberated grains from the source. The compositional range of Ag and Cu coupled with the presence of electrum and cassiterite are consistent with a single high-sulfidation and high-temperature magmatic-hydrothermal origin possibly linked to epithermal activity of the Cameroon Volcanic Line.

Keywords: Alluvial gold, morphology, microtexture, microchemical signature, Tcholliré district, Cameroon
1.0 Introduction
Over time, discovering new mineral resources has been more difficult. This has prompted the development of indicator mineral techniques in recent decades meant to identify a broad range of mineral deposits in regions with thick overburden (Averill, 2011). Gold, because of its clear link to the source mineralization, chemical stability such that the particle endures in the surficial environment, and physical resilience, is generally regarded as a proxy for local or regional hypogene mineralization (McClenaghan and Cabri, 2011), both for the exploration of gold itself and for some other metalliferous mineralization where gold is an accessory (Chapman et al., 2021). The successful establishment of placer-lode relationships and deposit style characteristics has been demonstrated by the combination of morphological and microchemical features of gold grains (Chapman and Mortensen, 2006; Chapman et al., 2018; Fuanya et al., 2019; Nguimatsia Dongmo et al., 2019; Ateh et al., 2021; Ketchaya et al., 2022; Ngouabe et al., 2022).

Estimating the transport distance that gold grains travel from their source has been shown to be possible with the use of the morphologies and microtextures of the grains such as roundness (Townley et al., 2003; Barrios et al., 2015; Fuanya et al., 2019; Ateh et al., 2021). The chemical features of gold particles worldwide have shed more light on the nature of hypogene sources (Chapman et al., 2010; Omang et al., 2015; Leal et al., 2021). Au grains are a natural alloy of Au, Ag, and Cu in varying amounts depending on the conditions of ore formation. Different varieties of gold have unique alloy compositions and, consequently, unique microchemical signatures.

Résumé
Le district de Tcholliré, situé dans le Domaine de l’Adamawa-Yadé (AYD) de la Ceinture Plissée Néoprotérozoïque du Cameroun (NFBC), abrite quelques sites d’exploitation aurifère alluviale. Les signatures morphologiques et chimiques des grains d’or alluviaux de ces sites miniers restent à décrire. Ainsi, nous décrivons pour la première fois la morphologie, la microtexture et les caractéristiques chimiques des grains d’or et d’électrum et d’autres minéraux lourds, notamment la cassitérite, récupérés à partir de sédiments fluviaux du système de drainage du district de Tcholliré, discutons de la distance jusqu’à la source et retraçons la source(s) possible(s) de minéralisation et type d’or. Un total de 33 grains d’or-électrum récupérés de la couche de gravier dans deux fosses creusées le long des canaux de cours d’eau ont été analysés par microscopie électronique à balayage (MEB), spectroscopie à dispersion d’énergie (EDS) et microanalyses par sonde électronique (EMPA). Les grains d’or présentent des morphologies angulaires, irrégulières à sous-arrondies, indiquant une source hypogène à proximité. L’or dans le concentré est associé à des phases telles que le zircon, la cassitérite et les sulfures (par exemple l’anglésite et le tétraédrite). Des inclusions telles que du quartz, des minéraux argileux et de l’ilménite sont présentes dans les grains d’or et indiquent un hôte lié aux granitoïdes. Les grains d’or sont principalement alliés à l’Ag et au Cu avec des teneurs allant jusqu’à 67,17 en poids. % Ag (électrum) et 23,54 en poids. %Cu. Il s’agit des valeurs combinées Ag et Cu les plus élevées signalées jusqu’à présent dans les grains d’or au Cameroun. La variation de la concentration en Au et Ag du noyau au bord est légèrement hétérogène. De telles teneurs élevées en Ag dans la section du bord reflètent les grains récemment libérés de la source. La gamme de composition d’Ag et de Cu couplée à la présence d’électrum et de cassitérite sont cohérentes avec une seule origine magmatique-hydrothermale à haute sulfuration et à haute température, éventuellement liée à l’activité épithermale de la ligne volcanique du Cameroun.

Mots clés : Or alluvial, morphologie, microtexture, signature microchimique, district de Tcholliré, Cameroun
These signatures have been compiled for orogenic gold systems (Chapman et al., 2010), oxidizing chloride hydrothermal systems (Chapman et al., 2009), skarn- and intrusion-related gold systems (Potter and Styles, 2003), and epithermal vein systems (Chapman and Mortensen, 2006).

Along these lines, some studies have been conducted in Cameroon to identify primary gold mineralization sources in vast drainage systems downstream of possible catchment regions. These studies used analyses, such as scanning electron microscopy (SEM)-energy dispersive spectroscopy (EDS) and electron probe microanalyses (EMPA), LA-ICP-MS to characterize the gold grains. The majority of these studies were carried out in the gold mining districts in the eastern part of Cameroon, with the results suggesting an orogenic style of mineralization in which gold occurs in quartz veins as free gold and associated with felsic intrusions (Oman et al., 2015; Vishiti et al., 2015; Ateh et al., 2021). Many of the prospective locations that were identified are now important mining sites. In the southern part of the country, the primary mineralization is still elusive, although gold chemistry and stream sediment geochemistry indicate an interaction of the mineralization with basic rocks, notably amphibolite and metadolerite (Oman et al., 2015; Fuanya et al., 2019; Nguimatsia Dongmo et al., 2019). The northern part of the country is equally known for its gold occurrences and important artisanal mining sites in areas like Meiganga, Gamba, Rey Bouba, and Dourou Tchaga (Ngouabe et al., 2022; Ngounouono et al., 2022, Fig. 1b and c). Despite these gold occurrences relatively few studies have been done to uncover its primary mineralization style, as well as, gold source(s) actively mined by local artisans. Recent research in the Meiganga area by Ngouabe et al. (2022) suggests a hydrothermal gold-quartz-sulfide system driven by ultramafic intrusion. In the Gamba district (about 170 km NW of Meiganga), the microchemical fingerprints of placer gold grains also indicate a hydrothermal-orogenic source (Ketchaya et al., 2022, 2024). Mineral inclusions in the gold grains, such as phosphates (apatites), oxides (such as magnetite, ilmenite, and hematite), and silicates (such as zircon, titanite, quartz, muscovites, biotite, actinolite, titanite, albite, and almandine), emphasize the magmatic and metamorphic conditions of formation for the hypogene source. Ngounouono et al. (2022), describe primary gold mineralization in the Dourou Tchaga area (about 50 km north of Gamba) to occur in sinistral steeply dipping, ENE–WSW-trending laminated quartz-sulfide veins hosted by high-grade metamorphic paragneiss and orthogneiss.

The primary gold source(s) as well as mineralization type in the Tcholliré gold district remain poorly documented in this district. Additionally, it is unknown whether all the gold within the alluvial deposit is placer or authigenic. Information from alluvial gold grains morphology and Au-Ag-Cu alloy composition can be very significant, as it can reveal if the grains are close to the source, whether they are sourced from a single style of mineralization or whether several sources contributed within the same locality. Furthermore, the identification of economically viable sites along the drainage system is a priority for unexplored areas.

The present research is the first approach to apply the study of the morphology, microtexture and chemical features of gold grains and other heavy minerals recovered from stream sediments from the Tcholliré district drainage system, to test transport/morphological models and to trace the possible source(s) of gold mineralization and type. Specifically, this research offers a first attempt to characterize the composition of gold derived from high-sulphidation granite-associated mineralization in such environment.
2. Regional and local geology

The Tcholliré district belongs to the Adamawa-Yadé Domain (AYD) of the Neoproterozoic Fold Belt of Cameroon (NFBC), north of the Congo Craton (Fig. 1a). The NFBC also known as the Pan-African North Equatorial Fold Belt, is the southernmost branch of the Pan-African-Braziliano belt (Toteu et al., 2004), regarded to have formed during the collision between the Congo-São Francisco Craton, West African Craton and the Sahara metacraton (Toteu et al., 2004). In Cameroon, the Neoproterozoic Fold Belt extends over almost the entire territory and is bordered to the south by the Ntem complex (northern part of the Congo craton). The NFBC is subdivided into three lithological domains, bound by Pan-African transcurrent shear zones (Fig. 1b). These domains, from south to north (Toteu et al., 2004), are: i) the Southern Domain; ii) the Central Domain; and iii) the Northern Domain that continues into the Mayo-Kebbi Domain of SW Chad (Penaye et al., 2006).

The Northern Domain currently constitutes the only clearly identified Neoproterozoic magmatic arc north of the Congo Craton (Penaye et al., 2006; Isseini et al., 2012; Bouyo Houketchang et al., 2016). This domain consists of: (1) Neoproterozoic low- to high-grade schists and gneisses of volcanic and volcano-sedimentary origin, exemplified by the Poli-Leré Group (Toteu et al., 2022). The metavolcanics consist of rhyolites and tholeiitic basalts that were emplaced in an extensional crustal environment beginning at about 830 Ma. Based on the presence of trondhjemite pebbles in volcaniclastic rocks dated at 734 ± 14 Ma (Toteu et al., 2006), 700 ± 10 Ma...
metabasalt associated with the Zalbi Group, and detrital zircons from the Poli basin dated between 920 and 630 Ma (Toteu et al., 2006; Bouyo Houeketchang et al., 2015), it can be hypothesized that there was long-lived plutonic and volcanic activity in the area. Also, Pan-African pre-, syn-, to late-tectonic granitoids (diorites, granodiorites, and granites) of calc-alkaline composition were emplaced between 660 and 600 Ma (Bouyo Houeketchang et al., 2016; Toteu et al., 2022 and references therein). A multitude of remnant basins that rest unconformably on the deformed Poli Group (the most significant are the Mangbaï and Balché basins, located NE and SW of Garoua, respectively) likely represents molasses deposited about 580 Ma ago. The post-tectonic magmatism consisting of mafic and felsic dykes cross-cut by subcircular granites and syenites; the Godé and Zalbi granites, respectively, are the best-represented examples of late magmatism in the Poli and Leré regions (Isseini et al., 2012).

The tectono-metamorphic evolution of this domain is characterized by polyphase deformations and low- to high-grade metamorphism. The high-grade granulite facies metamorphism is dated at c. 600 Ma (Bouyo Houeketchang et al., 2009). D₁ and D₂ deformations show ductile behavior under amphibolite to granulite facies, followed by retrogression into greenschist facies. According to Ngounouno et al. (2022), D₃ and D₄ are characterized by ductile-brittle and late-brittle structures. D₃ is characterized by NE-SW to N-S trending sinistral shear zones, locally associated with south-vergent thrusts. D₄ is associated with WNW-ESE to NE-SW trending dextral shear zones.

Primary gold mineralization in this domain has so far been described only in the Dourou Tchaga area (Ngounouno et al., 2022) and the Pala region located in the northeastern prolongation of the Northern domain into South-West Chad (Tchameni et al., 2013). However, the recent work of Anaba Fotze et al. (2023) attempts to delineate potential structural features associated with gold occurrence within the Tcholliré district using combine aeromagnetic and field data. In this domain gold occurs both as free visible grains and disseminations in quartz-sulfide veins and wall rock alteration zones. In the Dourou Tchaga area, the quartz-sulfide (e.g., galena, sphalerite, pyrite and chalcopyrite) veins are hosted by high-grade metamorphic paragneiss and orthogneiss associated with the D₃ sinistral shear zone. Proximal sericite-ankerite-calcite-epidote and distal epidote-amphibole-quartz assemblages are characteristic alteration signatures related to the auriferous veins. The gold-bearing veins are massive or laminated, steeply dipping, and trend ENE-WSW. Data on fluid inclusions and alteration assemblages indicate that a rise in f_O^2 brought on by changes in fluid pressure in the shear zone is what led to the precipitation of gold in quartz veins. Gold mineralization in the Pala region is classified as mesozonal orogenic gold (Pan-African) and is hosted by the Tcholliré-Banyo shear zone in mid-crustal schist and granite wall rocks (Tchameni et al., 2013). Primary gold mineralization here is associated to chalcopyrite-pyrite-bearing quartz veins, brecciated and silicified zones and shear zones distributed along granite intrusions. These veins generally trend N–S to NNE-SSW or NW-SE and are interpreted as extensional shear fractures related to regional NE-SW-trending sinistral strike-slip shear zones. The hydrothermal fluids likely formed along active continental margin during collisional orogeny and subsequently migrated during strike-slip deformation. The distribution of mineralization along the granite intrusion suggests that magmatism played a major role in the distribution and remobilisation of gold in sulfides minerals (Tchameni et al., 2013).
3. Sampling and analytical methods

3.1 Sample collection and preparation

Alluvial artisanal gold mining in the Tcholliré district is rapidly expanding. The mining here is mainly on stream or river beds (Fig. 2a), the majority of which completely dry out during the dry season. The samples used in this study include stream sediments recovered from the gravel layer in two of the four pits dug along stream channels to a maximum depth of 2 m (Fig. 2b). The recovered bulk sediment samples were panned and gold/electrum grains were obtained by hand-picking under a binocular microscope from previously dried heavy mineral fractions. A total of 33 grains were hand-picked under a binocular microscope.

![Figure 2](image.png)

Figure 2. (a) Map of Cameroon showing the distribution of Au occurrences. (b) Sample location sites on the Tcholliré district drainage map.

3.2 Gold grain morphology and microchemistry

Gold grains including other heavy minerals (sulphides, zircon, and cassiterite) from the concentrate were embedded in epoxy resin and polished down to a 0.3 µm thickness using diamond abrasive sequential grits to expose grain interiors following the method described in Melchiorre and Henderson (2019). The gold grains’ morphology was studied at California State University, San Bernardino, USA, using a Fisher-Phenom XL scanning electron microscope (SEM) set to an acceleration voltage of 15 kV to produce secondary electron (SE) and backscatter electron (BSE) images. The same instrument was utilized to analyze the gold grains by scanning electron microprobe (SEM) imaging, mapping, and energy dispersive spectroscopy analysis (EDS). Standard off-peak interference and matrix corrections were applied to the analysis.

The microchemistry of the grains from the concentrates was determined using an electron microprobe analyzer equipped with a wavelength dispersive spectrometry (WDS) at the same facility. Prior to grain analysis, the WDS was calibrated to a set of purchased house standards of gold-silver-copper alloy metals. Care was taken to minimize artifacts during sample preparation. The error associated with the trace element analyses is less than ± 0.2 wt.%. Representative spots and regions were selected for analysis. A laboratory standard was run after every 10 analyses to ensure quality control of the data. A total of 43 spots, 1–4 spots per grain, were analyzed by EMPA for Au, Ag, Cu, Hg, O, Si, Pb, Sb, C, Sn, Zr, Fe, As, Al, Mg, K, and Ti, on both the core and rim of the grains. The gold fineness was calculated using the formula $\text{Au} \times 1000/\text{Ag + Au}$ (Hallbauer and Utter, 1977).
4. Results

Grain morphology, surface characteristics, and microchemistry

Gold grains recovered from the Tcholliré mining district display a variety of sizes and shapes (Fig. 3). The gold and electrum grains recovered from the gravel layer in the two pits at Lasere and Mintet are homogenous with well-developed rims. Reflectance in the gold grains varies from low at rims to high at cores and is homogenous in most grains (Fig. 3a-g). The grains generally range from 350 µm to 750 µm in size in the longest dimension. They display angular, irregular with embayment to sub-rounded morphologies (Fig. 3 & Table 1). Some of the gold grains show irregular pitting surfaces and cavities. The pits are irregular to interconnected and occur predominantly at the margins (Fig. 3d–f). Inclusions of quartz, clay minerals, and ilmenite are entombed in the gold grains around such areas (Fig. 3 & Table 1). Other minerals recovered from the concentrate alongside the gold and electrum grains include anglesite (altered galena), tetrahedrite, zircon, and cassiterite (Fig. 3 & Table 1).

![Figure 3](image-url)

Figure 3. Gold-electrum grains recovered by panning from the Tcholliré district (a) and backscattered electron images (b-i). Brighter area due to relative enrichment of gold (e.g., core section in a) and the darker area are richer in silver and copper. The grains are unzoned, irregular to sub-rounded with pitting surfaces and cavities. Inclusions of quartz, ilmenite and clay material are noticeable around pitted grain margins (d-e).
Table 1. Au-Ag-Cu variation of gold grains from the Tcholliré district

<table>
<thead>
<tr>
<th>Sample</th>
<th>Grain/matrix</th>
<th>Shape</th>
<th>Pt.</th>
<th>Positi on</th>
<th>Content, wt. %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Au</td>
</tr>
<tr>
<td>gold</td>
<td>angular</td>
<td>1 Core</td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>gold</td>
<td>Core</td>
<td>2 Core</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>gold</td>
<td>Core</td>
<td>3 Core</td>
<td></td>
<td></td>
<td>95.4</td>
</tr>
<tr>
<td>gold</td>
<td>Rim</td>
<td>4 Core</td>
<td></td>
<td></td>
<td>91.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>electrum</td>
<td>angular</td>
<td>1 Core</td>
<td></td>
<td></td>
<td>43.9</td>
</tr>
<tr>
<td>electrum</td>
<td>Core</td>
<td>2 Core</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>electrum</td>
<td>Core</td>
<td>3 Core</td>
<td></td>
<td></td>
<td>54.3</td>
</tr>
<tr>
<td>electrum</td>
<td>Core</td>
<td>4 Core</td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>quartz</td>
<td>irregular</td>
<td>1 Core</td>
<td></td>
<td></td>
<td>51.1</td>
</tr>
<tr>
<td>clay</td>
<td>irregular</td>
<td>2 Core</td>
<td></td>
<td></td>
<td>48.9</td>
</tr>
<tr>
<td>clay</td>
<td>Core</td>
<td>3 Core</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>clay</td>
<td>Core</td>
<td>4 Core</td>
<td></td>
<td></td>
<td>183</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>clay</td>
<td>angular</td>
<td>1 Core</td>
<td></td>
<td></td>
<td>50.0</td>
</tr>
<tr>
<td>clay</td>
<td>Core</td>
<td>2 Core</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>clay</td>
<td>Core</td>
<td>3 Core</td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>clay</td>
<td>Core</td>
<td>4 Core</td>
<td></td>
<td></td>
<td>33.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>gold</td>
<td>angular</td>
<td>1 Core</td>
<td></td>
<td></td>
<td>99.3</td>
</tr>
<tr>
<td>gold</td>
<td>Core</td>
<td>2 Core</td>
<td></td>
<td></td>
<td>97.5</td>
</tr>
<tr>
<td>gold</td>
<td>Core</td>
<td>3 Core</td>
<td></td>
<td></td>
<td>98.8</td>
</tr>
<tr>
<td>gold</td>
<td>Core</td>
<td>4 Core</td>
<td></td>
<td></td>
<td>54.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>electrum</td>
<td>irregular</td>
<td>1 Core</td>
<td></td>
<td></td>
<td>56.4</td>
</tr>
<tr>
<td>clay</td>
<td>irregular</td>
<td>2 Core</td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>clay</td>
<td>Core</td>
<td>3 Core</td>
<td></td>
<td></td>
<td>56.6</td>
</tr>
<tr>
<td>clay</td>
<td>Core</td>
<td>4 Core</td>
<td></td>
<td></td>
<td>52.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>electrum</td>
<td>sub-rounded</td>
<td>1 Core</td>
<td></td>
<td></td>
<td>60.4</td>
</tr>
<tr>
<td>tetrahedrite</td>
<td>sub-rounded</td>
<td>2 Core</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>electrum</td>
<td>sub-rounded</td>
<td>3 Core</td>
<td></td>
<td></td>
<td>89.1</td>
</tr>
<tr>
<td>tetrahedrite</td>
<td>sub-rounded</td>
<td>4 Core</td>
<td></td>
<td></td>
<td>37.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>electrum</td>
<td>sub-rounded</td>
<td>5 Core</td>
<td></td>
<td></td>
<td>47.5</td>
</tr>
<tr>
<td>tetrahedrite</td>
<td>sub-rounded</td>
<td>6 Core</td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>
Table 1. Continued

Au-Ag-Cu variation of gold grains from the Tcholliré district

<table>
<thead>
<tr>
<th>Grain/mater</th>
<th>Shape</th>
<th>Pt.</th>
<th>Position</th>
<th>Content, wt. %</th>
</tr>
</thead>
<tbody>
<tr>
<td>tetrahedrite</td>
<td>irregular</td>
<td>1</td>
<td>Core</td>
<td></td>
</tr>
<tr>
<td>cassiterite</td>
<td>sub-rounded</td>
<td>2</td>
<td>Core</td>
<td>53.4</td>
</tr>
<tr>
<td>zircon</td>
<td>angular</td>
<td>3</td>
<td>Core</td>
<td>0</td>
</tr>
<tr>
<td>quartz</td>
<td>sub-rounded</td>
<td></td>
<td></td>
<td>36.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Figure 4. (a) Co-variance of Ag and Au for alluvial gold grain from the Tcholliré district compared with data from literature. Gold grains from Batouri are characterized by low to high Ag (69.17 wt. %) contents. (b) Co-variance of Ag and Cu for alluvial gold grains from the Tcholliré district. Cupper contents are as high as 23.54 wt. %. (c) Comparison of range and overall average values of gold fineness from this study and data from literature. The fineness data for Archean greenstone-hosted, porphyry, VMS, and epithermal Au-Ag deposits are from Morrison et al. (1991) and Liu and Beaudoin (2021). (d) Ternary Au–(Ag x 10)–(Cu x 100) plot for alluvial gold grains from the Tcholliré district with epithermal, Au-rich porphyry, and Au-rich porphyry Cu deposits compositional fields of Townley et al. (2003). Data from the Gambe district (Ketchaya et al., 2022) and Meiganga area (Ngouabe et al., 2022) are plotted for comparison.

The gold grains are mainly alloyed with Ag and Cu with contents that reach a high of 67.17 wt. % Ag (electrum) and 23.54 wt. % Cu (Fig. 4). The variation in concentration of Au and Ag from core to rim is slightly heterogeneous. There does not appear to be a correlation between Ag and Cu values. In most grains, the concentrations of gold increases towards the rim while the concentration of Ag increases towards the core. It is noteworthy that the difference in the
concentrations in such grains is in 10s wt. %. Gold fineness values vary between 279 and 1000 (avg. 654). Sulfides such as anglesite and chalcopyrite show sporadic gold content as low as 3.49 wt. % and Hg content as high as 52.50 wt. %, respectively. Energy-dispersive spectroscopy (EDS) patterns and EMPA maps are presented in Electronic Supplementary Material (ESM1 and 2).

ESM 1. BSE images indicating spots analyzed on the gold grains and their corresponding EDS patterns showing element variation in the various spots. Not all analyzed spots are presented here.

5. Discussion

5.1. Distance to source indicators
In the alluvial environment, morphology traits of gold grains have been widely exploited to provide valuable information about their distance-to-source of primary lode and the geological processes that have affected their transport and deposition (Townley et al., 2003; Barrios et al., 2015; Omang et al., 2015; Fuanya et al., 2019; Ateh et al., 2021; Leal et al., 2021; Ngouabe et al., 2022; Ketchaya et al., 2022). Angular to irregular gold grain morphologies are often indicative of newly liberated grains from the potential source rock and a relatively short distance of transportation (Chapman et al., 2010, 2018). During progressive transportation, the morphology evolves to sub-rounded and elongated which indicates a moderate distance of transportation (Omgan et al., 2015). Rounded grains, on the other hand, typically indicate longer transport distances and more extensive weathering (Melchiorre and Henderson, 2019). The angular to irregular shapes exhibited by some gold and sulfide grains (Fig. 3a-e, i), point to derivation from a source relatively close to the sampling point. The sub-rounded and elongated gold grains (Fig. 3f-g) are indications of moderate transportation from the catchment area.

The effects of supergene impacts are shown by alterations imprinted on the grains as a result of lengthy transportation subjecting them to intense physical and chemical weathering (Knight et al., 1999). The presence of such features on the grains

ESM 2. Individual maps indicating the distribution of Au, Ag, and O on the gold grain.

(a) (b) Gold

(c) (d) Silver Oxygen
can also indicate the duration in the fluvial system (Ateh et al., 2021). The absence of striation marks and the restricted nature of pitted structures on angular to irregular gold grains are interpreted to indicate limited transport distance. Pits can develop and merge to form cavities during transportation. The cavities noted within the sub-rounded grain now filled with clay minerals (Fig. 3f) could have formed in this manner.

5.2. Microchemical signature of gold grains

The variation in the alloy composition of gold grains can serve as a guide to identifying the type of deposit and can provide valuable insights into the geological processes that have affected these minerals (Chapman et al., 2021). Alluvial gold samples from the Tcholliré district are mainly binary Au–Ag alloys. Trace elements occur in low quantities (below detection limits) except for Cu which shows significantly high values (Fig. 4 & Table 1). The increase in gold content from the core to the rim suggests a process of gold enrichment over time. This enrichment can occur through secondary mineralization processes like supergene enrichment (Ketchaya et al., 2024) or through the addition of gold from surrounding host rocks (Ehser et al., 2010). The absence of growth zones overprinting Au-rich cores with variable alloy composition suggests that the mineral system from Tcholliré is marked by single gold-forming hydrothermal event. This is similar to results from the Gamba district (Ketchaya et al., 2022, 2024) and the Lom Basin and Nyong Series (Omag et al., 2015; Ateh et al., 2021). The increase in gold content from the core to the rim therefore reflects progressive dissolution of Ag. The late stage of the hydrothermal event could have been Cu-bearing as most alluvial gold grains from the Tcholliré district with higher Cu content tend to be associated with lower-fineness gold (Leal et al., 2021). The large range of gold fineness values between 279 (electrum) and 1000 (pure gold) (avg. 654) from the Tcholliré district overlaps the field of epithermal deposits (Fig. 5c) from Morrison et al. (1991) and Liu and Beaudoin (2021).

The variation of Cu within broadly homogenous Au–Ag alloys in gold detrital particles has been reported by Chapman et al. (2021). This seems likely to reflect subtle changes in the mineralizing fluid and/or conditions during gold precipitation (e.g., Gas’kov, 2017). The relatively high Cu values (1.04–23.54 wt. %) observed from this study are in line with the hypothesis of gold derivation from relatively high-temperature magmatic hydrothermal systems (Chapman et al., 2018). Gold mineralization reported in gresenized granite cupolas of Kirwans Hill and Batemans Creek, New Zealand (Pirajno and Bentley, 1985) and in the vicinity of Cornwall granite (Ehser et al., 2010) show mean Ag and Cu contents of 3–38 wt. % and 0.0022–0.039 wt. %, respectively. These values are comparable to those from the Tcholliré district, with a mean Ag value of 34 wt. % and a Cu value of 2.34 wt. % and the gold here occurs in association with cassiterite as well. They are however higher than those reported so far from the Meiganga (mean Ag 1.12 wt. % and Cu 0.07 wt. %) and Gamba district (ave. Ag 10 wt. % and Cu 0.0004 wt. %). This highlights a possible variation in gold sources and/or enrichment processes. The presence of disseminated gold with content up to 103.7 ppm have been reported in hydrothermally altered parts of granitoids in the eastern gold districts of Cameroon (Tata et al., 2018; Ngatcha et al., 2019). Nevertheless alluvial, eluvial and lode gold grains from this area show low mean Ag (6.35–14.04 wt. %) and Cu (0.01–0.06 wt. %) values (Suh and Lehmann, 2003; Suh et al., 2006; Omang et al., 2015; Vishiti et al., 2015; Ateh et al., 2021).

Gold mineralization style is usually inferred using ternary plots that utilize the variation in the Au-Ag-Cu alloy composition of gold grains (Townley
According to Leal et al. (2021), an understanding of the auriferous vein/host rock mineralogy permits speculation on the inclusion suite that could be expected if larger sample suites were available, i.e. chalcopyrite, arsenopyrite, galena, and Bi-bearing minerals. The heavy mineral suits from which gold was recovered contained mineralogical phases such as zircon, cassiterite, and sulfides (e.g., anglesite and tetrahedrite). Additionally, inclusions of quartz, clay minerals, and ilmenite entombed in the gold grains (Fig. 3 & Table 1), suggest a possible vein-type mineralization and in host granitoids. The possible link with granites of the Cameroon Volcanic Line which are cassiterite-bearing is provided by the high Ag content in the gold-electrum grains.

6.0 Conclusions
The study’s findings support the following conclusions:

1. The bulk of the gold grains recovered from the gravel layer of the Tcholliré district drainage system had morphological traits that point to the presence of a weathered prospective close distance hypogene source.

2. Inclusions of quartz, clay minerals, and ilmenite entombed in the gold grains and its association heavy mineral phases such as zircon, cassiterite, and sulfides (e.g., anglesite and tetrahedrite), suggest that the main hypogene gold source is part of an epithermal system involving quartz vein-type and granitoid-related.

3. The Au-Ag-Cu alloy composition of the alluvial gold grains with elevated Ag and Cu contents is consistent with a single high-sulphidation and high-temperature magmatic hydrothermal origin (epithermal). Temporal evolution in the mineralizing fluid is feasible.

The grains are not authigenic in origin. The variation from high to low Ag content in the core to rim sections of the gold grains has resulted in moderate gold fineness (ave. 654). Pointing to a low Ag leaching in the secondary environment as a result of the direct liberation of the gold grains from the source.

Declaration of Competing Interest
The authors declare that they have no known competing interests that could influence the work reported in this paper.

Acknowledgments
This work is part of the M.Sc dissertation of NEN. The laboratory analyses were conducted by Prof. Erik Melchiorre of UCSB within the cooperation framework with CES and we deeply appreciate his help. Funding to all the other authors through the Research Modernization Scheme of the Ministry of Higher Education, Cameroon is gratefully acknowledged.

References

Barrios, S., Merinero, R., Lozano, R., Orea, I., 2015. Morphogenesis and grain size variation of alluvial gold recovered in auriferous sediments of

Delor C., Bernard J., Tucker R.D., Roig J.-Y., BouyoHouketchang M., Couëffé R., Blein O. 2021. 1:1 000 000-scale geological map of Cameroon.

Instructions and Policy Information to Authors/Contributors

Introduction
The Journal of the Cameroon Academy Sciences (JCAS) is a multidisciplinary publication of the Cameroon Academy of Sciences (CAS) that is devoted to all aspects of fundamental and applied research as detailed below. It also publishes topical reviews on science and technology in development, arts, humanities, and culture.

Scope and Layout:
JCAS will contain sections for various colleges of the Academy but will receive and publish articles from non-members as well, subject to editorial review. The following Sections will appear in regular numbers of the Journal.

- Biological Sciences Section (Botany/Plant Science, Zoology/Animal Science, Agricultural Sciences, Biomedical and Clinical Sciences, Biochemistry, Molecular Biology, Immunology)

- Mathematical, Physical and Engineering Sciences Section (Pure and Applied Mathematics, Computer Science, Physics, Engineering, Chemistry, Geology/Earth Sciences, Environmental Sciences)

- Arts and Social Sciences Section (Languages, Literature, Linguistics, History, Law, Philosophy, Policy Sciences, Economics, Management Sciences, Sociology, Science of Education)

- Other sections and disciplines may be added after due authorization by the Executive Council of CAS

Disclaimer: Opinions expressed in the journal are those of its authors and should not be construed as reflecting the official policy of the Academy. The journal will not publish articles dealing with political or religious advocacy.

Mode of Publication:
From 2017 the JCAS has adopted the open access mode under the Creative Commons Attribution 4.0 International License (https://creativecommons.org/choose/).

JCAS appears both online and in a print edition at the rate of one volume of three issues per year. The issues will appear approximately every four months in April-May, July-August, and November-December.

Copyright Statement: The copyright for any article published in JCAS belongs to the author(s) of the article. The submission of an article to the JCAS means that the same article is not being considered elsewhere for publication. Upon acceptance, the author(s) shall sign a declaration that they understand and accept that their article will be published in the Open Access mode under the Creative Commons Attribution 4.0 International License (https://creativecommons.org/choose/).

Vision
The Journal of the Cameroon Academy of Sciences aspires to become an authoritative source of scientific and scholarly information on the African Continent and worldwide.

Strategic objectives 2023-2026.
The Academy has set the following objectives for JCAS for the years 202023 to 2026:

- To ensure that JCAS appears regularly in at least three issues per year with each issue containing at least 5 articles.
- To publish at least one special issue per year.
- To develop an interactive website for JCAS and render it operational by the year 2024
- To raise the IMPACT Factor of the journal above the median for African journals and towards a full digit.
- To raise enough funds from page charges and advertisements to enable the publication of the printed edition without subsidies.

Archiving and indexing: The JCAS is indexed and archived by African Journals online (www.jaol.info/index.php/jcas) JCAS is also indexed by the Clarivate-SCOPUS -Web of Science databases at (www.clarivate.com) and at https://www.ebsco.com/products/research-databases.

All accepted articles will be assigned a DOI number before publication.
The printed hard copies of the journal are archived at the Cameroon Academy of Sciences Library, MINRESI, Yaoundé and at the Central Library.
of the Ministry of Scientific Research and Innovation, MINRESI, Yaoundé Cameroon

Language and style: Articles should be written in English or French and provided with abstracts in both languages. Articles should be written in the passive voice and in the third person. Pronouns such as “I” and “we” should be avoided except in cases where it is customary to do so.

Submission of articles: The manuscripts along with any display items such as tables, figures, photographs, etc. should be submitted online or by email. Hard copy submissions will not be accepted. Photographs should be in black and white. Colour photographs will only be published exceptionally and even then, at considerable extra cost to the author(s). The authors of accepted articles will be required to submit a final version of the manuscript on a CD-ROM or online using the software Microsoft Word or any other computer software recommended by the editor.

All submitting authors must counter-sign against their names on the title page to indicate their approval of the submission. The signed title page should be scanned and sent as an email attachment to the address given below:

The Editor-in-Chief,
Journal of Cameroon Academy of Sciences,
Biotechnology Unit, Faculty of Science,
University of Buea, P.O. Box 63, Buea,
S.W. Region,
Cameroon
Email: jcascameroon@gmail.com;
vpk.titanji@yahoo.com
Web site: www.ubuea.cm

Peer-review: All manuscripts submitted to the journal will be reviewed anonymously by three reviewers and will be accepted only when most of the reviewers recommend it for publication. Authors of rejected articles will be given an opportunity to reply to the reviewers’ comments.

Page charges and offprints: Unless otherwise indicated the cost of publishing/printing one typeset page (approximately 500 words in New Romance 12) shall be 10000 (ten thousand) FCFA or 20 (twenty US dollars). The Editor-in-Chief may grant rebates and waivers under exceptional circumstances to authors of accepted articles form least developed countries, provided that authors who benefit from a rebate must pay at least 100 USD or 50 000 FCFA per full length article.

Contributors/authors will receive a pdf copy of their article from which they can make additional copies.

Persons interested in the print edition can place orders directly at the following prices:

120 USD for the Americas.
100 USD for Europe & Asia
50 USD for Africa
and 30 USD for Cameroon per volume of three issues. The price of postage by airmail is not included in the rates given above and will be communicated to the subscriber with the invoice.

Plagiarism
The JCAS does not tolerate plagiarism, defined as using other people’s ideas without citing the authors. The responsibility of avoiding plagiarism resides on the author(s), while the Editor of JCAS reserves the right to conduct an electronic check of submitted articles. A plagiarized manuscript will be rejected outrightly. In the unlikely case that an article is found to have been plagiarized after its publication in the JCAS, the article will be retracted, and notification of retraction published in the next issue of the journal.

Corrigenda
In cases where an article has been published with material errors, the author(s) can petition the Editor-in-Chief for a Corrigendum to be published, and if justified a corrigendum will be published in the next issue of the journal.

Retraction
If after publication an article is found to have been plagiarized, or to be based on fabricated data, the article shall be retracted or withdrawn. The initiative to retract an article shall lie with any of the authors and/or readers who shall file a petition with all necessary justifications to the Editor-in-
Chief. The Editor-in-Chief shall act in consultation with the Editorial Board and with due diligence.

Meta-analysis.
Review articles on randomized trials or evaluations must conform to the PRISMA (Preferred reporting items for systematic reviews and meta-analysis) guidelines at http://systematicreviewsjournal.biomedcentral.com/10.1186/s13643-017-05908.

Preparation of Manuscripts

Length of article: Manuscripts should be typed on A4 paper with double spacing and a 2 cm margin all round. A full-length article should not be less than 1000 and should not exceed 5,000 words. Commentaries and letters to the Editor should not exceed 1,000 words respectively.

Title: The title should not exceed 150 characters and should not contain abbreviations or acronyms. It should be precise and informative.

Title page: The title of the article should be typed on the first page of the manuscript followed by the names of the authors and the respective postal and email addresses of their institutions. The name and address of the corresponding author should be clearly identified in a footnote.

Organization of the article: Depending on the type of communication, the article should be divided into the following sections:

Experimental Work
- Abstract
- Introduction
- Materials and Methods
- Results
- Discussion
- Conclusions
- Acknowledgements
- References: Bibliography followed by webography

Theoretical Work
- Abstract
- Problem statement
- Approach, definitions, assumptions
- Solutions or proofs
- Discussion
- Conclusions
- Acknowledgements
- References (Bibliography followed by webography)

Reviews, commentary, or articles in the Arts and Social/Human Sciences
- Abstract
- Scope of the review/article
- The review itself with suitable headings
- Conclusions
- Acknowledgements
- References (Bibliography followed by webography)

FURTHER DETAILS ON STYLE

Layout: JCAS will contain sections for various colleges of the Academy but will receive and publish articles from non-members as well, subject to editorial review. The following sections will appear in regular numbers of the journal.
- Biological Sciences
- Mathematical, Physical and Engineering Sciences
- Arts and Social Sciences
- Opinions/Commentaries
Authors should clearly indicate the section to which their manuscript is directed and should, in addition, indicate whether the work is a Research or a Review Article.

Abstract: All articles should be provided with a summary not exceeding 200 words. The abstract should be written in simple language and should highlight the aims of the work, the approach or methodology, the main results obtained, and the conclusion(s) reached. Abbreviations should be avoided, and if used, they should be explained at least once. The summary should be presented in English and French.

Introduction or statement of the problem: This section should give the scientific reasons for doing the work and relate the work to previous knowledge and expected outcomes and impact. Only relevant literature should be cited. The introduction should, therefore, not be transformed into a literature review.
Materials and Methods: This section should describe the materials and methods employed in the work in enough detail to enable a qualified reader to duplicate the work. Previously described methods should be cited and not elaborately described. Statistical methods of data treatment should be mentioned if they have been used. If the work involved the use of human subjects, primates, or the release of genetically modified organisms into the environment, it should be stated if ethical clearance from the appropriate authority was obtained. The editor may request a copy of the clearance document or an informed consent form for verification.

Results: This section should describe the results preferably in the same order as predicted by the objectives. Reference should be made to display items such as tables and figures where appropriate. Lengthy discussions should not be undertaken in this section although timely conclusions may be drawn after the presentation of the results.

Discussion: The discussion should highlight what is new in the paper. References should be made to the display items to support the conclusion(s) reached, and to previous publications on the same topic. The discussion should be limited to the results described in the manuscript and any implications this may have.

Conclusions: The conclusion(s) should simply be related to the specific objective(s) of the work.

References:

Bibliography
For a paper with one or two authors the surname(s) is/are referred to in the text. Where the cited paper has more than two co-authors, the surname of the first author is mentioned followed by et al.

Example:
(a) Smith et al. (1997) showed that mosquitoes bite more frequently in the evening than at dawn.
(b) Ngu and Titanji (1981) were the first to describe the use of African patients’ own white blood cells for self-treatment of cancer.
(c) For a journal article, the citation is written as follows:
(d) For a book, the reference is written giving successively the names(s), the year of publication of the edition of the book consulted or cited, the title of the book, the name of the publisher(s), the city of publication, and the pages cited, e.g.: Morris, J. G. (1978). A Biologist's Physical Chemistry. Edward Arnold Ltd. London
(e) For a thesis or dissertation the reference should be written giving successively the Name of the author, title of the thesis or dissertation, the University of Institute where the thesis was defended, the effective date of defence, the web address of the library or repository where the thesis has been deposited (if available), the number of the pages cited, e.g: Lima BK, Evaluation of English 101 and 102. University of Buea. www.ubuea.cm. 2017, pp X-XX

At the end of the manuscript, all the references should be typed in alphabetical order of the first author’s surname giving the full title of the article, the journal, and pages inclusively.

Webography
Articles from websites and from online journals should be listed in alphabetical order of the surnames of the first authors, followed by the website address (URL) and after the bibliography.

Figures and tables: These should be constructed in such a manner that they can be understood without reading the text. Graphs should preferably be drawn using appropriate computer software and presented on a single page ready for mounting. No writing is allowed on figures directly although the abscissa and ordinates of graphs can be labelled. Appropriate symbols should be used on graphs and explained in the legends.
Legends: Figure and table legends should be typed consecutively on separated sheets at the end of the manuscript. The printer will mount them in the article.

Acknowledgements: These should be presented at the end of the text and before the bibliography. In case of co-authorship of articles, the role of each author should be specified in a brief statement such as “conceived the project, carried out the surveys and drafted the manuscript, etc. The authors should declare any conflict of interest such as owning stocks in a company whose product has been evaluated and/or tested in the article.

Last revised 03/07/2023