JOURNAL OF THE CAMEROON ACADEMY OF SCIENCES Vol. 4 No. 1 (2004)

Formally Modelling Time into Changing University Structures

William S. Shu'! and Cyprian F. Ngolah!?

'Department of Computer Science, University of Buea, P.O. Box 63, Buea, Cameroon.
2Department of Electrical and Computer Engineering, University of Calgary, Canada.
e-mail: wsshu@yahoo.com, ngolahcf@yahoo.com

ABSTRACT

In order to computerise an organisation or enterprise that constantly adapts to social and tech-
nological changes over time, a practical model for time is presented that captures changes to
basic components of a university in the past, the present and the future, while maintaining their
temporal relations. The model allows for the evolution of its structures and activities over time,
the exploration of future and hypothetical activities (forecasting) and the analysis of past activ-
ities. Data correction is also done, but without falsifying the past. This paper demonstrates how
the model is used to incorporate time into the formal specification of university components,
such as departments, courses and students, and the operations that modify or access them.

Keywords: Time, Change, Formal Specification, Enterprise Modelling, University Structures.

RESUME

Afin d’informatiser une entreprise ou une organisation qui s’adapte aux mutations sociales et
technologiques, un modele pratique du temps est presenté qui décrit les mutations des com-
posants de base d’une entreprise, tout en exprimant leurs relations temporelles. Le modele
permet I’évolution de ses structures et activités au cours du temps, I’experimentation avec des
activités futures ou hypothétiques (les prévisions), et I’analyse des activités passé€es. La rec-
tification des saisies est faite, sans pourtant falsifier le passé. Cet article démontre comment
le temps est integré dans une spécification formelle des composants d’une université, tels que
les départements, les cours et les étudiants, et les opérations qui modifient ou répondent aux
requétes sur cette derniere.

Mots Clés: Temps, Changement, Spécification formelle, Modélisation de I’entreprise, Struc-
tures d’ Université.

61

REVUE DE I ACADEMIE DES SCIENCES DU CAMEROUN Vol. 4 No. 1 (2004)

1 INTRODUCTION

The structure of an enterprise changes over
time in order to adapt to business needs, social and
political concerns, and technological advances.
This is especially so today in the face of globali-
sation where the structure, mission and even sur-
vival of an enterprise or organisation is in constant
but uncertain change; these changes being gener-
ally outside the control of the institutions affected.

Universities (higher education) are not exempt
(Newby, 1999; Bates, 1999; Ellsworth, 1997).
Computerising a university, or adapting its cur-
rent computing infrastructure must allow for cur-
rent and future support of teaching, research and
administration (Shu and Moore, 1998) and, for its
credibility, critically high standards of its records,
say. This necessitates a model of time that permits
current university activities to take place, past ac-
tivities to be queried or verified, and future or hy-
pothetical ones explored. Also, the apparently ran-
dom changes must progress in the “correct” direc-
tion as determined by user, managerial and other
intentions,

In observing the computerisation of certain
universities, it was quickly noticed that a critical
factor was how the influence of time was man-
aged with respect to change, to the factors that in-
duce the change, to on-going university activities,
to changing workflow procedures, and to changing
technological demands. These latter had varying
priorities and were best described using separate
formal logics. Furthermore, they all had to influ-
ence and be managed by the computing infrastruc-
tures of that crganisation.

A desirable model of time, then, should be ef-
fectively computable (Vila, 1994; Gabbay, 1994)
when integrated into the structure of a system
whose entities and their relationships vary over
time, and can map to logic theories/models applied
to different facets and tasks of that system. The re-
sultant system should permit a user to quickly au-
tomate the specification of new requirements, and
validate them, while guaranteeing valid prior tem-
poral assertions on the basic system. In short, time
should be engineered into an evolving structure so
that its use therein fs ﬂexible, extensible, consistent
and mechanical. -

Hence, this papé;v* ‘presents how time is mod-
elled and incorporatéd into the specification of
core operations and components needed to restruc-

62

ture a university, while allowing for daily univer-
sity activities as well as data processing correc-
tions. Such operations are detailed in Shu and
Moore (1998). Without loss of generality, a univer-
sity i1s used as a case study. This is for two main
reasons. First, it addressed the practical concern
cited above. Second, the structures of universities
are reasonably well understood. Their changes are
relatively slower than in most commercial enter-
prises, though they usually span larger time inter-
vals. They are thus “static” enough to ease valida-
tion of the model, despite a flurry of change. At a
more abstract level, the theoretical model of time
to adopt is varying, not known a priori, and no sin-
gle model would do.

In the model proposed, states [of objects] are
“located” onto a time line where one may move
back and forth carrying out what-if-analyses (fore-
casting) and/or checking or replaying past activi-
ties. The focus is not on reasoning about actions
and change per se (philosophical) but on practi-
cally applying actions — to effect change or in
spite of change — in order to obtain the intended
assurances. Assorted logics {c.f, Galton, 1987,
Allen, 1984; Pinto, 1993; Ma and Knight, 2001)
may be freely straddled, while side-stepping fun-
damental complications of temporal systems (c.f,,
Vila, 1994). However, this work is biased towards
possibly reified temporal logics.

Temporal activities are best described formally
(Nissanke, 1997). This, together with quality re-
quirements and corrections in a rapidly chang-
ing environment strongly suggest the use of for-
mal methods. Formality in the specification is ex-
pressed by using the RAISE Specification Lan-
guage, RSL (The RAISE Language Group, 1995)
— a formal specification language that has tools
for proving the correctness of a given specification.

Section 1.1 identifies a possible model for uni-
versity structures that allows for change over time.
Section 2 defines a working model for time by mo-
tivating duration and change. In section 3, the
model is demonstrated in RSL specifications of
components and operations of a university as it
evolves over time. Section 4 situates the model’s
handling of time in relation to temporal reasoning,
hypothetical evolution and enterprise modelling.
Section 5 is the conclusion.

JOURNAL OF THE CAMEROON ACADEMY OF SCIENCES Vol. 4 No. 1 (2004)

University System

University

/ - = -> Qther Relations

Key

E Component

—= *Has’ Relation

r Faculty ‘

Lecturer

e / -~
‘ Student ‘c__ 1 Programme| __] Courses
T
TN P <

B
P ~ -7,

Figure 1: Relations among university components

1.1 University structures and activities

The university structure assumed abstractly
has a university (administration) with faculties,
faculties with departments, departments with pro-
grammes, courses, students and lecturers, and pro-
grammes with courses and students. However,
in the specification model adopted, the univer-
sity (structure) is conceptually viewed as the sub-
tree “University” (Figure 1) with sub-components
linked directly to it via unique identifiers (id’s) by
which they are referenced. Only departments are
linked to it indirectly, via faculties. Other relations
among components are built using their id’s. Thus,
they can be changed easily and dynamically. The
“university system” describes the whole university
as it evolves over time.

The time component over various university
activities and states is highlighted. Activities of the
university take place over various periods of time,
likewise the persistence (states) of its structures.
Thus a university, faculty or department is open to
run over an extended period of time, possibly hun-
dreds of years. It may then be closed permanently,
but after letting it wind down its activities. Du-
ration for departments may be much shorter than
for faculties or universities, and their closure are
sometimes temporary. Thus, the university, fac-
ulties and departments may have status opening,
open, or closed.

Programmes and courses run for arbitrary pe-
riods of time so long as there are students to take
them., They may run for some parts of an aca-
demic year, but not in others. They may be closed
down, but must atlow all students on them to grad-
uate {or change programmes or courses) before do-
ing so. Programmes persist for arbitrary durations.

63

Though other durations could apply, a course nor-
mally runs for one semester, possibly more than
once in an academic year.

A student is admitted to a university and is ex-
pected to enrol for periods of one academic year
until he/she graduates. He or she may enrol for less
than an academic year (usually a semester) if that
is the minimum period needed for graduation re-
quirements. The student may suspend one or more
semesters. Also, a student may finish one degree
programme, then enrol for another. He or she may
be on or off courses at different times. He or she
may change these courses, as well as departments
and faculties, at various times in his/her stay at the
university. Staff members employed teach various
courses, supervise and examine students over vary-
ing time periods. A lecturer may change depart-
ments and faculties, and may leave the university
for extended periods of time. He or she may also
leave the university permanently.

2 A WORKING MODEL FOR TIME

2.1 Modelling duration
One should be able to capture the state of com-
ponents in a university due to events that took
place, are taking place or will take place in future.
One would typically want to know the state of a
component at a specified time or interval of time
and hence what activities are possible with them.
A university evolves over time and operations
(events) act on its components, which change state
as a result. This change of state persists over an
interval of time, which may vary from hours (e.g.,
lectures) through months (e.g., courses) to decades
or centuries (departments and faculties). But the
event itself is modelled as applied at an instant in

REVUE DE I ACADEMIE DES SCIENCES DU CAMEROUN Vol. 4 No. 1 (2004)

time. A user should be able to examine how hy-
pothetical, future as well as past events unfold and
analyse their outcomes in given situations.

Reckoning with future activities is useful for
three main reasons. First, for planning purposes,
it permits one to hold information that may be
needed or scheduled later. For instance, course al-
location to lecturers and course selection by stu-
dents are done on a yearly basis, but a course may
be taught only over one semester. One may then
record information for later semesters and use or
modify them as necessary. Thus, in the current
semester, a lecturer does give the course and a
student does take it. The allocation is modified
for later ones should some other lecturer give the
course or the student withdraw from it. Alterna-
tively, the lecturer may be rescheduled to give the
course in an earlier or later semester; the student
may be similarly rescheduled to take the course.

Second, it permits one to explore or foresee
what could happen if certain activities are carried
out. This is useful in anticipating risks, or explor-
ing the consequences of decisions when restructur-
ing the university. Actual risk management is not
part of the concern here but it must be allowed for.

Third, changes to the university are viewed as
edits in an edit environment, as one would edit a
program using a syntax (or structure) editor (Shu
and Moore, 1998): parts of the university can be al-
tered, provided any constraints on university com-
ponents are met. This makes updates simpler be-
cause it is often easier to modify an existing ver-
sion of an object than to create a new one from
scratch. Also, a given edit operation may be un-
done or subsequently redone. In addition, for in-
stance, a tried out activity may be moved (trans-
ferred) into the present from the future.

2.2 Past, present and future times

Time is partitioned into closed intervals that
are discrete, non-overlapping and contiguous,
though activities (processes) may overlap in time
or may take place over non-contiguous intervals,
Time “flows” from the past, through the present to
the future on a time line as determined by a clock
timenow. Activities (and their effects) which have
already taken place form part of the past and can-
not be changed. Activities which are taking place
form part of the present. They or their effects may
be altered. Most present activities eventually form

64

- Past Prgsent Future ™
Programmeg
Course ”—'—'_“ _
Student
Lecturer

5 timenow
5 > Time
Key

————— Open or admitted status

Closing or offered status

— ~ — Opening Status
Closed or left status

Status change/time instant

Figure 2: Change in status of object over time

part of the past. Future activities are yet to take
place. Some or none of them eventually become
part of the present, and perhaps the past. As an
example, Figure 2 shows status changes for some
components from a university structure and how
their past, present and future change with timenow,
the actual real time. For example, the status of a
course is open (i.e., running) and that of a student
is admitted (i.e., registered in the university).

Within the above categories of time (past,
present, future), one may have relative categories
of time. (c.f, tenses in natural languages.) For ex-
ample, in future past, one may seek future activi-
ties in relation to a given past. The myriad possibil-
ities available are not examined here. Such relative
activities are handled by having a “current time”
with respect to which activities are reckoned: lo-
cate a current time, then locate time periods and ac-
tivities relative to it. In this way, some of the com-
plexities of tenses in temporal logic (Galton, 1987;
Nissanke, 1997), such as its inabilities in handling
events (changes of state) are avoided, though one
can stil] define and use temporal operators.

Hence, tenses are constructed in a consistent
but less problematic fashion than, say, in tense
logic., Each activity is located w.r.t. its current
time, and these times may be compared with each
other or with timenow for the appropriate tempo-
ral ordering. Potential ambiguities of, say, relative

JOURNAL OF THE CAMEROON ACADEMY OF SCIENCES Vol. 4 No. 1 (2004)

presents and pasts are thus resolved on a common
time line or viewed as interpretations in the real
world, possibly in a separate temporal system.

2.3 Time slices

For all the objects in the university (depart-
ments, students, etc.) the periods of time that
are of interest are those over which certain op-
erations may be performed, that have certain sta-
tus (e.g., open department), or hold certain values
(e.g., a student in this department). Such time in-
tervals need not be contiguous. For example, the
semesters over which a given student takes courses
for a degree need not follow each other. How-
ever, disjoint time intervals are generally used for
a given state or event as a way of defining their
meaning (Nissanke, 1997): an interval over which
an event occurred or a state was observed helps de-
fine that event or state unambiguously. Thus, one
basically wants to:

o Define a continuous time interval. This is de-
fined from fixed begin- and end-times, or by
prescribing suitable constraints. Such an inter-
val is called a period.

o Define a time “span” of interest. A span is a
time-ordered sequence of non-overlapping time
intervals (periods). It may be defined via fixed
time intervals and/or constraints to be satisfied.
Its intervals need not be contiguous.

e Locate an instance (point) in time, possibly
within a period or span. Such an instance is
called a moment.

e Assertif a time interval is in the past, present or
future relative to timenow or “current time”.

Time intervals — moment, period and span —
are collectively called time slices. Commonly used
periods such as semester, session (academic year),
programme duration, can be defined in terms of
suitable time slices.

2.4 Modelling change

In order to track real time the clock, timenow,
can only advance in time even though in most
cases one can work with logical time. Events and
the change of state of objects take place on its tick.
To model the past, present and future, all peri-
ods that are closed before fimenow are taken to be

65

in the past. Those containing timenow are in the
present. Those intervals that start after timenow
are in the future. This view gives one a simple
way of detecting events that cannot be changed
w.r.t. timenow. Note that given this interval view of
time, a completed activity may be in the past (can-
not be changed) whereas one that started before it,
but has not yet finished, remains in the present. For
composite activities, only those component activ-
ities that do not demand alteration of the past are
allowed in the present. However, it is recognised
that systems should allow for error correction and
this is discussed in section 2.5.

In order to remain in the present, a time pe-
riod is automatically extended so that the current
value of timenow is always in it. This is the case,
for instance, when a student has not met gradua-
tion requirements within the previously expected
period. The extension corresponds to some activ-
ity in the present that remains current. Instances
of future events could be hypothetical (experimen-
tal), or hold information that is needed or resched-
uled later. Thus, timenow does not just progress
into future events. The future events or states
it progresses into must be explicitly rescheduled
(moved) to the present and be guaranteed to re-
flect the desired states or events of the entegprise
should timenow go past them. Otherwise, tﬁey
must be rescheduled into the future, probably well
past the current value of timenow, or be completely
removed from the time line corresponding to that
reality defined by timenow.

Note that removing the events or states from
this time line may leave them in some other, possi-
bly hypothetical time line with its own timenow.
This suggests a branching time model, which is
discussed in section 4.

2.5 Correcting the past

Rescheduling present and future activities sim-
ply means changing the time interval(s) associ-
ated with them and appropriate objects; past ac-
tivities or past states of components cannot be
changed (falsified) as indicated earlier. At the
same time, in most systems [data processing] cor-
rections are made to entries, usually within pre-
determined deadlines. Thus, for example, wrong
marks awarded to a student who took a course may
be corrected. But the fact that the student took the
course must never be changed. If the student never

REVUE DE L' ACADEMIE DES SCIENCES DU CAMEROUN Vol. 4 No. 1 (2004)

took the course, correcting only the wrong mark
still leaves the past false. Thus, changing or fal-
sifying the past involves deliberately or inadver-
tently altering events known or assumed to corre-
spond to reality. Corrections pertain to errors intro-
duced in the process of capturing that reality, such
as data entry errors; the system built here is as-
sumed (as is usual) to capture this reality and those
who operate it do not wilfully falsify its records.

Establishing which is changing the past and
which is correcting past entries quickly becomes
a philosophical debate outside the scope of this
work. Corrections are best seen as [allowable] edit
operations (section 2.1) on the university. The past,
however expressed, remains immutable; appropri-
ate preconditions are used to preclude those edits
that are seen as changing it. Deadlines for correc-
tions to be made are reckoned by a special clock,
vtime, that indicates when past events in the uni-
versity are validated and hence cannot be changed.
vtime cannot be later than timenow.

2.6 Time operations with university entities

Objects change state (value or status) when op-
erations are carried out on them. For each moment
over time, related states should remain consistent.
Before an object changes state, one must therefore
guarantee that all objects depending on its preced-
ing state(s) remain consistent. This is done, given
the above model of time, by simply making the
relevant time intervals for these states part of the
past, where they cannot be changed (but perhaps
corrected). Equivalently, fimenow is moved just
beyond the intervals. For objects whose state per-
sist with the present, their associated period ex-
tends with timenow. But this persistence-of-state
may also have to be terminated at a predetermined
point. For example, the interval associated with
end-of-semester may not be extended just because
timenow runs into it.

Built into the operations of objects is the au-
tomatic closure of time intervals (on state change)
so that prior operations remain consistent. Also,
intervals that contain timenow (i.e., are in the
present) are automatically extended to always
include timenow, should they not have a state
change. However, one may sometimes explicitly
override these automatic operations.

Thus activities for a given object are recorded
in basic non-overlapping time intervals. Combi-

66

nations of such basic intervals may be used to re-
construct the span of a given activity. Similar con-
straints apply to intervals associated with states. In
order to mechanically handle persistence of objects
in the present and the future, eatities in the uni-
versity are also modelied with the following status
values (states).

e fixed: A time interval in the present has fixed
limits and the later limit will not automatically
extend with timenow; by default, the interval is
extended, if it would not run into a future inter-
val.

e xptal: Anobject is an experimental or hypothet-
ical version and must not be included in the ac-
tual system. timenow must not run into it. That
is, present and past cannot have hypothetical
objects (except in past or present relative to a
future moment).

These states help ensure that in each moment
activities of components of the university remain
consistent with each other, with the status of var-
ious objects used or affected, and with the reality
that is being modelled. Further states may be de-
fined in order to capture other constraints. Exam-
ples include the temporal assertions:

o always(n); for states that always hold true for
the next n time units.

e sometimes(n). for states that must hold true
within the next » time units.

3 UNIVERSITY EVOLUTION OVER TIME

This section illustrates through an RSL (The
RAISE Language Group, 1995) specification of
components of a university how the model of time
is used. In it, a data type for the university system
as it evolves over time is given. The way clock
ticks may be implemented so that the system re-
mains consistent is also given, as well as an illus-
tration of how the time factor is incorporated into
usual university operations. Figure 3 informally
explains some of the RSL symbols and terms used.

3.1 University data type

System0 below is a record data type to cap-
ture the evolution of the university system over
time. Some of its constructors — i.e., operations
used to build type values in RAISE — given here

JOURNAL OF THE CAMEROON ACADEMY OF SCIENCES Vol. 4 No. 1 (2004)

Operator Description
—, 5, m, dom [| Total function, partial function, map, domain of function f.
FT,/\, ~,=,Y,3 Logic operators: and, or , not, implication; quantifiers.
LA X, = Function composition and abstraction; product; equivalence.
T-set Powerset: The set of sets whose values are of type T.
T==x|ylz Define T as a type with variants (values) X, v, Z.
{|v:Tep(v) |}, Sub-type: A type of those v of type T where p(v) holds.
&] y), [wlz] List and map comprehension. e.g., list of x’s where y holds. |
(x,y) Enumerated list of values: x, y.
[x—y] Map of values: value x mapped to value y. o
xty Override map value in x to that in y; add y if non-existent.
x:T <> chg_x Reconstructor: use chg x to update field x of a record.
zex:Sy:T .. Record z has fields x:S, y:T, Field x has type S, efc.
letx =yin ... Define x to be y in the expression ...
pre x, post y x is precondition and y postcondition of an expression.

Figure 3: Some RSL operators

are: univs for the university (structure) at succes-
sive time intervals; timenow the system (univer-
sity) clock; and vtime the validation clock. Notice
that univs is a map that captures the state of a given
university at a given time; chg_univ is a matching
operation to update univs. Univ is a data type for
the university structure. A valid university system,
given by the subtype System, must have valid Univ
components and must not have any experimental
components (status xptal) at all times earlier than
timenow. The latter is ascertained via the function
embeds_a.modstatus(xptal, on, u, t).

type
System(::
univs : Time 7 Univ < chg_univs
timenow : Time «» chg_timenow
vtime : Time <> chg_vtime,
System = {| sy : SystemO o
is_valid_System(sy) |},
Unild
value
is_valid_System : SystemQ -+ Bool
is_valid_System(sy) =
(Vt: Time o t € dom univs(sy) =
let u = univs(sy)(t) in
is_valid_Univ(u) A
(V1" : Time o t' < timenow(sy) =
~embeds_a_modstatus(xptal,on,u,t’)

)

end

67

3.2 Clock ticks on university system

Clock ticks are conceptually simple, but re-
quire a more elaborate function to keep the system
consistent from tick to tick (c.f,, section 2.4), On
each clock tick, the university makes a transition
to a new state, To do this, the state of each system
component at the current tick is replicated to the
new state except on the following occasions:

e The component does not exist, ceases to exist,
or it contains the status fixed.

e The new time instant already has a component
that should be part of the university system. An
advantage of this approach is that the order of
update (during implementation) is immaterial;
the component might have been updated earlier
during the same clock tick.

The function tick moves the system clock,
timenow, to the next position in time. tick is ap-
plied within the function set_nextstate_sys. Before
doing so, set_nextstate_sys calls set_nextstate_uni
to move the university into its next state.
set_nextstate_uni replicates current states by call-
ing auxiliary functions to set the next state for
values in each component type of the university.
These functions are of the form set_nextstate_xxx
where xxx corresponds to a component type (not
all shown). set_nextstate_uni also reports via a
boolean value if the state change was successful.

To check that constraints are met,
canSet_nextstate_sys tries out a transition on a

REVUE DE L’ACADEMIE DES SCIENCES DU CAMEROUN Vol. 4 No. 1 (2004)

copy of the university and tests if it is well-formed.
This is done by checking the boolean value b re-
turned by set_nextstate_uni. set_nextstate_sys also
ensures that no experimental results are in the new
state through embeds_a modstatus. (Naturally,
in any efficient implementation, set_nextstate_uni
will be executed at most once.)

The function consistent asserts if the state(s)
of a university before a given time t are consistent
(c.f., section 2.4). The RSL specification for asser-
tions such as present and operations to initialise
clocks are immediate and so are not shown,

value
set_nextstate_sys : System = System0
set_nextstate_sys(sy) =
let
= timenow(sy), u = univs(sy)(t),
(u', b) = set_nextstate uni(u, t),
sy’ = chg_univs(univs(sy) t
[t Trr '], 59)
in
tick(sy’)
end
pre canSet_nextstate_sys(sy),

canSet_nextstate_sys : System — Bool
canSet_nextstate_sys(sy) =
let
t = timenow(sy), u = univs(sy)(t),
(u’, b) = set_nextstate_uni(u, t)
in
bA
~ embeds_a_modstatus(xptal,on,u,t41)
end,

/* return next state and validity status %/
set_nextstate_uni: Univ x Time — Univ0 x Bool
set_nextstate_uni(u, t) =
let ul = set_nextstate_facs(u, t) in
if is_ok uni(ul) then

let u6 = set_nextstate_students(u3,t) in
if is_valid_Univ(u6, t-+1) then
(u6, true)
else
(u5, false)
end
end

else
(u, false)
end
end,

/* true if valid univ in partial update */
is_ok_uni : Univ0 — Bool,

set.nextstate_students :
Univ x Time — Univ0
set_nextstate_students(u,) =
let sm =
[sid — [t + 1 +>s]]|
sid : Stuld, s : Student
isin_uni(sid, u, t) A
~ isin_uni(sid, u, t + 1) A
s = students(u)(sid)(t) A
/* true if status fixed is off x/
has_modstatus(fixed,off,sid,u,t)
o
in
chg_students(students(u) sm, u)
end
value
/* true if university is consistent
xbeforex time given x/
consistent : System x Time — Bool
consistent(sy, t) =
(VU tl: Times ¢ <tAtl <tA
tl € dom univs(sy) =>
is_valid_Univ(univs(sy)(tl), t')

value
/* timenow tracks current time via ticks x/
tick : System — System
tick(sy) as sy’
post timenow(sy’) = timenow(sy)+1

axiom V sy : System e time(sy) < timenow(sy)

3.3 Incorporating time constraints

Time constraints are added to operations spec-
ified on university components by defining opera-
tions (usually of the same name) on the university
system structure, System, and adding constraints
to their corresponding preconditions.

Preconditions asserted at the system level
of the university are done through the function
canEditsys. canEdit_sys checks that an operation

JOURNAL OF THE CAMEROON ACADEMY OF SCIENCES Vol. 4 No. 1 (2004)

is not done in the past and uses canCorrect_sys to
assert if past entries can be validated.

Other operations at the system level of the uni-
versity are essentially those at the Univ level with
time constraints added. For example, add_stu_uni
below applies the corresponding operation at the
Univ level but its precondition, canAdd_stu_uni, ad-
ditionally applies canEdit_sys.

value
/* precondition asserted at system level %/
canEdit_sys : System x Time — Bool
canEdit_sys(sy, t) =
(~ past(sy, t) V canCorrect_sys(sy, t)),

/* precondition to correct unvalidated eventss/
canCorrect.sys : System x Time — Bool

value
/% add students to univ. at system level */
add_stu_uni : Stuld x
Student x System x Time = Univ
add_stu_uni(sid, s, sy, t) =
let u = univs(sy)(t) in
add_stu_uni(sid, s, u, t)
end
pre canAdd _stu_uni(sid, sy, t},

canAdd._stu_uni :
Stuld x System x Time — Bool
canAdd_stu_uni(sid, sy, t) =
let u = univs(sy)(t) in
canAdd_stu_uni(sid, u, t) A
canEdit_sys(sy, t)
end

3.4 Incorporating time into operations

The student is represented by the type StuType
which associates with a unique identifier of type
Stuld the information about a student as it evolves
over time. Stuld is used to identify the student
within other objects of the university. Details held
on a student are in the record data type Student.
¢.f., System in section 3.1.

The function is_valid_Student defines valid
state transitions for student records. For instance
if a student has status left, he or she cannot be on
any course. With any status other than offered, he
or she must belong to a department (and hence, a
faculty by the first implication).

type

69

/* Student is a person who takes courses/
programmes, is in a unique dept, has
course marks, and other details. */

StuType = Stuld #p Time > Student,

StudentO ::

status : StuStatus > chg_status

modstatus : ModStatus-set <> chg_modstatus
fac : Facld +» chg_fac

dep : Depld <> chg_dep

programmes : Pgmld-set <> chg_programmes
results : ResType <» chg_results

etc : StuOther « chg_etc,

StuStatus == offered | admitted | left,

StuOther,

Student = {| ¢ : StudentO &

is_valid_Student(c) |},

/* course marks x/
ResType = Cseld #p Result,
Result

value
/* courses by student */
courses : StudentO — Cseld-set
courses(s) = dom results(s)

value
/* valid stud with faculty must have dept */
is_valid_Student : Student0 — Bool
is_valid_Student(s) =
(fac(s) = nil_Facld = dep(s) = nil_Depld) A
let st = status(s) in
(st = left => courses(s) = {}) A
(st € {admitted, left} =
dep(s) s nil_Depld) A
(courses(s) # {} = st = admitted)
end

The structure of operations to register or re-
move a student into/from a programme is illus-
trated below. The given time, t, is used in expres-
sions such as [sid > [t + §']] in change_stud_pgm
to identity the state of the student at time t. (Here,
student sid has multiple stales, one s° for cach
t.) change stu_pgm enrols a student into the pro-
gramme. It adds the programme id to the set of
programmes the student takes via the reconstructor
functions chg.programmes. [ts precondition can-
Change_stu_pgm ensures that the student and the
programme are in decd of the university, he or she
is duly admitted but not already on the programme,

REVUE DE I’ACADEMIE DES SCIENCES DU CAMEROUN Vol. 4 No. 1 (2004)

and he/she has all programme prerequisites. Also,
the programme must be running (given by the con-
junct ~is_status(closed, p)).

del_stu_.pgm removes a student from a pro-
gramme by removing the programme id via the
reconstructor function chg.programmes. The pre-
condition canDel_stu_pgm ensures that the student
was in deed on the programme in the university.
To transfer a student from one programme to an-
other, del_stu_pgm may be used to remove him or
her from the old programme and change_stu_pgm
used to include the student into the new one.

value
/* add stud to programme; must have prereqs */
change_stu_pgm : Stuld x
Pgmld x Univ x Time = Univ
change_stu_pgm(sid, pid, u, t) =
let
s = students(u)(sid)(t),
p = programmes(s),
s’ = chg.programmes(p U {pid}, s)
in
chg_students(students(u) f
[sid = [t s']],u)
end
pre canChange_stu_pgm(sid, pid, u, t),

canChange_stu_pgm : Stuld x
Pgmld x Univ x Time — Bool
canChange_stu_pgm(sid, pid, u, t) =
isin_uni(pid, u, t) A isin.uni(sid, u, t) A
let s = students(u)(sid)(t),
p = programmes(u)(pid)(t)
in
pid & programmes(s) A
is_status(admitted, s) A
~ is_status(closed, p) A
pass_pgm_preqs(sid, pid, u, t) A
(has_degree_programmes(sid,u,t) =
~ is_degree_pgm(pid, u, t)
) A
(is-degree_pgm(pid, u, t) A
~ has_degree_programmes(sid,u,t) =
has_degree_programmes({pid},
dep(s), fac(s), u, t)
)

end,

/* remove student from programme */
del_stu_pgm :

Stuld x Pgmld x Univ x Time = Univ
del_stu_pgm(sid, pid, u, t) =
let
u=ift>1A
canSet_modstatus(fixed,on,sid,u,t—1)
then
set_modstatus(fixed,on, sid, u, t—1)
else
u
end,
s = students(u’)(sid)(t),
s’ = chg_programmes(programmes(s) \
‘ {pid}, s)
in
chg.students(students(u’)
[sid > [t 8']],u0)
end
pre canDel_stu_pgm(sid, pid, u, t),

canDel_stu_pgm : Stuld x
Pgmld x Univ x Time — Bool
canDel_stu.pgm(sid, pid, u, t) =
isin_uni(sid, u, t) A isin_uni(pid, u, t) A
let s = students(u)(sid)(t),
p = programmes(u)(pid)(t)
in
pid € programmes(s) A
~ is_status(closed, p)
end

The specifications, as presented, facilitate for-
mal verification (proofs), automatic generation of
their code, and the subsequent addition of new op-
erations as the university evolves. Also, they allow
for code/algorithm optimisation in specification re-
finements, while avoiding bias to specific imple-
mentations. For instance, preconditions, such as
canAdd_stu_uni(sid,s,u,t), that are guaranteed to be
true (elsewhere in the executed code) are not tested
in the following code fragment to enrol a new stu-
dent onto a [degree] programme:

value
/* Register student into programme of univ */
registerDegree stu_pgm : Univ x Time — Univ
registerDegree _stu_pgm(u, t) =
let s : Student,

fid = get_Facld(), /* getid from input x/

did = get_Depld(fid),

pid = get_Pgmld(did, fid),

sid = unique_stu(), /* new, unique id */

70

JOURNAL OF THE CAMEROON ACADEMY OF SCIENCES Vol. 4 No. 1 (2004)

v = add_stu_uni(sid, s, u, t},

v = add_stu_dep(sid, s, v, t),
in

change_stu_pgm(sid, pid, u”, t)
end

4 DISCUSSION

The temporal dimension of information — the
change of information over time — is imperative
in considering change as well as how to integrate
it computationally within any system (Nissanke,
1997; Vila, 1994). Unfortunately, logic systems
are mostly focused on philosophical issues of time,
the need for expressiveness and power in well-
formed mathematical theories of time, and con-
tentions with contradictions to acceptable realities;
for computing applications, effective computabil-
ity of models and efficiency are additional re-
quirements (Gabbay, 1994). Thus, event calculus
(Kowalski and Sergot, 1986) focuses on events and
situation calculus (McCarthy and Hayes, 1987;
Pinto and Reiter, 1993) stresses on the actions
that induce change. Temporal logics (Allen, 1984;
Shoham and McDermott, 1988; Galton, 1987) in-
corporate time as a mathematical sort in a multi-
sorted logic for states, and reification (Ma and
Knight, 2001) build temporal assertions and struc-
tures over other logics.

The proposed model uses time points and time
intervals (c.f,, moment and duration) and structures
time as discrete, bounded (towards the past) and
linear. The basic system is sound but need not be
complete since it does not make inferences from a
temporal reasoner (Vila, 1994).

Change [of state] is discrete, and causality is
only defined or inferred by constraints (require-
ments) on the university system, and is usually de-
rived from atemporal requirements. These are fi-
nite, computable and refutable. Real-time comput-
ing issues may not arise since “low-level” concur-
rency (i.e., at processor or transaction level speeds)
is encapsulated as a specific task that provokes a
change of state on the time line.

4.1 Applying the model

Time is captured through a clock whose ticks
are used to trigger events and hence change the
state of components in a university. A time ar-
gument defines the desired moment at which op-
erations and assertions are carried out. Precon-

71

ditions for objects, then, additionally ensure that
an otherwise valid operation does take place at the
correct point in time. Extension to possibly non-
contiguous intervals of time thus becomes concep-
tually trivial.

Considering states at instants in time permits
temporal constraints to be consistently checked
and possibly refined to time intervals in ways that
a given problem would naturally demand. Using
timenow to partition intervals into past, present
and future provides a simple, robust and sound
approach to avoid temporal inconsistencies and
dilemmas, as would easily arise in tense logics,
say, and yet permit other layers of logics (e.g.,
reification) and applications to be consistently built
over it. Thus, a user or person moves back and
forth along the time line making his or her asser-
tions in context.

Abstractly, one queries a “database” into
which temporal information is coded. All manip-
ulations, whatever the logic system, must respect
the underlying time line (ontology). Any inconsis-
tencies arise from viewpoints over this “database”
of time-varying states, rather than inconsistencies
in its updates and evolution.

This is deliberate. In streamlining temporal ac-
tivities onto a time line and with the ability to pick
and mix temporal ontologies, contexts and prior-
ities may have to be defined. Thus, the logical,
intuitive perception of time seems to break down:
past, present and future activities may overlap in
time and a present activity may have started be-
fore a past one! The viewpoint used guarantees
that events “flow” in order, but states may be ac-
cessed in an atemporal fashion, Hence the view-
point anormaly.

Basic temporal elements are thus fused into
atemporal activities but in a simple way. Arbitrary
levels of temporal complexity, possibly through
pure temporal expressions of varied temporal log-
ics, may be added in a modular fashion. Theoreti-
cally, a map from these to the underlying logic may
be necessary.

4.2 The frame problem

For computational efficiency, most things
should not change, even when changes induce
other changes. The frame problem in logic is to
determine those things that do not change. In the
model, the past is immutable and the future is

REVUE DE L’ACADEMIE DES SCIENCES DU CAMEROUN Vol. 4 No. | (2004)

changeable only via the present. In the present,
states persist de fucto, unless explicitly changed by
an event or through implications arising from such
events. Such implications are derived from con-
straints in the the formal specification of the sys-
tem. Things that change for a given event are rela-
tively few and often do so in algorithmically flex-
ible ways (c.f., section 3.2). Specifying every rel-
evant condition for change (the qualification prob-
lem; Shoham and McDermott, 1988) is implicit in
the problem specification. Any condition that is
omitted is a specification validation issue which
could be redressed as if it were a new change to
the system. However, elaborate general solutions
for these calls for non-monotonic reasoning (¢.f.,
Shoham, 1987) and temporal constraint satistac-
tion (c.f., Schwalb and Vila, 1998). These are be-
yond the scope of this article.

4.3 Hypothetical evolution in time

Allowing for possibie hypothetical evolution
of university states suggests a formulation using
situation calculus to capture all possible ways in
which events can unfold (Fox et al., 1998; Pinto
and Reiter, 1993). In this work, only one branch
of the many hypothetical alternatives after a given
action is selected to describe the evolution of the
world as it actually unfolds. The overarching con-
cern is to capture events and states in the correct
time order. Performing situation analysis is more
naturally handled under applications (operations)
built over the basic model. Thus, analysing fu-
ture events (before they occur) is useful in fore-
casting/planning; analysing events that might have
occurred is useful in fault-detection and for per-
formance improvements on the system. These are
also useful in software validation and in elicit-
ing rules that govern change in the system imple-
mented.

Status values such as fixed and xptal and re-
lated assertions on them (e.g., has_modstatus) are
empirical mechanisms to enforce state persistence
and transitions. Thus, persistence can be main-
tained in both real and hypothetical situations, and
the recreation of states through transitions from
hypothetical to real.

Using multiple versions of possibly distinct
universities naturally suggests a branching time
model (c.f,, Fox et al., 1998) even though con-
sistency issues rather than process concurrency is

our driving concern. The demands for a branching
time model are circumvented by considering uni-
versities as objects in an edit environment, each
with its own clock. Subcomponents transferred
among them need not carry over prior temporal
constraints, Also, a temporal relationship between
separate universities (or components) within the
edit environment is not required: two universities
need not evolve in related time frames, and a sep-
arate module for branching time temporal logic
could always be added for specific applications,

4.4 Situating the work

Institutions have addressed the issue of adapt-
ing higher education to technological change, to
the size and diversity of student populations, to
courses offered and their delivery mechanisms,
and to the type of staff needed (Bates, 1999;
Ellsworth 1997). But change is generally viewed
in terms of policies (aims) and services rendered,
and rarely from the point of view of the technology
handling it. Our viewpoint is novel in this regard.

Adapting a university for change at best comes
under enterprise modelling (c.f., Petrie, 1992 ; Ver-
nadat, 1996; Ojo and Janowski, 2001), where one
conceptualises a working mode! for his or her busi-
ness (here, higher education) and refated engineer-
ing (business process reengineering). That is, it
calls for a careful examination of the enterprise’s
resources, the activities and processes that operate
on the resources, how automated and manual pro-
cesses integrate into a working system, and how
priorities and scheduling are defined for effective
use of its resources. It calls for a re-appraisal of
the university’s current processes and procedures
so that it rapidly and fully takes into account, and
presents, the implications of change, from risks to
advantages (Reeder, 1994 ; Keller, 1983).

In the face of change then, one needs to anal-
yse, build and rebuild such enterprises as en-
gineering artifacts (c.f, Brown and O’Sullivan,
1995; Glasson et al., 1994). In other words, a
semantic (theoretical) basis and empirical meth-
ods to manage change within a university struc-
ture have to be developed. The theoretical basis
depends on formality in the temporal notions of
objects. In this work, the RAISE methodology
(The RAISE Language Group, 1995; The RAISE
Method Group, 1995) provides a methodologi-
cal framework as well as formal description tech-

JOURNAL OF THE CAMEROON ACADEMY OF SCIENCES Vol. 4 No. 1 (2004)

niques to use. Empirically, change is addressed
by putting together core operations to define new
operations and queries. Another empirical nov-
elty includes mechanically (syntactically) address-
ing conceptual and semantic issues; for example,
status values is used to capture persistence and hy-
pothetical evolution.

Conceptually, the technology rather than con-
ventional temporal logic theories defined the basic
structure of time used. 1t allowed for various tem-
poral logics to be built, used and changed over it
in a flexible, sound and consistent manner — even
when completeness of the underlying logic system
cannot be guaranteed.

4.5 Further work

The work so far shows how time may be incor-
porated into a changing university structure, How-
ever, further work still has to be done on defining
operations for forecasting (what-if analyses) and
for carrying out validation and control checks on
its evolution over time.

The specific limitations in the map between
other logics and the basic model is currently im-
plicit in specification requirements. However,
more explicit guidelines for maps may be desir-
able.

Notions in situation calculus and the branch-
ing time model can be used to enhance forecast-
ing, as well as any time-ordered updates on uni-
versity components. Also, the distinction between
changing the past versus correcting it is still to be
explored in depth.

In the model developed, future events and ex-
perimental results are recorded and finally incor-
porated into the university system as timenow runs
past them. An alternative view worth exploring is
to have a plan for future events or intended opera-
tions. All valid operations of the plan that can be
fulfilled are carried out on appropriate clock ticks.

5 CONCLUSION

The structures and activities of an organisation
or enterprise change over time as it adapts to tech-
nological and social changes. Computerising such
an organisation necessitates a model of time that
permits current operations to take place, past ac-
tivities to be verified, and future ones explored.

Using the university as an example, a time rep-
resentation was chosen that uses a clock whose

73

ticks signal when to match university activities and
states to those in the real world. Operations are
carried out and enterprise components persist in a
given state over intervals of time, but with the abil-
ity to observe university activities or states at other
moments.

Hence a single view of time is adopted with
the past, present and future defined as intervals that
are before, including or after the current time, and
with consistent transitions among them. A special
clock, timenow, corresponds to the moment “now”
in the real world. Another special clock, vtime,
permits one to make corrections to the records of
past events, as is expected in data validation, but
without changing or falsifying the past. RSL spec-
ification components were then given to illustrate
how a university may evolve in the model of time
and how typical operations may be adapted to in-
corporate time constraints.

6 ACKNOWLEDGEMENTS

Many thanks to Chris George and Richard
Moore for various suggestions, supervision of the
work, improving on tools used and performing
consistency checks on the specifications. The au-
thors wish to thank all at UNU/IIST, at University
of Buea, and beyond for making this project and
their stay at UNU/IIST possible.

7 REFERENCES

ALLEN, J., (1984), Towards a General Theory of
Action and Time. Artificial Intelligence 23, pp.
123 - 154.

BATES, A. W. {1999). Restructuring the Univer-
sity for Technological Change. In: (eds) Brennan,
J., Fedrowitz, J., Huber, M. and Shah, T., What
Kind of University? International Perspectives on
Knowledge, Participation and Governance. So-
ciety for Research in Higher Education and The
Open University Press, Buckingham.

BROWNE J. and O’SULLIVAN, D. (1995). Re-
Engineering the Enterprise. Chapman and Hall,
London.

ELLSWORTH, J. B.,(1997). Technology and
Change for the Information Age. The Technology
Source (http://Horizon,unc.eduw/TS/).

FOX, M. S., BARBUCEANU, M., GRUNINGER,
M. and LIN, J. (1998). An Organizational Ontol-

REVUE DE L’ ACADEMIE DES SCIENCES DU CAMEROUN Vol. 4 No. 1 (2004)

ogy for Enterprise Modeling. In: Prietula, M. J.,
Carley, K. M., and Gasser, L. (eds), Simulating Or-
ganizations: Computational Models of Institutions
and Groups. The MIT Press, Menlo Park Califor-
nia, pp. 131-152.

GABBAY, D. M., HODKINSON, I and
REYNOLDS, M. (1994). Temporal Logics,
Mathematical Foundations and Computational
aspects. In: Oxford Logic Guides 28 (volume 1).
Clarendon Press, Oxford.

GALTON, A. (1987). Temporal Logic and their
Applications. Academic Press, London.

GLASSON, B. C.,, HARWRYSZKIEYCZ, 1. T,,
UNDERWOQOOD, B. A. and WEBER, R. A. (eds)
(1994). Business Process Re-Engineering: In-
formation Systems Opportunities and Challenges.
Proceedings of the IFIP TC8 Open Conference
on Business process Re-Engineering: Information
Systems Opportunities and Challenges, Queens-
land Gold Coast, Australia, 8 - 11 May. North
Holland, 1994.

KELLER, G. (1983). Academic Strategy: The
Management Revolution in American Higher Ed-
ucation. John Hopkins University, Baltimore.

KOWALSKI R. A. and SERGOT M. J. (1986). A
logic-based calculus of events. New Generation
Computing 4, pp. 67-95.

MA, J. and KNIGHT, B. (2001). Reified Temporal
logics — A survey. Artificial Intelligence Review,
15(3), pp. 189 - 217.

McCARTHY, J. and HAYES, PJ. (1987). Some
Philosophical Problems from the Standpoint of Ar-
tificial Intelligence. In: ed: Ginsberg, M. L., Read-
ings in Non-monotonic Reasoning, Kauffman, Los
Altos, CA, pp. 26-45.

NEWBY, H. (1999). Higher Education in the
Twenty-first Century — Some Possible Features.
Perspectives 3(4), pp. 106-113.

NISSANKE, N. (1997). Realtime Systems. Pren-
tice Hall Series in Computer Science, Prentice
Hall, London.

0JO, A. and JANOWSKI, T. (2002). Formalizing
Production Processes. In: Hung D. V., George, C.
and Janowski, T. (eds), Specification Case Studies

74

in RAISE. Springer Verlag Series in Formal As-
pects of Computer and Information Technology.

PETRIE Jr., C. I. (ed) (1992). Proceedings of
the First International Conference Enterprise Inte-
gration Modeling. MIT Press, Cambridge, Mas-
sachusetts.

PINTO, J. and REITER, R. (1993). Temporal Rea-
soning in Logic Programming: A Case for the Sit-
uation Calculus. In: Proceedings of the 10th Inter-
national Conference on Logic Programming, Bu-
dapest. MIT Press, Cambridge Massachusetts, pp.
203-221.

REEDER, J.(ed) (1994). Business Process Re-
design: For Higher Education. National Associ-
ation of College and University Business Officers.

SCHWALB, E. and VILA, L. (1998). Tempo-
ral Constraints: A survey. Constraints 3(2-3), pp.
129-149.

SHOHAM, Y. (1987). Non-monotonic logics:
Meaning and Utility. In: Proceedings of the 10th
International Joint Conference on Artificial Intelli-
gence (IICAT’87), Milan, Italy pp. 388-393.

SHOHAM, Y., and McDERMOTT, D. (1988).
Problems in Formal Temporal Reasoning. Artifi-
cial Intelligence 36(1), pp. 49-61.

SHU, W. S. and MOORE, R. (1998) Dynamically
Reconfigurable University: Formally Specifying
Core Operations. UNU/IST Technical Report No.
146.

N

The RAISE Language Gfaup. (1995). The RAISE
Specification Language. BCS Practitioner Series,
Prentice Hall, London.

The RAISE Method Group. (1995). The RAISE
Development Method. BCS Practitioner Series,
Prentice Hall, London.

VERNADAT, FB. (1996). Enterprise Modeling
and Integration: Principles and applications, Chap-
man and Hall, London.

VILA, L, 1994, A Survey on Temporal Reason-
ing in Artificial Intelligence. Al Communications
7(1), pp. 4-28.

Received: 25/01/2003
Accepted: 21/05/2004

