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ABSTRACT

"This paper deals with an important problem : the analytical study of somce Permanent Magnets Machines fed by current inverters. The
final aint the authors arc looking for consists ol showing that such analytical study can be handied and could be used for instance in the
pre-dimensioning and the optimization of those nachines. The originality of the methodology is based on the development of original
suitable models of new permanent magnets, and on some cecentric specific analytical approaches of potentials, ficld and orque
calculations in permanent magnets cylindrical synchronous motors. Under some simplifying assunuptions, the analytical methods are
very convenient for machine designing. The present siudy involves two methods, the first one based on the separation of variables in
Laplace’s equation and the second one on magnetic images. One of the results compared with those of a mumerical finite difference
program show a close agreement. "The effect of both radial and azimuth magnetizations is considered. The analysis is then applied o
a synchronous machine fed by rectangular or sinusoidal current waves.

PACS : 84.50+d Electric Motors - 85.70..w Magnetic Devices

RESUME

Cet article traite d’un important probleme scientifique et technique de notre épogue : Les ¢tudes analytiques de quelques structures
de Moteurs a Aimants Permanents alimeniés par des onduleurs de courants. L'objectil principal vis¢ par les auteiirs consiste & montrer
que de telles analyses peuvent actuellement étre développées et utilisées par exemple dans les études de pré-dimensionnement, et
J’optimisation de tels moteurs. [originalité de la méthodologie est basée sur une modélisation originale et adéquate des aimants
permanents, et sur d’originales et spécifiques approches analytiques des potentiels scalaires, des potenticls vecteurs, des champs
magnétiques, ¢t du couple, dans les structures cylindriques des moteurs synchrones a aimants permanents surfaciques. Les méthodes

analytiques convicnment au micux, movennant quelques hypotheses siraplificatrices, a ta conception des motows électromceaniques.

La présente éuude met en oeuvre deux méthodes : La premiére est basée sur la séparation des vartables dans la résolution de I'équation
de Laplace dans des milicux evlindriques, cf la deuxiéme sur une judicicuse et non moins originale application de la méthode des
images magnétiques aux calculs analvtiques des moteurs  aimants permanents. Quelques nns des résultats comparés a ceux obtenus
par le biais d'un code numérique utilisant la méthode des différences linies, montre de réels similitudes. Quelques effets, tels ceux de
la présence ou non des aimants radiaux, et/on azinutaux sont observés. L éude est ensuite appliquée a Fanalyse dun moteur svnchione

alimenté par des onduleurs de courants rectangulaires ou sinusoidaus..
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current density Ks(q, t)

Kj: amplitude of j harmonic in Fourier's series development
of'the equivalent
Current density Ks(q,t):  surface current density vector in

Ampere's model representation of a magnetized volume
K(Ro.q): current density on surfacc Ro in Coulomb's model
representation of azimuth magnets
Ko: amplitude of the fundamental rank of K(Ro, q).
K(Ri, ). current density on surface Ri in Coulomb's
model representation of azimuth Magnets

Im: half length of the magnets in three dimensions view

Lm:  halflength of the motor in threc dimensions view

m: number of electric phases

: magnetization vector in a given volume

nd: angular density of phase conductors

n: rank of Fourier's series

: exterior unit vector in Ampere's model or Coulomb's
model representation of a magnetized volume

p: number of poles-pair.

q: variable representing an electric phase

r: position of the studied point in polar coordinates.

R: radius of a given magnetic cylinder

Rs: inner radius of the stator.

Ri: inner radius of the magnets.

Ro: outer radius of the magnets.

rk: positions of the infinity of magnetic images inside the
rotor (rk < Ri) for originat sources on Ro.

Rk: positions of the infinity of magnetic images inside the
stator (Rk > Rs) for original sources on Ro.

rk: positions of the infinity of magnetic images inside the
rotor (rk < Ri) for original sources on Ri.

Rk: positions of the infinity of magnetic images inside the
stator (Rk > Rs) for original sources on Ri.

Sa: intermediate variable used in the calculation of
coeflicients gn, dn, an. and bn.

Sb: intermediate variable used in the calculation of
coeflicients fn, gn, cn. and dn.

t: variable representing the time

V#: the magnetic scalar potential.

V*(T m); the magnetic scalar potential in Tesla - meter.

V1*  the magnetic scalar potential in region 1.

V2% the magnetic scalar potential in region 2.

Vk*: the magnetic scalar potential in region 2 duc to kth
charge image surface source .

q0: phase angular step.

G total torque.

q: variable in polar co-ordinates representing a geometric angie

q(°)y:  variable in polar co-ordinates representing a geometric
angle, in degree

qra: half aperture of a one pole radial permanent magnet

qaz: half aperture of 2 one pole azimuth permanent magnet

qis: gap angle between radial and azimuth permanent

magnets in the same pole

s *: surface charge density in Coulomb's model representa
tion of a magnetized volume

s ¥(Ro, q): charge density on surface Ro in Coulomb's
model representation of radial magnets

s *(Ri, q): charge density on surface Ri in Coulomb's model
representation of radial magnets

S0%: amplitude of the fundamental rank of s*.

n rank of the harmonics in Fourier's series.

r*: volume charge density in Coulomb's model representa
tion of a magnetized volume

mo: magnetic permeability of free space.

an: coefficient of term (1/Ro)n in Al series expansions.

bn: coefficient of term (Ro /r)n in Al series expansions.

gn: coefficient of term (1/Ro)n in A2 series expansions.

dn: coefficient of term (Ro /rn in A2 series expansions.

¥ charge density of'a given infinite line

r: intermediate variable used in the calculation of the

positions of magnetic images
i variable used in the calculation of 1, J, and J!
Y: dummy variable used in the calculation of 1, J, and J'
Yi: ith point of Tchebychev's interpolation
index used in the interpolation of 1/d
maximum number of points in the Tchebychev's interpolation
a factor in the calculation of Vk* , Ak and Br2(r.q)
a factor in the calculation of Ak and Br2(r.q).
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Introduction

The inereasing need of high performance machines able
to develop, lor instance, great mass torques at low speed or
important mass powers at high speed, leads to use efficient
materials like permanent magnets 1],

Modern rare earthy maagnets have great coercive lorce (HC),
greal remmant magnelization (13), and so can be cmployed
in high pertformance low weiglit machines. They allow large
magnetic air gaps without significant reduction of global
cllicicney |21, Ferrite magnets are suitable for low cost
machines but with lower vohune performances {3].

These machines can be classified cither from their external
geomelry : long, short, and [lat motors, or from the rotor
shape and the disposition of 1magaets : without polar picees,
with polar pieces, with or without flax concentration [5, 8].

"The machines studied here have sector shaped permanent
magnets with radial and (or) azimuth magnetization without
polar picces. Under some assumptions the analytical
methods are specially suitable to such structures. The
proposed methods lor the calculations are two dimensional
and are based on

- the separaton of variables ol Laplace’s cquation in
cylindrical domains. Both vector and scalar potentials are
considered.

- the applicaton of magnetic images.

The resulis are compared with those obtained owing to a
numerical moethod : F.DLM. (Finite Differences Method)
and discussed. They are then applied to a synchronous
machine fed by cither sinusoidal or rectangular current
wavces.

1.ORIGINAL MODELIZATION OF THE STUDIED
MOTORS AND EXPRESSION OF THE TORQUE

2.1.Somec Hypothesis and the studicd motors
modelizations.

We assume that :

- the rotor and the stator have infinite permeability,

- the system can mainly be considered as two-dimensional
- the magnetic gap is large enough o neglect the armature
reaction,

- the real armature currents are classically replaced by their
cquivalent current densities,

- the magnets are permanent and have linear
demagnetization characteristics,

- c¢ddy currents are not considered.
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Fig.1 Studied (1.a) and modelized rotor (1.b).

Q

]
modéle
modéle goulombien
ampérien
- >+ '1, .
K=tian d=M.n
-+ >
{Bm = By2 {HT, = Hpp
- > + .
Brz ~ Brl =y K Byp ~ Hpy =0
Fig.2.a - 3 . .
The two possible models of a x __._{5 = !(.gj A) - Ve {g : -gl(—gfﬁ\)'
magnetized volume. Ho)-H Yo

(2)

93z

K(R0,0)
(bl
-x/p +KO /P

Fig.2.b Go ©
a) Developed geometry of the rotor.

b) Equivalent current densities. ' ] F L v
¢) Equivalent charge densities. -x/p L____J —g0%* /P l l

ey




JOURNAL OF THE CAMEROON ACADEMY OF SCIENCES VOL. 1 N° 2 (2001)

2.2. EXPRESSIONS OF THE TORQUE
Considering a machine with 2p poles and m phases, two cases can be distinguished according to the angular density
nyof phase conductors. This angular density can be constant or not.

2.2.1.The case of constant angular density of phase conductors ny

The density of phase conductors can be considered as constant over a phase angular step 6, = w/p m. This case
includes slot less machines and also slotted machines with one-layer slots under some approximations. In such
conditions the total torque I is the sum of all torques per phase, each of them being calculated independently. I can
then be written as follows :

m
I =2 p Rn.2i 0], B(&4d0 0
where R; is the radius of the stator, B, the radial component of the flux density, and iq the current in phase q.

2.2.2. The case of none constant angular density of phase conductors ny

In the general case, the density of conductors ng cannot be considered as constant and the fundamental variable
becomes the equivalent current density K, developed owing to the distribution theory, into Fourier’s series as
foliows.

K (0= Ksoiq(t)in COS j [0 %;11_1)] o

The expression of the total torque is now :

=2 p RK.EIKi®A, )

g=1j=o0
with :

A= B cos] [9 Zi’i‘}n—”)] a6 @

Expression (1) is simpler to use for independent phases (brush less DC motors, auto-synchronous motors), while
expression (2) is suitable for poly-phase machines with distributed windings. In either case, only the radial
component of the flux density has to be known in the calculation of I'. For that, we should solve the Maxwell’s
equations in the air gap of the motors. The solutions of those equations are easily found out when the models of the
sources, here the permanent magnets, are known. So let look for the mathematic models of those magnets, and then
calculate B,.

2.3. ORIGINAL MODELS OF SURFACE MAGNETS WITH RADIAL AND AZIMUTH
MAGNETIZATIONS

The considered rotor has surface magnets which have angular widths 0,, for radial magnets, and 0,, for azimuth
magnets (Fig.1a). Since the analysis can be done by separating the effects of both magnets, we can introduce an
angle 6;; so that (Fig.2.b) :

T
era + eaz + is= 5 (5)

2.4. ORIGINAL MODELS OF THE PERMANENT MAGNETS

One of the originality of the methodology used in this paper, is the mathematic model of the magnets. For that aim,
-

it is now known that a magnetized volume such as a magnet with magnetization M can be represented using

Ampere’s model or Coulomb’s model (Fig.2.a). This radial and azimuth magnets of this study (Fig.1.a) can then be

replaced

- — —> - -
- either by a surface current density K =}/ X 73 and a volume current density J V=V XM
(Ampere’s model).

. > - + >
or by a surface charge density ¢5 =)/ .5y and a volume charge density pP= V- M (Coulomb’s model).

—>

With pp an exterior unit vector to the magnetized volume.

-
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N

In this study the magnets are permanent so V XM is equals zero, and the radial magnets must be built such that the
- o

amplitude of the magnetization M(r) varies as a function of 1/r, so V . M will also equal zero. The study will then

be very easy if we adopt Coulomb’s model for radial magnets and Ampere’s model for azimuth ones. This allows to
replace either king of magnets by only two concentric cylindrical surfaces as shown on figure 1.b. assuming that R;
and R, are the inner and the outer radii of the magnets. The deduced forms of the sources K and o* allow to develop
them into Fourier’s series as follows (Fig.2.b). For more clarity, the deduced coefficients, the motor data and all
others symbols used in the following equations have been explained in the list of principal symbols part :

G(R09)=O‘; ibn sin v 0 (6)

n =90

K (R.0)=K Ya,cosv0 o)

X

K (R.9) [ "jK (®)

wx

o(R..9): ( %}G (R,.0) ©)

with :
= (2n + Dp (10)

4
a,= {;P,;}Sin ve., (n

b.=(-1)’ {‘%}Si" ve., (12)

3. THE SOLVING OF MAXWELL’S EQUATIONS IN THE AIRGAP OF THE MOTOR

In this section, we calculate the flux density created by the magnets. We denote zone 1 the region between the two
cylindrical borders of the magnets and zone 2 the one between the outer surface of the magnets and the inner
surface of the stator. The hypothesis assumed in part 2.1 are also here taken into account, so we have to solve a
magneto-static problem [10].

Radial magnets as well as azimuth magnets will both contribute separately in the expression of the flux density.
Ampere’s model of azimuth magnets leads to a problem where sources are curreni densities, while Coulomb’s
model of radial magnets gives a problem where sources are magnetic charge densities (Figs.2.a, 2.b). Equivalent

charge densitics will generate the magnetic scalar potential V', and the current densities will create the vector
potential A.

NN

Considering oaly the radial magnets, the global model of Maxwell leads 1o write in region 2, V B=0,
> > P > . . > - - . . . ,
VxH=0ad B= M H - But in the magnets we will have B = !u H -+ M . Houations in region 2, and

0 Q
= >

radial permanent magnets properties (V . M =0 ). indicate that the magnetic field is not rotational, and enable to
introduce a scalar function so-called magnetic scalar potential V" given by the equation i.;r — _{7\/* . So, the

- —>
contribution of the radial magnets to the flux density will be written inregion2 B =- )7 V V* where the scalar
0

potential V' must be search od (Fig.2.a).
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Assuming now azimuth magnets model alone, and given the general model of Maxwell, we are facing a problem
-
that involves stationary currents, a now classic vector, the so-called vector potential A of a rotational but solenoid

field, is usually introduced, and is given by the equation E = 6 x;l) , with the condition of solenoid character,

-

also called Coulomb’s gauge V X 2 = () . So the contribution of the azimuth magnets to the flux density in region
- - - L, .

2 can written B y x 4 Where the vector potential A needs to be calculated (Fig.2.a).

We can now calculate the scalar potential V" due to the equivalent charges, and in two dimensions, the only existing
(axial) component of the vector potential A due to the current densities.
Hence,

- -, - o
B=-uVV * Vx4 a3
We have shown that only equivalent charges generate V*. So, we can write
V—+ _é = 6 (- U, 6 V*) =0 . This last equation leads in region 2 to Laplace’s equation VZ V.__—_- () , which
will be solved using the boundary conditions.

It has been also set that only azimuth magnets create the vector potential which can be calculated by writing

% X} = %x ( % XZ )=0- This equation conducts, using the Coulomb’s gauge, to Laplace’s equation in region

2 7 . . . . . ' vee
2 V A —_ O which will also in this case be solved using the boundary conditions.

We will describe here two analytical methods, the results of which could be compared.

3.1. ORIGINALITY OF THE PROPOSED METHODOLOGY USING PERMANENT

MAGNETS PROPERTIES

In addition to the suitable mathematic models of the permanent magnets, with the specific choice of charge densities '
for radial magnets, and current densities for azimuth magnets, the other originality of the proposed methodology
consists also of developing semi-analytical expressions of the flux density and of the torque that can be used for a
pre-dimensioning of the motors, and for an optimization of such machines. Those two possibilities, the pre-
dimensioning and the optimization of the motors can not be easy to handle without analytical expressions of
magnetic scalar potential, vector potential, flux density, and torque. Others advantages of such a study do exist, for
instance the possibility of observing the influence parameters, each independently or by combination of more than
one.

In the looking for those expressions, we will solve Maxwell’s equations in the air gap of the motors, by using an
analytical method based on the classic variable separation method, and an interesting other way to employ the
method of magnetic images. We will then compare one of the results to those obtained owing to a finite difference
program. .

3.1.1.Analytical expressions of potentials with respect to permanent magnets properties.
In the solving of Maxwell’s equations to find out the magnetic scalar potential and the vector potential, cylindrical
or polar coordinates are obviously the most suitable ones.

Let us consider only charges densities as sources. In the solving of Maxwell’s equations when looking for the
magnetic scalar potential, we have a problem where the potential is null on the interior face of the stator and on the
rotor because both rotor and stator are supposed to present infinite magnetic permeability, while the interior of the
radial magnets is empty space. The magnetic potential property of continuity and the jump of the radial component
of the magnetic field are also expressed on the surface Ry (Eqs 18, 19, 20, 21), so we are facing a problem where
V;* and V,* are known on boundaries respectively R; and R;, and are equal on R,. The difference of their gradient
with respect to r coordinate are also known on R, . We are then facing a Dirichlet problem when considering region
one and two together. Solutions of such a problem are unique.
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Almost similar arguments can be followed in the looking for the vector potential. Current densities are present on R;
and R,. The rotor and the stator still have infinite permeability, the interior of the azimuth magnets being empty
space. The jump of the tangential component of the flux density on R; gives a value to the gradient of the vector
potential with respect to r coordinate on that boundary (Eqs 18, 19, 20, 21). That gradient is zero on the interior
surface of the stator, because only the flux density due to the azimuth magnets is looking for. So, no current is
assumed on the stator. We are then facing here a Neuman problem when considering region one and two together.
Solutions of such a problem are also unique.

The operation of derivation is linear, so usually solutions of those Dirichlet and Neuman problems can be a sum of

. n= . D=0 n= n=ow
harmonics. We can then write \/1 = Z}Vm R V2= ZIVZH R A1 = Z]Am , and A2 = ZA“ ,
n= n= n= n=

where V;*, V,*, A, and A,, are respectively the total magnetic scalar potential in region one, in region two, the
total vector potential in region one and in region two. V. *, V5, *, Ay, and A,, are the corresponding harmonics, on
which Laplace’s equation is applied. According to the method of the separation of variables, each of these functions
is a product of a function of r and a function of 6. The structures are cylindrical, given the Fourier’s development of
the sources in cos v0, the solutions will have the forms r¥ cos v0, and r ™Y cos v, which can be expressed with
respect to Ry, (Egs 14, 15, 16, 17).Coefficients, c,, dy, f, , 2 , 0 » Bu » On , and v, are then determined owing to the
boundaries conditions (Eqs 18, 19, 20, 21, 23, 25).

Since both cylinders of radii R;and R, carry charge density and current density, we can then write :

B \V Vj
R ( ¥ /Ro
Vi=2lc| — | +d,| —||sinve (14)

(=3
10
Ve
=
Q
N
d
~

V;: Z f| — | + gl | |sinvd (15)

2 R
A=2la) = | + Bl |cos o (16)

R
A,=2 yi—1 + 0. =21 tcos vo an
n=0— RO r

with the following boundary conditions :

forr=R;
V=0 %=-ﬂoK R.9) (8)

forr=R,

V=V, A=A, (19)

or

A, OA,

G- G- u K R.)

V. V. .

2. o .0
forr=R,

V,=0 03:‘2 =0 @n
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3.1.2. Analytical expressions of the flux density with respect to magnets properties
Exploiting the above boundary conditions we have the following relations between the coefficients :
On one hand, putting s, = p,R.Ksa,/V, it is obtained :

v 14

R; R, _
r)% R, B, =s
a" + ﬂn - }/n - 5"
a" - ﬁn - yn + 5”

v 14

&7k,

which lead to the following solutions :

R Y |rs)
(s
| \Ro/ |

1
<

(22)

I
«

|
>
I
<o

R 2v
é‘n = ( v, (23)

g
+
&
=
99
I
[

24

which gives the solutions :
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Fig.3 Magnetic scalar potential V,*(T' m) varying as a function Fig.4 Reduced magnetic scalar potential v,* (%) varying as
of r(m) radial coordinates centered on radial magnets. Azimuth a function of q () tangential coordinates.
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here in two and three dimensions.
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R, 5

T (s)
do- |2 £ (8

Fig.3  Magnetic scalar potential V,*(T m) varying as a function of r(m) radial coordinates centered on radial
magnets. Azimuth magnets have not been used. The study has been performed here in two and three dimensions.

Machine Data : R;,=0.7m R,=0.6m R;=0.5m. p=2
20.=175° 0,=0° 0= 0°
I,=0.5m L.=08m oM = 0.92 T (NdFeB)
Studied points : 6=0° Nz=0 2)z=04m
3)z=05m 4)z=0.6m

Fig.4 Reduced magnetic scalar potential v,*(%) varying as a function of 0 (°) tangential coordinates. Azimuth
magnets have not been used. The study has been performed here in two and three dimensions.

* In two dimensions (2D)
Machine Data: R,=0.7m R,=0.6m R;=0.5m. p=2
2 0,=175° 0,,=0° 0= 0°

Studied points : r=0.65m

* In three dimensions (3D)

Machine Data: R;/L= 87.5% R,/L=625% R,/L=75% p=2
20,=75° 0,,= 0° 0;

Studied points : r/L= 81.25% I,/ Ly,= 62.5%

I
(=]
)

>
As seen above, the only component of B needed for the torque calculation is B, in region 2. We have from Eq.13
the following expressions :

v v

L + (§n-gn) =22 | |sin Vo (26)

r
_| A8
Br2( ’9)" r ngot(y"+f") Ro ! 7

v

Baeo)y S |1 7) £ | +6irg) Bo | eosve

Fig.5 Radial flux density in the air-gap calculated by the method of the separation of variables.
Studied points : r=7.38 cm.
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Machine Data : R;= 8.39 ¢cm R,=7.23 cm R=6.48 cm. p=2
20,=175° 0,,~ 0° 0, 0°
UoM = 0.92 T (NdFeB)

Fig.6  Tangential flux density in the air-gap calculated by the method of the separation of variables.
Studied points : r=7.38 cm.
Machine Data : R;= 8.39 cm R,=7.23 cm R;=6.48 cm. p=2

2 0,,=175° 0,= 0° 0;=0°

oM = 0.92 T (NdFeB)

3.2. AN OTHER ORIGINAL ANALYTICAL METHODOLOGY BASED ON MAGNETIC IMAGES AND
TCHEBYCHEV’S POLYNOMIALS

In the method of magnetic images, all iron parts are removed and replaced by air in which the images of the original
sources will be located. We have then determined the values of these image sources and their positions.

Because magnetic permeabilities are infinite, the image of a charged line with a density A is a line with a density -
A" and the image of a current line with a density J" is a line with a density - 1".

The position of the image of a line (of charge or current) with respect to a magnetic cylinder of radius R is such that

dD =R’ @7

where d and D are the distances of the line and its image to the axis. Consequently, it can be seen that we have to
consider both magnet surfaces as regards current densities and only the external one as regards charge densities
(Fig.1b).

In the present case, the sources are included between two concentric ferromagnetic domains, thus they generate an
infinity of images, the positions of which have to be determined.

3.2.1.Calculation of the positions of images.
From equation (27), putting :
p=R7R/} (02))

we get the radial positions r, <R; of the inner images and Ry > R; of the outer images as the following sequences :

for the original surfacer =R,

R; K K

ro=Ro rl:r— =1, P | SYPRES 01 &
I{Q (28)
s _ -k B -k
Ro RIZRO R2k_Rop R2k+1_Rlp
and for the original surface r = R;
R; K
; k
r'o:Ri r'lz—rv— I"zkzl"op r'2k+l=r'lp
’ 9)

~,

R'ozRi 1{'1= R's R'zsz'opk R'2k+1=R'1pk

3.2.2.Calculation of the radial flux density,

We can now calculate the total scalar and vector potentials and deduce the radial component of the flux density.
We first calculate the potentials V. and A, due to k™ image surface then sum for all the images.
In the domain 2, we have :

J i
Brz(rag) ="ﬂo‘—é\r—f;" + %-7A2—

(30)
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and according to figure 3

e w 1
VSV AcBA wn p-CDOR Sy,

n=o (31)

and A= U Ii RS g+ 1)

n=o

T n n
sz In d’sinv ¢ do J=_[2 in d’ cos v ¢ do J'=f In " cos v ¢ do (32)
(4
with :
2 2 2 2 2 2 ]
d=r +r1,-2rr,cos(d- 9) d'=r" + 1 -2rricos(60-9) 03
V.’ and A, are generated respectively by image surfaces carrying charge densities and current densities
(Fig.7). They are due to respectlvelr’x the four and eight surfaces defined by their radii of subscripts 2k and 2k + 1

(Eqgs.28 to 29).
Integrating by parts (32), we get the following integrals :

1= [ 20 ""’ and g=f smd‘;‘p do (34)

For diverse reasons approximation is achieved using Tchebychev’s polynomials [7].

So setting ¥ = ¢ - 0, we obtain :
X
1y
dNZ;)blcos Ag (35)

where
2 & 0s ¢
b= X +1 Zd (‘P )c ¥ (36)

21 + 1
Y= (X+1]2

¥, is the i point of Tchebychev’s interpolation

So:
I=rxp,cos vo

. (37
J=np,sin vo
Obviously the expressions involving d’ are similar. So, putting :
ﬂ _ b v-1 " bv+ 1

v v
(38)

ﬁ, _ bv -1 bv +1
v v
and remembering that v = (2n + 1)p, we have :

. -D'GR, ¢
Vk=—(———)-4£R—rrk z::bnﬂvsin vO (39)

A.=—u, K" 4 Th Za,.ﬂ cos v§ - ,U,,Kj;

and finally :

R"r 7 i a., ﬂ cos v@  (40)
k=0
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B,,(r, 6)= M, O-ZRO Z( ) Z b, ﬂ sin v0

+ ,uoO-ZR”ri(— ) r Z b. ﬂ" sin v@

k=o kin =o

ﬂ sin v@
Zan ﬂ sin v@

@“n

+

K R Z
=0
Fig.8 Radial flux dens1ty calculated by
- the separation of variables (a),
- the method of magnetic images with 5 images (b),
-the numerical method (c).
Studied points : r=0.65m.
Machine Data : R;=0.7m R,=0.6m R=0.5mp =2
0,.=30°0,,~10° 8,=5°.
oM = 0.92 T (NdFeB)

3.3. CALCULATIONS OF THE MAGNETIC FIELD LINES AND OF THE FLUX DENSITY USING A
FINITE DIFFERENCE PROGRAM CALLED “DIFIMEDI”

The finite difference program “DIFIMEDI” [9] has been used in order to compare the numerical results to those
obtained from the models presented in the above sections. For similar accuracy, computing times are compared too.

As seen in Fig.9, only half a machine has been considered. The permeabilities respectively have the values 1 for the
magnets and the air gap, and 1000 for the iron parts.

The number of nodes in DIFIMEDI is 25x37.

Fig.9 Flux density lines due to permanent magnets with radial (R) and azimuth (A) magnetizations.
Machine Data : R, = 0.7mR,=0.6m Ri=0.5m
0,=30°0,,=10° 0;=5°.

4. RESULTS

The radial component due to the magnets is calculated in the air gap or along the stator. Both analytical models lead
to the same results in all cases, and the maximum difference observed between these results and numerical ones
obtained by F.D.M is less than 7 %.

In practice, terms of rank higher than 4 have no significant influence on the results obtained by means of separation
of variables. The same accuracy is obtained with only five images in the second analytical method.

The computing times, excluding parameter inputs, for calculating the flux density are :

- 4 seconds for the separation of variables.

- 6 seconds for the magnetic image method.

- 12 seconds for the finite differences method (Fig.8, 9).

Obviously, variations of geometrical parameters or positions of the rotor are more easily implemented in the
analytical methods. Besides, the computation time when using the finite differences method takes into account the
calculation of the flux density at every node, which is of no use in the calculation of the torque. Both analytical
studies show that azimuth magnets must be used to get more sinusoidal flux densities in synchronous machines
(Fig.5). If the machines are used as brush-less DC motors, the flux density can be chosen trapezoidal and the best
way is to use only radial magnets filling the whole slot (Fig.6, 10).

Assuming the machine fed by rectangular currents, and for given dimensions of the magnets, the effect of the

azimuth ones on the torque is notable (Fig.14). When stator conductors are located in the slots, the torque is smaller
for given located currents and number of conductors per pole per phase (Fig.15).
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Fig.9 Flux density lines duc to permanent magnets with radial
(R) and azimuth (A) magnetizations.
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Fig.11 Reduced radial flux density b *(9) varying as a function
of q (°) tangential coordinates.
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Fig.13 Reduced tangential flux density bq* (%) varying as a
function of r (m) radial coordinates centered on radial magnets.
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Fig.10 Radial flux density on the interior surface of the stator
calculated by the method of the separation of variables.
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Fig.14 Instantaneous torques for rectangular currents in slot
less machines.
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Fig.10 Radial flux density on the interior surface of the stator calculated by the method of the separation of
variables.
Studied points : r=8.39 cm.
Machine Data : R;=8.39 cm R,=7.23 cm =6.48 cm. p=2
20,.=175° 0,~=0° 0;=0°
oM = 0.92 T (NdFeB)

Fig.11 Reduced radial flux density b*(%) varying as a function of 0 (°) tangential coordinates. Azimuth magnets
have not been used. The study has been performed here in two and three dimensions.
* In two dimensions (2D)
Machine Data: R,=0.7m R,=0.6 m Ri=0.5m. p=2
20,=75° 0..=0° 0;= 0°
Studied points : r=0.65m

* In three dimensions (3D)

Machine Data: R,/L= 87.5% R;/L=625% R,/L=75% p=2
20,=175° 0.~ 0° 0;=0°

Studied points : r/LL= 8125% 1,/L,= 62.5%

[

Fig.12 Reduced radial flux density b*(%) varying as a function of r (m) radial coordinates centered on radial
magnets. Azimuth magnets have not been used. The study has been performed here in two and three dimensions.
* In two dimensions (2D)
Machine Data: R;=0.7m R,=0.6 m Ri=0.5m. p=2
2 0,,=75° 0,=0° 0= 0°
Studied points : (1) 0=0°

* In three dimensions (3D)

Machine Data: R;= 0.7 m R,=0.6 m Ri=0.5m. p=2
2 0,=75° 0,.~ 0° 0,=0° In=0.5m L,=08m
Studied points : (2) 0=0°;z=0.1m (3)0=0°;z=02m

Fig.13 Reduced tangential flux density by*(%) varying as a function of r (in) radial coordinates centered on radial
magnets. Azimuth magnets have not been used. The study has been performed here in two and three dimensions.
* In two dimensions (2D)
Machine Data: R;=0.7m R,=0.6 m Ri=0.5m. p=2
2 B,,=75° 0= 0° 0= 0°
Studied points : (1) 6=35°

* In three dimensions (3D)

Machine Data: R;= 0.7 m R,=0.6 m Ri=0.5m. p=2
20,=75° 0= 0° ;= 0° 1,.=0.5m L,=0.8m

Studied points : (2)0=35°;z=0.45m (3)6=35°;z=0.5m

40=35°;2=0.55m (5)06=35°;z=0.6m

Fig.14 Instantaneous torques for rectangular currents in slot less machines. The radial flux density has been
calculated by the separation of variables. Case of constant density of phase conductors.
Studied points : r=0.7m.
Machine Data : R, =0.8m R=0.6m Ri=0.5m. P=2 pM=0.92T (NdFeB)
Parameters : 0., 0,, and 0;
a) Torque due to only azimuth magnets.
(0:=0° 0,,~10° 6,=0°).
b) Torque due to only radial magnets.

(0.=30° 0,,~0° 0;=0°).
¢) Torque due to both radial and azimuth magnets.
(6,=30° 0,,=10° 6;:=5°).

Fig.15 Instantaneous torques for rectangular currents in slot less machines. The radial flux density has been
calculated by the separation of variables. Case of none constant density of phase conductors.
Studied points : r=0.7m.
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Machine Data : R;=0.8m R,=0.6m R=0.5m. p=2 pM=0.92T (NdFeB)
0,,=35°0,,~10° 0;=0°

MT(?W\ m/

600

200

TR T & &k b e mmt(")
CONCLUSION

An analytical study of a given structure of permanent magnets synchronous machine has been achieved, and
numerically verified. After finding out suitable original models of the magnets made by equivalent surfaces of
charges and currents, an original analytical study has been done using the classic variable separation method, and an
interesting application of the method of magnetic images, in cylindrical domains. The comparison of a finite
difference program show a close agreement.

Both analytical methods present, in comparison with numerical ones, considerable advantages as mentioned in [9]
which are :

- the rapidity.

- the easiness of the definition and modification of the geometry.

- the high accuracy of the analytical methods.

- the reasonable size of memory (a personal computer is sufficient).

- the possibilities of exploiting the results, for instance, the study of the influence of each parameter

independently.

- the pre-dimensioning of the motors

- the optimization of the motors

The analysis of the results shows the interest of the azimuth magnets on the form of the flux density and the value of
the torque. An extension of the present work can be a detailed study of the effects of radial and azimuth permanent
magnets on the torque (average value and harmonics). Another application could be the examination of the azimuth
width of magnets in order to adapt converters to such machines.
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