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ABSTRACT
In this paper, for some hereditary torsion theory (T, F) with associated torsion radical t, the concepts of
t-finitely cogenerated (t-fcg) modules and t-finitely copresented (t-fcp) modules are introduced as duals
of  t-finitely generated modules and t-finitely presented modules, respectively, of  M. F. Jones (1982).
These concepts also generalize the notions of  cofinitely generated and cofinitely related modules.

Using the idea of t-finitely cogenerated module, the notion of (n, t)-copresented modules is introduced
for some non-negative integer n. This notion of (n, t)-copresented modules is dual to (n, t)-presented
modules studied by Dor and Mbuntum (2015) and generalizes the notion of n-copresented modules by
Bennis et al (2012). In this process, we characterize t-finitely copresented modules (t-fcp), (n, t)-
copresented modules, (n, t)-cocoherent rings and (n, 0,t)-projective modules.
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RESUME
Dans cet article, pour certaine théorie de torsion héréditaire (T, F) associée au radical t, les notions de
modules t-finiment coengendré et modules t-finiment coprésentés sont introduites comme des duaux de
modules t-finiment engendré et modules t-finiment présentés de Jones (1982) respectivement. Ce notions
généralisent aussi les concepts de modules cofiniment engendré et cofiniment relies.
Se basant sur l’idée de module t-finiment coengendré, la notion de module (n, t) – coprésenté est introduite
pour des entiers positifs n. Cette notion de module (n, t) – coprésenté est duale de celle de module (n, t)
– présenté considéree par Dor et Mbuntum (2015) et généralise la notion de module n –coprésenté de
Bennis et al (2012).
Dans cette optique, nous caractérisons les modules t-finiment coprésentés, les modules (n, t) �
coprésentés, les anneaux (n, t) – cocohérents et les modules (n,0,t)-projectifs.

Mots Clés: modules t-finiment coengendré, modules t-finiment copéesentés, modules (n, t) –coprésentés,
modules (n,0,t)-projectifs, anneaux (n, t) – cocohérents
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1 Introduction

Let R be a ring. An R-module M is said to be finitely presented (f.p.) if there exists an exact
sequence 0 −→ K −→ F −→ M −→ 0 with K finitely generated (f.g.) and F f.g. and free.
A ring for which every f.g. right ideal is f.p. is called a right coherent ring. Coherent rings
were first studied by Chase [3]. Chase’s characterizations of coherent rings has led to several
similar characterizations of coherence relative to a hereditary torsion theory. In particular,
Jones [11] studied ”Coherence Relative to an Hereditary Torsion Theory”.

Recall that a subclass T of right R-modules is called a hereditary torsion class if it is
closed under submodules, homomorphic images, extensions and direct sums. T uniquely
determines a torsion-free class
F = {F | HomR(T, F ) = 0, for all T ∈ T}.
F is closed under submodules, extensions, injective hulls and direct products. The pair (T, F)
is called a hereditary torsion theory for right R-modules. There is a left exact torsion radical
t associated with each hereditary torsion theory (T, F). For each R-module M, t(M) denotes
the largest submodule of M in T. M is torsion (M∈ T) if and only if T(M) = M, while M is
torsion-free (M∈ F) if and only if t(M) = 0.

Jones [11] defined an R-module M to be t-finitely generated (t-fg) if there exists a f.g.
submodule N of M such that M/N ∈ T. M is said to be t-finitely presented (t-fp) if there
exists an exact sequence 0 −→ K −→ F −→ M −→ 0 with F f.g. and free and K t-fg. A
ring R is said to be right t-coherent if every f.g. right ideal of R is t-fp, where t is the torsion
radical corresponding to the hereditary torsion theory (T, F).

The concept of finitely presented modules has been generalized to the concept of n-
presented modules which has led to the study of n-coherent rings by several authors (see
for example Costa [5], Chen and Ding [4], Zhanmin Zhu [17], [18], D. Zhou [16]). Dor and
Mbuntum [6] combined the notions of t-coherent rings and n-coherent rings to introduce and
study (n,t)-presented modules and (n,t)-coherent rings.

Recently Bennis et al [2] introduced and studied n-copresented modules and n-cocoherent
rings, concepts which arise from the notion of finitely cogenerated modules which are dual
to finitely generated modules.

P. Vámos in 1968 defined and studied finitely embedded modules as a dual to finitely gen-
erated modules. J.P. Jans in his paper of 1969 on co-Noetherian rings called them cofinitely
generated modules. V.A. Hiremath in 1982 obtained a categorical justification for finitely
embedded modules as duals of finitely generated modules and derived some more properties
of cofinitely generated modules. Hiremath in the same paper also introduced the notion of
cofinitely related modules as duals to finitely related modules.

For a hereditary torsion (T, F) with associated torsion radical t, submodules N of a module
M for which M/N ∈ F are said to be t-pure by Golan in [8] (1975) . Teply in [13] (1986),
calls them t-closed submodules.

We use a hereditary torsion theory to define new notions in relative homological algebra
and using ideas from both torsion theory and homological algebra, we consider some prop-
erties of these notions.
All rings are associative with identity and modules are unitary right R-modules unless oth-
erwise stated. For any module M, E(M) denotes the injective envelope of M.
We begin with some definitions

1. An R-module M is finitely cogenerated (fcg) if for every family {Aλ}Λ of submodules
of M with

⋂
Λ Aλ = 0, there is a finite subset E ⊂ Λ such that

⋂
E Aλ = 0.

Proposition 1.1. (Proposition [2])
The following statements are equivalent for an R-module M:

(a) M is finitely cogenerated (fcg).
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(b) For every set fα : M −→ Uα (α ∈ A) with
⋂

A Kerfα = 0, there is a finite subset
F ⊂ A with

⋂
F Kerfα = 0

(c) For every index set {Uα}α∈A and monomorphism 0 −→ M −→
∏

A Uα, there is a
finite subset F ⊂ A and a monomorphism 0 −→ M −→

∏
F Uα

(d) There is a finite set {Si, i = 1, 2, . . . , n} of simple R-modules, such that E(M) =
E(S1)⊕ E(S2)⊕ · · · ⊕ E(Sn), where for any module N, E(N) is the injective hull
of N.

(e) There is a finite set {Si, i = 1, 2, . . . , n} of simple R-modules, such that M is
isomorphic to a submodule of E(S1)⊕ E(S2)⊕ · · · ⊕ E(Sn).

For the proof of this proposition and more properties of fcg modules see [1] and [15].

2. A module M is called finitely copresented (fcp) if there exists an exact sequence 0 −→
M −→ K −→ L −→ 0 where K is finitely cogenerated cofree and L is finitely cogen-
erated. Bennis et al in [2] showed that this is equivalent to showing that there exists
an exact sequence 0 −→ M −→ I0 −→ I1 with each Ii fcg and injective, i = 0, 1. For
more properties of fcp modules see [15].

3. Let (T, F) be a hereditary torsion theory with corresponding radical t. Jones in [11]
calls an R-module M t-finitely generated if there exists a finitely generated submodule
N of M such that M/N ∈ T and M is said to be t-finitely presented if there exists an
exact sequence 0 −→ K −→ F −→ M −→ 0 with F finitely generated and free and K
t-finitely generated.

4. An R-module M is said to be n-copresented for some non-negative integer n if there
exists an exact sequence 0 −→ M −→ I0 −→ I1 −→ . . . −→ In where each Ii is injective
and finitely cogenerated. For more properties of n-copresented modules see [2] and [18]

5. Let (T, F) be a hereditary torsion theory with corresponding radical t. An R-module
M is said to be (n,t)-presented if there exists an exact sequence
Fn −→ Fn−1 −→ . . . −→ F0 −→ M −→ 0 with each Fi free and t-finitely generated.
See [6] for properties of (n,t)-presented modules.

2 t-finitely Cogenerated Modules and t-finitely co-

presented Modules

Definition 2.1. Let (T, F) be a hereditary torsion theory with corresponding radical t. An
R-module M is t-finitely cogenerated (t-fcg) if there exists a finitely cogenerated submodule
N of M such that M/N ∈ F.

Remark 2.1. 1. Every finitely cogenerated module M is t-finitely cogenerated since M/M =
0 ∈ F.

2. If an R-module M has a finitely cogenerated t-pure submodule N then M/N ∈ F and
hence M is t-fcg.

3. If F = {0}, then M is t-fcg if and only if M is fcg.

4. Every torsion-free module is t-fcg.

Example 2.1. Let R be a commutative integral domain (e.g. R = Z). A left R-module M
is said to be torsion-free if 0 6= r ∈ R and 0 6= m ∈M implies that 0 6= rm. The left(right)
R-modules satisfying this condition form a torsion-free class F. The torsion theory (T, F)
cogenerated by F is referred to in [[8]: Example 1, p. 305] as the ”ancestor” of torsion
theories. If R = Z, the Z-module Zp∞ (or Z(p∞)) is fcg, [[7], p. 16]. Zp∞ (or Z(p∞)) is
thus t-fcg by Remark 2.1 (1), with respect to this torsion theory.
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Lemma 2.1. 1. Every submodule of a t-fcg module is t-fcg.

2. A direct summand of a t-fcg module is t-fcg.

Proof :

1. Suppose M is t-fcg and M1 is a submodule of M. Let N be a finitely cogenerated (fcg)
submodule of M such that M/N ∈ F. Then M1 ∩ N is fcg as a submodule of the
fcg module N. Also M1 ∩ N ⊆ M1 and M1/(M1 ∩ N) ∼= (M1 + N)/N . Moreover
(M1 ∩ N)/N ∈ F since (M1 ∩ N)/N ⊆ M/N and F is closed under submodules. So
M1/(M1 ∩N) ∈ F and M1 is t-fcg.

2. A direct summand of M is a submodule of M and hence result follows by (1). 2

Lemma 2.2. 1. Let A and B be t-fcg modules. Then A⊕B is t-fcg.

2. Let B
g // C // 0 be an exact sequence of R-modules with C t-fcg. Then B is t-fcg.

Proof :

1. Let A′ and B′ be fcg submodules of A and B, respectively, such that A/A′, B/B′ ∈ F.
Then A/A′ ⊕ B/B′ ∈ F since F is closed under direct sums. Moreover, A′ ⊕ B′ is fcg
and there is an induced monomorphism 0 −→ (A⊕B)/(A′ ⊕B′) −→ A/A′ ⊕B/B′. F
is closed under submodules and therefore (A⊕B)/(A′ ⊕B′) ∈ F. Thus A⊕B is t-fcg.

2. Suppose C is t-fcg and let C ′ be a fcg submodule of C such that C/C ′ ∈ F. Choose
a fcg submodule B′ of B such that g(B′) = C ′. Let ḡ : B/B′ −→ C/C ′ be the map
induced by g. Then ḡ is a well-defined isomorphism and hence B/B′ ∈ F. Thus B is
t-fcg. 2

Definition 2.2. An R-module M is said to be t-finitely copresented (t-fcp) if there exists an
exact sequence 0 −→ M −→ I0 −→ I1 where I0 and I1 are injective and t-finitely cogenerated
and t is the torsion radical associated with some hereditary torsion theory (T, F).

Remark 2.2. 1. Every finitely copresented module is t-finitely copresented.

2. If F = {0}, then M is t-fcp if and only if M is fcp.

Lemma 2.3. [[1]: Lemma 18.9 ]
Let M be an R-module and suppose i : M −→ E an injective envelope of M. If Q is injective
and q : M −→ Q is a monomorphism, then Q has a decomposition Q = E′ ⊕ E′′ such that

1. E′ ∼= E

2. Im q is a submodule of E′

3. q : M −→ E′ is an injective envelope of M

Lemma 2.4. If R is a hereditary ring and N is a submodule of an R-module M, then
E(M/N) = E(M)/N . Thus if R is hereditary, the injective hull of a t-fcg R-module is t-fcg.

Proof
If R is hereditary, then every homomorphic image of an injective module is injective. Thus
E(M)/N is injective and E(M/N) = E(M)/N . The last statement follows easily.

Proposition 2.5. If M is t-fcp then for any exact sequence 0 −→ M −→ L −→ N −→ 0
with L t-finitely cogenerated, N is also t-finitely cogenerated.
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Proof
M t-fcp implies there exists an exact sequence 0 −→ M −→ I0 −→ I1 with I0 and I1 injective
and t-finitely cogenerated. Let K = Im(I0 −→ I1). Then K is t-fcg as a submodule of the
t-fcg module I1. Suppose there exists an exact sequence 0 −→ M −→ L −→ N −→ 0 with
L t-fcg. Then we can construct the following commutative pushout diagram

0

��

0

��
0 //M //

��

I0
//

��

K // 0

0 // L //

��

P //

��

K // 0

N

��

N

��
0 0

Since K is t-fcg, P is also t-fcg by Lemma 2.2(2). Also, I0 injective implies that the sequence
0 −→ I0 −→ P −→ N −→ 0 splits and hence N is t-fcg as a direct summand of P by Lemma
2.1 (2). 2

Proposition 2.6. Let 0 −→ A −→ B −→ C −→ 0 be an exact sequence of R-modules. Then

1. If A and C are t-fcp then B is also t-fcp.

2. If A is t-fcp and B is t-fcg then C is t-fcg.

3. If B is t-fcp and if the injective hull of a t-fcg R-module is t-fcg, then A is t-fcp.

Proof

1. Suppose A and C are t-fcp. Then we have the exact sequences 0 −→ A −→ A0 −→ A1

and 0 −→ C −→ C0 −→ C1 with A0, A1, C0, C1 injective and t-fcg. Let B0 = A0⊕C0

and B1 = A1 ⊕ C1. Then B0 and B1 are t-fcg. By simultaneous resolution, we obtain
the commutative diagram

0

��

0

��

0

��
0 // A //

��

B //

��

C //

��

0

0 // A0
//

��

A0 ⊕ C0
//

��

C0
//

��

0

0 // A1
// A1 ⊕ C1

// C1
// 0

and hence B is t-fcp.

2. Follows from Proposition 2.5.

3. Suppose B is t-fcp. Then there exists an exact sequence 0 −→ B −→ B0 −→ B1, where
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B0 and B1 are injective and t-fcg. We obtain the following pushout diagram

0

��

0

��

0

��
0 // A //

��

A0
//

��

A1

��
0 // B //

��

B0
//

β
��

B1

β1

��
0 // C //

��

C0
//

��

C1

��
0 0 0

where A0 = Kerβ and A1 = Kerβ1. Since B0 and B1 are t-fcg, A0 and A1 are t-fcg.
We have the exact sequence 0 −→ A −→ E(A0) −→ E(A1). By hypothesis E(A0) and
E(A1) are injective and t-fcg. Hence A is t-fcp.

3 (n,t)-copresented Modules

Definition 3.1. Let (T, F) be an hereditary torsion theory with corresponding radical t.
An R-module M is said to be (n,t)-copresented if there exists an exact sequence
0 −→ M −→ I0 −→ I1 −→ . . . −→ In where each Ik is injective and t-fcg, k = 0, 1, . . . , n.

Remark 3.1. 1. Every n-copresented module is (n,t)-copresented since every fcg module
is t-fcg.

2. By definition, an R-module is (1,t)-copresented if and only if it is t-fcp.

3. It is clear that if M is (n,t)-copresented then M is (m,t)-copresented for every positive
integer m ≤ n.

4. If F = {0}, then an R-module is (n,t)-copresented if and only if it is n-copresented.

Example 3.1. Referring to the torsion theory in Example 2.1, consider the exact sequence
0 −→ Zpk(Z(pk)) −→ Zp∞(p∞) −→ Zp∞ ⊕ Zp∞.
Zp∞ and Zp∞ ⊕ Zp∞ are injective modules and they are fcg by [ [7]: Theorem 25.1]. Hence
they are t-fcg and by Remark 2.1 (1). Thus Zpk is t-fcp and (1,t)-copresented.

Proposition 3.1. If an R-module is (0,t)-copresented then it is t-fcg. The converse holds if
the injective hull of a t-fcg module is t-fcg; in particular if R is hereditary.

Proof
If M is (0,t)-copresented, then there exists an exact sequence 0 −→ M −→ I0, where I0 is
injective and t-fcg. Since every submodule of a t-fcg module is t-fcg, M is t-fcg.

Conversely, suppose the injective hull of a t-fcg module is t-fcg. If M is t-fcg, then M has
a fcg submodule N such that M/N ∈ F. Consider the exact sequence 0 −→ M −→ E(M).
By hypothesis, E(M) is t-fcg and so M is (0,t)-copresented.

We use a method similar to that used by Zhu in [18] to characterize (n,t)-copresented
modules.

Lemma 3.2. Let A and B be R-modules and n a non-negative integer. Then A ⊕ B is
(n,t)-copresented if and only if A and B are (n,t)-copresented.
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Proof
Suppose A and B are (n,t)-copresented. Then there exist exact sequences 0 −→ A −→
A0 −→ . . . −→ An and 0 −→ B −→ B0 −→ . . . −→ Bn with each Ai and Bi injective and
t-fcg, i = 0, 1 . . . , n. Using the Horse Shoe Lemma for injectives we obtain the following
commutative diagram

0

��

0

��

0

��
0 // A //

��

A⊕B //

��

B //

��

0

0 // A0
//

��

A0 ⊕B0
//

��

B0

��

// 0

...
...

...

�� �� ��
0 // An

// An ⊕Bn
// Bn

// 0

and so A⊕B is (n,t)-copresented since Ai ⊕Bi is injective and t-fcg.
Conversely suppose A⊕B is (n,t)-copresented. Then we have an exact sequence

0 // A⊕B
ε // E0

d0 // E1
d1 // . . .

dn−1// En with each Ei injective and t-fcg.
By Lemma 2.3, we have the exact sequence
0 // A // E(ε(A)) // E(Im(d0i0)) // E(Im(d1i1)) . . . //// E(Im(dn−1in−1))
where E(ε(A)) is a direct summand of E0, E(Imdkik) is a direct summand of Ek+1, i0
natural injection from E(ε(A)) to E0, ik natural injection from E(Imdkik) to Ek+1, k =
0, 1, . . . , n− 1. By Lemma 2.1, A is (n,t)-copresented. Similarly B is (n,t)-copresented.

The following theorem is a characterization of (n,t)-copresented modules and generalizes
Proposition 1.2 of [18]. It is also a dual of Theorem 1 and Theorem 2 of [6].

Theorem 3.3. If the injective hull of a t-fcg module is t-fcg (e.g. if R is hereditary), then
the following are equivalent for an R-module M:

1. M is (n,t)-copresented

2. There exists an exact sequence 0 −→ M −→ I0 −→ . . . −→ In−1 −→ L −→ 0 with each
Ik injective and t-fcg and L t-fcg.

3. M is (n-1, t)-copresented and if there exists an exact sequence
0 −→ M −→ E0 −→ . . . −→ En−1 −→ L −→ 0 with each Ek injective and t-fcg then L
is t-fcg.

4. There exists an exact sequence 0 −→ M −→ E −→ L −→ 0 with E injective and t-fcg
and L (n-1, t)-copresented

5. M is t-fcg and if the sequence 0 −→ M −→ E −→ L −→ 0 is exact with E t-fcg then L
is (n-1, t)-copresented.

Proof
(1) =⇒ (2): Suppose M is (n,t)-copresented. Then there exists an exact sequence

0 //M // E0
// . . . // En−1

f // En with each Ei injective and t-fcg, i = 0, 1, . . . , n.
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Let L = Imf . Then L is t-fcg as a submodule of En and hence we have the exact sequence
0 //M // E0

// . . . // En−1
// L // 0 with each Ei injective and t-fcg and

L t-fcg.
(2) =⇒ (3): Suppose there exists an exact sequence
0 //M // E0

// . . . // En−1
// L // 0 with each Ei injective and t-fcg and

L t-fcg. Then M is (n-1, t)-copresented. If
0 //M // I0

// . . . // In−1
// K // 0 with each Ii injective and t-fcg, then

by Schanuel’s Lemma for injectives K is t-fcg.
(3) =⇒ (1): Assume (3). Then there exists an exact sequence

0 //M // E0
// . . . // En−2

g // En−1 . Let K = kerg and L = En−1/K. Then
we have the exact sequence
0 //M // E0

// . . . // En−1
// L // 0 and by hypothesis L is t-fcg. Let

En = E(L), the injective envelope of L. L t-fcg implies E(L) is also t-fcg by hypothesis.
Hence we have the exact diagram

0 //M // E0
// . . . En−1

//

""D
DD

DD
DD

D En

L

  B
BB

BB
BB

B

>>~~~~~~~~

0

<<yyyyyyyyy
0

and so M is (n,t)-copresented.

(1) =⇒ (4): Suppose M is (n,t)-copresented. Then we have an exact sequence

0 //M // E0
f // E1

// . . . // En with Ei injective and t-fcg. If L = Imf then
the sequence
0 // L // E1

// E2
// . . . // En is exact and thus L is (n-1, t)-copresented.

Also M is t-fcg since it is a submodules of E0. Therefore we have the exact sequence
0 −→ M −→ E0 −→ L −→ 0 with E0 injective and t-fcg and L (n-1, t)-copresented.
(4) =⇒ (5): Assume (4). Then we have an exact sequence
0 −→ M −→ E −→ L −→ 0 with E injective and t-fcg and L (n-1, t)-copresented. M is
t-fcg as a submodule of E. If 0 −→ M −→ E′ −→ K −→ 0 with E′ injective and t-fcg then
by Schanuel’s lemma for injectives and Lemma 3.2, K is (n-1, t)-copresented.
(5) =⇒ (1): Assume (5). M t-fcg implies E(M) is t-fcg. Thus we have the exact sequence
0 −→ M −→ E(M) −→ E(M)/M −→ 0 and by hypothesis E(M)/M is (n-1, t)-copresented.
Therefore we have the exact sequence

0 //M // E(M) //

%%LLLLLLLLLL
E1

// . . . // En

E(M)/M

::uuuuuuuuuu

$$JJJJJJJJJJ

0

88rrrrrrrrrrr
0

and so M is (n,t)-copresented. 2

The next theorem considers the behavior of (n,t)-copresented modules on short exact
sequences.

214



JOURNAL OF THE CAMEROON ACADEMY OF SCIENCES Vol. 12 N0 3 (2015)

Theorem 3.4. Let R be a ring, 0 −→ A −→ B −→ C −→ 0 be an exact sequence R-modules
and n a non-negative integer. Then

1. If A and C are (n,t)-copresented, then B is (n,t)-copresented.

2. If C is (n-1, t)-copresented and B is (n,t)-copresented, then A is (n,t)-copresented.

3. If A is (n+1,t)-copresented and B (n,t)-copresented, then C is (n,t)-copresented

Proof

1. The proof is similar to the proof of the first part of Lemma 3.2

2. Suppose C is (n-1, t)-copresented and B is (n,t)-copresented. Then we have the exact
sequence 0 −→ B −→ B0 −→ B1 −→ . . . −→ Bn with each Bi injective and t-fcg,
i = o, 1, . . . , n. From this sequence we obtain the following two exact sequences:
0 −→ B −→ B0 −→ K −→ 0 and 0 −→ K −→ B1 −→ . . . −→ Bn where
K = Im(B0 −→ B1) = Ker(B1 −→ B2).
We then construct the pushout diagram

0

��

0

��
0 // A // B //

��

C //

��

0

0 // A // B0
//

��

D //

��

0

K

��

K

��
0 0

C and K are (n-1, t)-copresented implies by (1) that D is (n-1, t)-copresented. Thus
we have the diagram

0 // A // B0
//

  A
AA

AA
AA

A D0
// D1

// . . . // Dn−1

D

!!B
BB

BB
BB

B

>>}}}}}}}}

0

==||||||||
0

and hence A is (n,t)-copresented since we have the exact sequence
0 // A // B0

// // D0
// . . . // Dn−1

with B0 and Di, i = 0, 1, . . . , n− 1 injective and t-fcg.

3. Suppose A is (n+1, t)-copresented and B is (n,t)-copresented. A is (n+1, t)-copresented
implies there exists an exact sequence 0 −→ A −→ A0 −→ A1 −→ . . . −→ An+1 with
each Ai injective and t-fcg, i = 0, 1, . . . , n + 1. From this sequence we obtain the exact
sequences 0 −→ A −→ A0 −→ K −→ 0 and 0 −→ K −→ A1 −→ A2 −→ . . . −→ An+1

where K = Im(A0 −→ A1) = Ker(A1 −→ A2) i.e. K is (n,t)-copresented. We
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construct the pushout diagram

0

��

0

��
0 // A //

��

B //

��

C // 0

0 // A0
//

��

D //

��

C // 0

K

��

K

��
0 0

K and B (n,t)-copresented implies by (1) that D is also (n,t)-copresented. A0 injective
implies that the exact sequence 0 −→ A0 −→ D −→ C −→ 0 splits. Hence D = A0⊕C
and by Lemma 3.2 C is (n,t)-copresented.

Remark 3.2. By Remark 3.1(4), if F = {0}, then an R-module is (n,t)-copresented if and
only if it is n-copresented. Thus some of the results obtained in [2] and [18] are special cases
of our results. In particular [ [18], Proposition 1.2] is a special case of our Theorem 3.3, [ [2]:
Theorem 2.4 (1), (2), (3)] is a special case of our Theorem 3.4 and [ [14]: Proposition 3∗(1)]
is a special case of our Lemma 2.1, when F = {0}.

4 (n,t)-Cocoherent Rings

Definition 4.1. Let (T, F) be a hereditary torsion theory with radical t. For a positive
integer n, a ring R is called right (n,t)-cocoherent if every (n,t)-copresented right R-module
is (n+1, t)-copresented.

Theorem 4.1. The following statements are equivalent for a ring R provided that the injec-
tive hull of every t-fcg module is t-fcg.

1. R is right (n,t)-cocoherent.

2. If the sequence

i) 0 //M
d0 // E0

d1 // E1
d2 // . . . En−1

dn // En

is exact where each Ei is a t-fcg and injective right R-module, then there exists an exact
sequence of right R-modules

ii) 0 //M
d0 // E0

d1 // E1
d2 // . . . En−1

dn // En
dn+1 // En+1

where each Ei is t-fcg and injective.

3. Every (n-1, t)-copresented factor module of a t-fcg injective right R-module is (n,t)-
copresented.

Proof
1 =⇒ 2:
Suppose R is (n,t)-cocoherent and 0 //M

d0 // E0
d1 // E1

d2 // . . . En−1
dn // En

is exact with each Ei t-fcg and injective. Then we have the exact sequence

0 //M
d0 // E0

d1 // E1
d2 // . . . En−1

dn // En
// En/Imdn

// 0 . By The-
orem 3.3, En/Imdn is t-fcg and by hypothesis En+1 = E(En/Imdn) is injective and t-fcg.

Hence we have the exact sequence 0 //M
d0 // E0

d1 // E1
d2 // . . . En−1

dn // En
// En+1
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with each Ei t-fcg and injective.
2 =⇒ 1 is clear.
1 ⇐⇒ 3 follows from Theorem 3.3. 2

Proposition 4.2. If R is an (n,t)-cocoherent ring, then every (n,t)-copresented R-module M
is infinitely t-copresented, in the sense that M is (m,t)-copresented for every positive integer
m.

Proof
Suppose M is (n,t)-copresented. Then there exists an exact sequence

0 //M
d0 // E0

d1 // E1
d2 // . . . En−1

dn // En with each Ei t-fcg and injective.
This gives rise to the exact sequence 0 −→ M −→ E0 −→ M1 −→ 0, where M1 =
Imd1 = Kerd2. Since R is (n,t)-cocoherent, M is (n+1, t)-copresented and hence M1 is
(n,t)-copresented. M1 (n,t)-copresented implies M1 is (n+1, t)-copresented since R is (n,t)-
cocoherent and therefore M is (n+2, t)-copresented. Continuing this way, we find that M is
(m,t)-copresented for every m ≥ n and so M is infinitely t-copresented. 2

Proposition 4.3. Let n be a positive integer. If R is (n, t)-cocoherent, then R is (m,
t)-cocoherent for every positive integer m ≥ n.

Proof
Let M be an R-module and m and n positive integers with m ≥ n. Suppose M is (m, t)-
copresented. Then M is (n, t)-copresented since m ≥ n. R (n, t)-cocoherent implies that M
is infinitely t-copresented by Proposition 4.2. In particular, M is (m+1, t)-copresented and
thus R is (m, t)-cocoherent. 2

Definition 4.2. Let n and d be non-negative integers. An R-module M is said to be
(n, d, t)-projective if Extd+1

R (M, A) = 0 for every (n, t)-copresented R-module A.

Proposition 4.4. Let {Mi}i∈I be a family of R-modules. Then
⊕

i∈I Mi is (n, d, t)-
projective if and only if each Mi is (n, d, t)-projective.

Proof
Extd+1

R (Mi, A) = 0 if and only if 0 =
∏

i∈I Extd+1
R (Mi, A) = Extd+1

R (
⊕

i∈I Mi, A).2

Proposition 4.5. Let P be a projective R-module and K a submodule of P. If P/K is (n, d,
t)-projective, then K is (n+1, d, t)-projective.

Proof
Let A be an (n+1, t)-copresented R-module. Then there exists an exact sequence 0 −→
A −→ E −→ B −→ 0, where E is a t-fcg injective module and B is (n, t)-copresented mod-
ule. This yields the following two exact sequences:
0 = Extd+1

R (P, A) // Extd+1
R (K, A) // Extd+2

R (P/K, A) // Extd+2
R (P, A) = 0

and 0 = Extd+1
R (P/K, E) // Extd+1

R (P/K, B) // Extd+2
R (P/K, A) // Extd+2

R (P/K, E) = 0

since P is projective and E is injective and (n, t)-copresented. Hence Extd+1
R (K, A) ∼=

Extd+1
R (P/K, B) = 0 since B is (n, t)-copresented and P/K is (n, d, t)-projective. Thus K

is (n+1, d, t)-projective. 2

Definition 4.3. 1. A short exact sequence

0 −→ A −→ B −→ C −→ 0 (4.1)

is t-copure if

0 −→ HomR(C, M) −→ HomR(B, M) −→ HomR(A, M) −→ 0 (4.2)

is exact for every t-copresented R-module M.
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2. If the sequence 4.2 is exact for every (n, t)-copresented R-module M, the sequence 4.1
is said to be (n, t)-copure

3. A submodule A of B is said to be t-copure in B if the sequence
0 −→ A −→ B −→ B/A −→ 0 is t-copure. A factor module N of B is said to be
t-copure if there is a t-copure short exact sequence 0 −→ A −→ B −→ N −→ 0.

Proposition 4.6. Let n and d be non-negative integers with n ≥ d+1. Then every t-copure
factor module of an (n, d, t)-projective module is (n, d, t)-projective.

Proof
Let N be a t-copure factor module of an (n, d, t)-projective module M. Then there exists a

t-copure exact sequence 0 // K
f //M // N // 0 . Let A be an (n, t)-copresented

R-module. Then there exists an exact sequence

0 // A // I0
g0 // I1

g1 // . . . // In−1
gn−1 // In

where each Ii is injective and t-fcg. Since n ≥ dn+1, we can let L = Imgd−1. Then L is
t-finitely copresented. Hence

Ext1R(M, L) ∼= Extd+1
R (M, A) = 0

and we obtain the exact sequence

0 // HomR(N, L) // HomR(M, L)
f∗ // HomR(K, L) // Ext1R(N, L) // Ext1R(M, L) = 0

. Since N is t-copure, Ext1R(N, L) = 0. Thus

Extd+1
R (M, A) = Ext1R(N, L) = 0

and so N is (n, d, t)-projective.

The following theorem gives some characterizations of (n, 0, t)-projective modules.

Theorem 4.7. Let n be a positive integer and M an R-module. Then the following statements
are equivalent:

1. M is (n, 0, t)-projective.

2. For every exact sequence

0 −→ A −→ B −→ C −→ 0

with A (n, t)-copresented, the sequence

0 −→ Hom(M, A) −→ Hom(M, B) −→ Hom(M, C) −→ 0

is exact.

3. If N is (n-1, t)-copresented factor module of a t-fcg injective R-module I, then every
R-homomorphism f from M to N can be lifted to a homomorphism from M to I.

4. Every exact sequence

0 −→ M ′′ −→ M ′ −→ M −→ 0

is (n, t)-copure.
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5. There exists an (n, t)-copure exact sequence

0 −→ K −→ P −→ M −→ 0

of R-modules with P projective.

6. There exists an exact sequence

0 −→ K −→ P −→ M −→ 0

of R-modules with P (n, 0, t)-projective.

Proof
1 =⇒ 2: Since M is (n, o, t)-projective, the sequence

0 −→ Hom(M, A) −→ Hom(M, B) −→ Hom(M, C) −→ Ext1R(M, A) = 0

is exact and (2) follows.
2 =⇒ 3: Let N be an (n-1, t)-copresented factor module of a t-fcg injective module I.

Then there exists an exact sequence I
η // N // 0 . Let K = Kerη. The K is (n, t)-

copresented. From the exact sequence 0 −→ K −→ I −→ N −→ 0 we obtain, by (2), the
exact sequence

0 −→ Hom(M, K) −→ Hom(M, I) −→ Hom(M, N) −→ 0

and (3) follows.
3 =⇒ 1: Let A be any (n,t)-copresented module. Then there exists an exact sequence
0 −→ A −→ I −→ N −→ 0, where I is t-fcg injective and N is (n-1, t)-copresented. This
yeilds an exact sequence

Hom(M, I) −→ Hom(M, N) −→ Ext1R(M, A) −→ Ext1R(M, I) = 0.

Hence Ext1R(M, A) = 0 by (3).
1 =⇒ 4: Assume (1). Then from the sequence 0 −→ M ′′ −→ M ′ −→ M −→ 0, we have the
exact sequence

0 −→ Hom(M, A) −→ Hom(M ′, A) −→ Hom(M ′′, A) −→ Ext1R(M, A) = 0.

for every (n, t)-copresented R-module A and (4) follows.

4 =⇒ 5 =⇒ 6 is clear.

6 =⇒ 1: By (6), there is an (n, t)-copure exact sequence

0 // K
f // P //M // 0 (4.3)

of R-modules with P (n, 0, t)-projective. Thus for every (n, t)-copresented R-module A, we
have the exact sequence

0 // Hom(M, A) // Hom(P, A)
f∗ // Hom(K, A) // Ext1R(M, A) // Ext1R(P, A) = 0 .

Since f∗ is epic as the sequence 4.3 is (n, t)-copure, we must have Ext1R(M, A) = 0 and (1)
follows. 2

Conclusion We have used a hereditary torsion theory to define new notions in relative
homological algebra and using ideas from both torsion theory and homological algebra, we
have proved some properties of these notions, which certainly lend themselves to further
research.

The authors wish to thank the referee for the valuable comments and suggestions that
has improved the quality of the work.
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