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Abstract

For anyd, m and k € IN, let GL(k) denote the set of invertible real k x k matrices, M(m, k) the set

of real m x k matrices and G(d, m) the set of matrices of the form [ 0 A ]é , where A € GL(d)
mxd

and C € GL(m). Let (A,B,C) := (A;, Bi11, Civ1) be an i.i.d. sequence in GL(d)x M(d, m) x GL(m).
Set Ay -+ Ay =1 for m > n, where [ denotes the identity matriz and consider the random segquence
(Rn(A, B, C)) defined as follows: n

Ro(A,B,C) == By, Ra(A,B,C) :=> An--Agi41Ba ki Cok--Cp, n 2 1 (1)
k=0

The process Ry (A, B, C) is an autoregressive prcess and obeys Rp(A,B,C) = A Rn_1(A,B,C) +
But1Cn---Ci. Let V. € M(m,k), k > 1. In this paper, the almost sure asymptotic behaviour of
(%—ln | Rn(A,B,C)V ||} is studied. Conditions are given under which nh_glo L In {| Rp(A,B,C)V ||
exists IP-a.s. It is shown that under these conditions, the value of this limit depends on the location

of V in a filtration of M(m, k). Let A, be the upper Lyapunov exponent associated with pin, jim
denoting the common distribution of the the elements of the sequence M C G(d,m), M := (M;)

where - Ai  Bin
M; = . (2)
Omxa Cit
It is also shown that if uy is irreducible (in a sense to be defined later), then
1
nlglgo - In || Ry (A, B,C)V ||= Ay, almost surely, for all non-zero V for which the process (Rn(A,B,C)V)

is defined.
Key words: Growth rate, Lyapunov exponent.

Resumé

Soit d, m et k € IN, GL(k) Uensemble des matrices reelles et invertibles d’ordre k, M(m, k)
Vensemble des matrices reelles de dimension m x k et G(d,m) Uensemble des matrices reelles

de forme [ A [} } , ol A € GL(d) et C € GL(m). Soit (A,B,C) := (A, Biy1, Ciry) une suite

Omxd C
aleatoire indpendent et indentiquement distribuée des valeurs dans GL(d) x M(d,m) x GL(m).
Pour m,n € IN, posez Ay-+-Ap = 1 st m > n, o 1 denote la matriz identité et consid-

erez la suite aleatoire definie par (1). Le processus (Ry(A,B,C)) est autoregressif et il Satisfait
Rn(A,B,C) = AnZ_1(A,B,C) + Bpy1Cn---Cy. Soit V€ M(m,k), k > 1. Dans cet article, le
comportement asymptotique du processus reelle (n || Rp(A,B,C)V ) est etudiée. Des conditions
sont données sous lesquelles lim rli In || Ro(A, B, C)V || existe IP-p.s. Il est demontré que lorsque
ces conditions sont verifiées, alors la valeur de la limit dépend de la position de V dans une filtration
de M(mn, k). Soit M, 1" exposant de Lyapunov le plus grand associé avec py o chague Elément
de la suite M (donnée par (2)) a distribution py. Il est demontré que lorsque py est irreductible
(dans un sens & definir), alors nl'i}rglo Hln | Ru(A,B,C)V ||= Auy #P-p.s pour tout V non-zero, tel
que le processus (R (A, B, C)V) est defini.

Mots Clés: Tauz de Croissance, Exposant de Lyapunov.
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1 Introduction

In the last decades, there has been much interest in various generalisations of autoregressive
processes. Some examples include moving averages, random coefficient models with different types
of noise etc. Stationarity properties (see e.g. [12], [7], [1]), almost sure convergence, convergence
in distribution and asymptotic distributions in certain cases (see e.g. [6], [8], [9], [10]) have also
been a subject of interest. This while, little attention has been paid to questions related to the
growth rates of such processes. These questions are taken up in this paper. Let (Xi)i>o be a
process with values in a normed space with norm || . ||. The growth rate of X} is understood to be
lim $1n || Xy || if it exists.

t—00

The object of interest here is the growth rate of the autoregressive process Rn(A,B,C) in (1);
{henceforth we simply write R,, for R, (A, B, C)).

The study of the growth rate of the process is motivated by questions arising in various fields of
science. Cousider the following(strongly simplified) one dimensional example: Assume that for
n > 1 there are R,.1 individuals in an environment at time n — 1 and that in the time intervall
[n—1,n) the population in the environment increases by a ranom factor of A, and a random number
By individuals migrate into and out of the environment. The total number Ry of indivduals in
the environment at time n is therefore given by R, = A Ry1 + Bpy1- The following question may
be asked: At what speed does the number of individuals in the environment ultimately increase?
One way of solving this problem(which is done here in a generalised setting) is to study the growth
rate of the process (Ry,). Assume that it is shown that under certain conditions, nlgr;o - In || Ry [|= A,
where A € IR. Then under these conditions, if A < 0 it would be expected that the population dies
out ultimately, if A > 0 the population would be expected to explode ultimately and if A = 0, this
suggests that the population would oscillate ultimately around some number.

In what follows, the asymptotic behaviour of (11n || R,V ||) is described, when

EMn’ || My || +1n* || My"' ] < oo, where M := (M;) is some sequence in G(d,m), associated
with Ry and V € M(m, k) for some k. Let Z := (Zj)ien, be a sequence of i.i.d. random matrices
in GL(d) with common distribution pz on GL(d). Assume that IEIn" || Zg ||< oco. Then by the

Furstenberg Kesten theorem(see [5]), the almost sure limit nlilgo - In || Zy---Zg {|=: Ay, exists and
is a constant. The number X, is called the upper Lyapunov exponent associated with py. Given a
sequence (A, B, C) € GL{d) x M(d, m) x GL(m) the following sequence M C G(d, m), is associated
with it: M = (M;)ien,, M := A Bf“

Omxa Cit1
The main objectives of this paper are to prove theorem 3.9 which characterises the different values
that lim E In || R,V || takes and theorem 5.5, which gives conditions ensuring that it takes a single
valuenglﬁegendent of V(V beeing non-zero).
The growth rates of the autoregressive processes (P,,(A, B)) and (Qu(B, C)) are also studied. These
processes are defined by Pp{A,B) := Aan_l(A,B,Ln) , Qu(B,C) = Rn(id,B,C). They obey
Po(A,B) = Ap(Py—1(A,B) +By) and Q(B,C) = Qu-1(B,C) +Bny1Cy - - - Cy (henceforth we write
P, for P,(A,B) and Q, for Q,(B,C)). Several questions remain unanswered in relation to the
growth rates of these processes and are taken up elsewhere.
The paper is organised as fiollows: In section 2 it is shown that if M := (M;) is a sequence of i.i.d.
random matrices in GL(k) for which IE[In* || My || +1n" || My* [|] < oo and ¥ is a bounded subset
of IR¥, then nlgrgo ;1; In(sup || My - -+ Moz ||} exists almost surly and is a constant. The major tool
here is a theorem of Fﬁ?sjtenbeg and Kifer ([4]). By defining £(V) := {Vz : 2 € S,_1}(Sp—1 is
the unit sphere in IRP) for V € IM(k,p), p € IN, it is then shown that nlglgo % In || My --- MgV ||

exists almost surely for all V € IM(k,p) under the condition above and the limit depends on the
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position of V in a filtration of IM (k, p). Using a suitable choice of the sequence M, it is then shown
. .1 .
in section 3 that under additional regularity conditions 1i)m =1In || RyV || exists almost surely for
n—oo 1

all V.€ M(m,p), p € IV and the limit depends on the position of V in a filtration of IM(m, p).
Section 4 contains statements on Py, and Qq whﬁch are corrolaries to statements proven in section

3. Section 5 gives conditions under which lim = In || R,V || exists almost surely and has a single
n—oo 11

value for all non-zero V for which the process (R, V) is well defined.

2 Random matrices and filtrations of matrix spaces
The main result here relies on the following theorem:

Theorem 2.1. Let (Q,F,IP) be a probability space and (M;)iew, be a sequence of i.i.d. random
matrices in GL(d) defined on Q. Assume that IE [In" || Mo || +In™ | My ] < co. Then there
exists a constant r, e filiration {04y} = Iryy CIL, C -+ C Iy = IRY and real constants

—00 < Ay < A1 < v < Ag = Ay, Such that for x € ﬂBd\{del}, if x € IL\ILLiy,, then

1 1
lim —In|| My« Mpx [|= A P-a.s. and lim ~In || My - Mg ||= Ay P-a.s.
n—oco n n—oo 1)
Proof : See [4]

1
Remark 2.2. For the subspaces IL;, IP-a.s. lim gln | My, - Mol |= Ai (see [4]).
n—o0

Definition 2.3. Let I' = IN or Z, f : I' — IRY. The number A\(f) := limsup £ In || £(t) || is called
oo
the Lyapunov index of f

Lemma 2.4. The Lyapunov index has the following properties:
(i) If ¢ # 0 is the constant function, then A(c) =0 ( M0) = —o0).
(ii) If o € IR\{0}, then X(af) = A(/f).
(ili) AM(f+g) < max{A(f), Mg)} with equality, if A(f) # A(g).
Proof : see (3]

Lemma 2.5. Let (M), g+ be dxm matmces and IL an n-dimensional lmear subspace of IR™ with

basis {vi, -+, vy}, n < m. Then hmsup~1n | Melg |l= “ max }hm%up—ln | Mo ||
V1 4e-4yUn b~

Proof : See [3], [11]

For ¥ C IR™, write IL(X) for the linear subspace of IR™ generated by ¥ and if B is a matrix for
which Bx is defined for all x € %, set || B ||z:= sup | Bx||.
{xex}

Lemma 2.6, Let (M),cp+ be real d x m matrices. Suppose that X1, Ly are non-empty bounded
1 1
sets in IR™ and IL(2,) = IL(X3). Then limsup = In || My ||, = limsup — In || Mg ||x,-
o0 © tooo b

Proof : ©1 = Ony1 if and only if 3o = 0 x1 since IL(X,) = IL(X;). In this case the assertion of
the lemma, is trivially true. Assume therefore that >; # Omx: and let
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{et,...,ex} C X1, be linearly independent vectors such that IL(3y) = IL({eq,...,ex}). For each

ie{l,... .k}, limsup { In || Mye; ||< limsup £ In || M; ||x, .
t—00 t—00
Therefore max _lim sup — hl I Mee; [|< hm sup ln | My s, - (3)
ie{l,...k} t—oo
Since IL(%;) = IL({ey, ..., ex}), it follows from lemma 2.5 and (3), that

1 1
hmsup In | Milgmy) lI=  max hmsup In || Myej (|< hmsup—ln I My |ls, -
{ €15 sz} t—o0

. 1 . 1
Thus limsup ~ In || M¢[g(x,) [|< limsup ~1In || M; ||y, . (4)
t—so00 b t—so0 T

On the other hand, [| M; [z, = sup || Mix [|= sup || M; Zn(X)ei |

{xe1} {xEEl} i=1

= sup | Zrl(x Me; ||< sup ( max |ri(x)|) >0 Mies |I. Now £y # Omx1 and is bounded.
{x€x1}  i=1 {xeX1} \I€ k} i=1

goery

Thus 0 < sup ( sup [ri(x)[) < 0o and so hm {ln[ sup ( sup ['rl(x)l)]

{xex,} \ie{l,...k} f—o0 {xex1} \ie{l,....k}
= 0. From this, lemma 2.4(iii), lemma 2.5 and the equality IL(2) = IL({e1,...ex}),
k
hmsup—ln | My I, < hmsup lnz || Mie; ||< {rllax }hmsup—ln Il Mee; ||
i€
i=1

. 1
= limsup ~ ln | Milg(ier,.en)) 1= timsup —In || M¢|p(x,) || - Therefore
. 1 . 1
limsup - In I M Iz, < lim sup = In | Melnesy I - (5)

(4) and (5) together imply that limsuplln I My ||s,= limsup—l—ln | Mgz, Il - Similarly,
t—o00 b t—oo b

) 1 . 1 .
limsup ~In || My |[z,= limsup—1In || My[ges,) || . Since IL(¥1) = IL(X;), the assertion now
o0 b t—o00 b

follows.
For ¥ a non-empty bounded set in IR™, define ¥ := {A C IR™ : IL(A) = IL(X)}.

Theorem 2.7. Let M = (Mi)ien, be a sequence of i.i.d. random matrices in GL(k) defined on
a probability space (2, F, IP) with common distribution u.

Assume that IE [In" || Mg || +1n" || Myt (] < oo and let M) be defined as follows; for non-empty
bounded . C IR* set \(X) := IP-a.s- lim Lin | My Mo |z

OIf{kx1}=Lrp CL, C---C ﬂ)o Bk are the subspaces given by theorem 2.1 associated with
poand —o0o < Ay < -+ < )\0 = Ay are the associated constants then for Oy # X C IR¥, it holds
that ¥ C ILj and T ¢ Lip1<=A(Z) = A;.

(ii) A(.) is constant on T for each non-empty bounded ¥ C IRX.

Proof : If Oxy; # ¥ C IR¥, then there exists some j € {r,...,0} for which

{kal} =1 C...C Ej; - Ej, ¢ E/j_,_l. IIye (Ej\ﬂ;j+1) N %, then
Iln|[Mp--Me¥ [ 2In||Mn---Mg ||z for all n € IN. Theorem 2.1 implies

’ 1 1
A = liminf ~1In || Mp - - Mp¥ || < liminf —In || M, -+ - Mp ||z [P—a.s. (6)
n—o0 n n—oo 1
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It will now be shown that A; > hm sup~ In || Mp<--Mg ||» P-a.s. Let ps recall that j has been
fixed such that ¥ C IL;. Thus || 1\/[n Mo ls< sup | My ---Molr; || x I
=|| My -+ Mp|g,; || sup | x| . Since ¥ is bounded and satisfies X2 # Oyy1,

1
lim ~1nsup | x H— 0. By remark 2.2, IH&HIH | My---Molg, |I= Ay IP-as. Therefore

n-—-+co 11 Xy

lim sup L In || My, - Mg ||n< Aj [P-a.s. This together with (6) imply that
n—o0
hnl,n In H My, - - Mg “g: /\j IP-a.s. Thus ¥ C ﬂ/j, g Ej+1 = )\(E) = /\j.

I— o0

1
For the other direction of the equivalence, assume that nlvi}m - In || My ---Mg |[|[n= Aj; IP-as. for
oQ
some \j and ¥ C ILj, ¥ ¢ ILj4, is false. Since {Okx1} =ILryy ClILy C--- Cllg = Bk, there must
1
exist some i # j for which ¥ C IL;, X ¢ IL;y1. This implies however that nlgxgo - In|| My -Mg |lz=

1
Ai IP-a.s. This contradicts lim —In || My - - Mg ||n= JXj [P-a.s., since \; # ;.

n—oo n

(ii) That A(-) is constant on ¥ follows if lemma 2.6 is applied to the elements w of the set of measure
1 on which (i) holds.

Definition 2.8. Let V be a vector space. A fillration of V is understood to be a sequence of
subspaces 0 = Loy CIL, C +-- C ILy C ILy =V for somer € INg, where each ILj is a vector space.

Lemma 2.9. Let V be a real vector space of dimension d and suppose thaty: V — IRU{—o0} is a
map satisfying the following conditions: v(0) = —oo, y(tx) = y(x), for everyt € IR\{0} andx € V
y{x1 + x2) < max{y(x1),v(x2)} for every x1, x2 € V. Then v can take at most d distinct values
on V\{0}. The sets V, := {x € V : y(x) < pu} with p € IR are linear subspaces of V. Let
—00 < yp < oo <y < o0 be the different values 7y takes. The sets Vi := V.. form a filtration of
V and it holds that y(x) = v; <> x € Vi\Vi;,.

Proof : See [3].

Definition 2.10. A map vy defined on o real vector space with values in IR U {—oo} fullfilling
the asssumptions of lemma 2.9 and v(x +y) = max{y(x),v(y)} for v(x) # ~v(y) is called a
characteristic exponent.

For V € M(k,p), let £(V) := {Vx:x € S, 1}, V= {W € M(k,p) : L(E(W)) = IL(%(V))}. From
the preceeding theorem and lemma the following corollary is obtained:
Corollary 2.11. Let the sequence M satisfy the assumptions of theorem 2.7 and p € IN. Then,
o .1
for every matrizx V. € M(k, p), the limit A(V) := IP-a.s.- Ii)m Hln | Mp---MoV || exists and is
n—co

constant on V. Ifk =p and V € GL(k), then A(V) = \,. Morcover the map
A:M(k,p) — IRU{~o0}, V> X(V) defines a characteristic exponent.

Proof : If V = Oy, then it is clear that A(V) = —oco. Let V # Ok, then || My --- MV ||

= sup || My---MyVx |= sup | My Moy [I=] Mn---Mg [is(v) . Since %(V) is
{x€Sp-1} {y:VX:XESp,l}
bounded, there exists some j such that L(V) C IL; and ¥(V) ¢ ILjyy. Theorem 2.7 now states

L1
that HE& - In{| My - My [[pvy= A P-as.

1 —
Therefore A(V) = 1220 - In || My -+ MgV ||= Aj IP-a.s. It’s now shown that if W € V then A(W) =
; n
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A(V). Let W € V then by the definition of V, IL(X(W)) = IL{(X(V)). Therefore (W) € L(V). By
theorem 2.7, A(Z(W)) = A(Z(V)).

Now || My« - MW ||=I| My - - - My [|s3w) - Therefore A(W) = A(E(W)) = A(S(V)) = MV), showing
that A is constant on V. If k = p and V = Ii, then A(Ix) = A,. It is easy to see that Iy = GL(k).
Therefore A(V) = X, for all V € GL(k) since X is constant on 1. Showing that A defines a
characteristic exponent, involves a straightforward computation.

The following is the main theorem of this section:

Theorem 2.12. Let (Q,F, IP) be a probability space and M = (M;)ien,, o sequence of i.i.d.
random matrices in GL(k) defined on Q. Assume that IE [In™ || Mg || +1n* || Mg* ||] < oo and let
~00 < Ap < o < Xg = Ny and {Okxp} = Lrpy C Ly C -+ C Iy = IR* be the subspaces and
constants in theorem 2.7. For each j € {0,...,r} and p € IN define

1
L; := {V € M(k,p) : (V) C L;} and A(V) = IP-a.s- lim —In | Mp---MoV |[, V€ M(k,p).

Then X defines a characteristic exponent and
(i) for each j € {0,...,r+ 1}, L; is a linear subspace of M(k,p).
(i) {Okxp} =Lrp1 C L, C - C Lo = M(k,p).

(iil) of V€ Mk, p)\{Okxp} then V € Lj\Lj,1 <= A(V) = A;.

(iv) if k = p then GL(k) C Lp\L;.

Proof : That A defines a characteristic exponent follows from corollary 2.11.

(i) By lemma 2.9 and the fact that A defines a characteristic exponent(corollary 2.11), for each
j €{0,...r} the set {V € M(k,p) : A(V) < A;} is a linear subspace of M(k,p). Therefore L; is
linear since Lj = {V € M{k,p) : £(V) C IL;} = {V € M(k,p) : A(V) < A}

(ii) Since A < -1, Ly C Ly

Further, Ag = A, implies that Lo = {V € M(k,p) : A(V) < A} = M(k, p).

Loy ={VelMk,p):2(V) C Ly} = Okxp. That A takes precisely the values

~00 < Ap < Ap1 < -+ < Ag follows from the following proof of (iii):

(iii) Let V € M(k,p)\{Okxp}. Then V € Lj\Ljy4 for some j and this is equivalent to

(V) C ILj and T(V) ¢ Liy 1 <=>A(E(V)) = A\j<=A(V) = ;. That for k = p,

CL(k) C Lg\L; follows from the fact that I, = GL(k), A(Ix) = Ap<=>Ii € Lo\Ly. Therefore
GL(k) C Lo\L;. Also, for V := [ %, O (p—1) ] x € Lo\IL1, M(V) = g, showing that V € Lo\L.
Therefore GL(k) C Lo\L;.

3 The growth rate of R,

The growth rate of (Ry) is now studied. We first create the framework in which to argue. This is
done in lemmas 3.1 and 3.2. The arguments begin proposition 3.3.

M(d, m) is a fnite dimensional real vector space, hence all norms on M(d, m) are equivalent. Let
F(M(d, m)) be the Borel o-field generated by the open sets with respect to the metric induced by the

matrix norm associated with the standard Euclidean norm || . || in R4+™. (M(d, m), F(M(d,m)))
is a measurable space.

A
Set G(d, m) := B : A € M(d,d),C € M(m,m) $. G(d, m) is a subspace of

Omxd C
M(d + m,d + m). F(G(d,m)) := {GNG(d,m) : G € FM(d + m,d + m))} is a o-field and
(G(d,m), F(G(d, m))) is a measurable space.
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Lemma 3.1. Let (O, F, IP) be a probability space. A map M : 0 — G(d, m),
OA 2 } (w) is (F, F(G(d, m)))-measurable-if and-onty-if-A is

mxd

(F, F(M(d, d)))-measurable, B is (I, F(M(d, m)))-measurable and C is (F,F(M(m, m)))- measur-
able.

w — M(w) =

Proof : See [11]

Define G(d, m) := G(d, m)NGL(d+m), then by lemma 3.1, from the point of view of measurability,
considering some random (A,B,C) in GL(d) x M(d,m) x GL(m) is equivalent to considering a
random matrix M in G{e;m): The folowing lemma is usefull.

. be a random matriz in Gid,m). Then
[ Omxd C J

(a) max{IE " | M |, In* || M ||} < oo, if and only if

Lemynaa 3.2, "Tei d, m € IN"and M =

(b) max {IEIn||A||,E|n||C||,ER"||B|,Eln" |[detC|,Fn~ [det A} < oc.

Proof : Tt is first shown that (a) = (b). Notice that max{|| A ||| B |l,|| C ||} <|| M || . hence
max{ln™ | A |,In* || B |,In" || C ||} <In* || M || . From this and the assumption (a) of the

lemma, max{EIn" ||A|,Eln" |B|,E" | C|} <EL" | M |< c. (7

A"l —AT'BCH

M is invertible with M~ = _
Omxd C

. Since IEIn" || Mt ||< oo it follows similar to
(7) that
max{#EZIn* | A, BW* | ATBCT! |, EInt | C7 |} < Bt | M7 < oo, (8)

Since L <|| Al A~ |, In” [A|[<Int || A™! ||, hence EIn™ | A ||[< IE1Int || A~! ||. This and (8)
imply IEln™ || A ||< oo. Similar reasoning applied to C shows that IEIn™ || C ||< oo.

Thus max{Eh~ |A|,En™ ||Cl} < co. (9)
This and (7) imply
max{E|ln | A |||, EIn" || B |, E|ln || C [} < oo. (10)

It is now shown that max{IF In~ |det A|, IE In~ |det C|} < o0, to complete the proof of (a) = (b).
Let 6;(A) > --- = 64(A) > 0 be the singular values of A.
Then || A ||= 61(A), |det A| = §1(A)---64(A) and || A~ ||= 64(A) ™', hence

d

—In[det Al = — 3" In&i(A) < ~dIndq(A) = din || A™' ||. Therefore
i=1

Eln~ |[det A| < dEIn™ || A~! ||. This and (8) show that IF In"~ |det A| < co. Similarly IE In~ |det C| <
o0. Thus max{IF In" |det A|, IE In" |det Al} < o0. (a) == (b) has thus been proven. We now prove
(b) => (a). Evidently,

3 In7 |det M| = max{0, —(ln |det A| + In|det C|)} < In™ |det A| + In~ |det C|. Therefore

FEln™ |detM| < IEIn" |det A| + IEln~ |det C|. (11)
By (b), Eln™ |[det A| + IE1In™ |det C| < oo. From (11),

IEn™ |[det M| < o0. (12)
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Let 61(M) > -+ > 844 m(M) > 0 be the singular values of M, then

|det M| = 0; (M) -+ - 644m(M) and || M ||= 644.(M) L. Therefore | M~! || |det M|

<[ M [|4+m=1 hence Int || M~! ||< In~ |det M|+ (d+m~1) 1" || M ||. Ifit is that JE In™ || M ||< oo,
then by (12), the assertion follows. But

I M)A ]+ 1B+ I C 1< 3max{]l A I, | Bl,| C|I}. Hence

It [M|[<In3+In™ |A||+Wt || B||+Wnt | C|.

Therefore IEInt | M |<In3+ E(ln*t |A|| +In™ || B| +In* || C ) < co.

Let m and d be given, d, m € IN. Define %q := (0},,,x*)*, x € IR™, * denoting the transpose. If
¥ C IR™ then define %4 := {%4 : x € Z}. "A sequence M in G(d, m)” shall be talked of, and "a
sequence (M;)icpv, of i.i.d. random matrices in G(d, m) with

M; := A B |, shall be meant. If Z := (Z;) is a sequence of square matrices, write
Omxd Cit1
®,(Z) := Zpn---Zg. Let (A,B,C) := (A4, Bi+1,Cit1) be a sequence of i.id. random elements of
A;  Bint

GL(d) x M(d, m) x GL(m). By lemma 3.1 the sequence M with M; := J is a sequence

Omxd Cipt
of i.i.d. random matrices in G(d, m). If

max{IE |ln || Ap |||, IE|m || C1 |||, EIn™ || By ||, IEIn~ |det Ao|, JEIn" |det C1|} < 0o (13)

then by lemma 3.2, this is equivalent to

E [ln+ | Mo || +1n* || M{{l H] < oo. (14)

In the sequel, the objects of interest are sequences (A, B, C) of random elements of
GL(d) x M(d,m} x GL(m) which satisfy (13). However the associated sequences M in G(d, m)
which satisfy (14) are considered since they fit in our set up in a natural way.

Proposition 3.3. Let M be a sequence in G(d, m) such that IE [In* || Mg || +In* || My! {|] < o0
and

. | Cot1---Cy s
X C IR™ be bounded. If limsup
n—o0 “ @n(M) ”f}d

.1 1
lim ~In || Ro 5= lim ~In || $,(M) |ls, P-a.s.

<1 IP-a.s, then

1
2

Proof : || &4(M) ||, = sup [l Rox || + || Cpt1 - -- Cix ||?] 2 . Therefore
x€D
| (M) ll3, > R 15 - and  thus (15)
. 1 , 1
limsup —In || @,(M) |ig, > limsup=1In || Ry ||z (16)
n—oo I d n—ooo 1

IP-a.s. Also, || @,(M) |

2
£a
Il @a(M) 2 <Il Ra I} + | Ca---Cy |3 and thus
| @n(M) “%d ~ | Cn-+-C1 [1E<]| R (4. From this

| o1~ Ci I
[ @ ()

= sup [|| Rax||® + || Cn---Cix ||*]. Consequently
{xex}

21 8 (M) s, +: o {1 - } < Zin Ry 5.

2
2,
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By assumption lim sup L In L Cn---Ci flz < 1 IP-a.s. Therefore

N E NN P

I Cosr---Cr |3y
RIS

1inrg;1£f%1n | 2n(M) |5, < hnn—1>£f5 In || Ry | IP-a.s. This and (16) complete the proof.

Let p be a probability measure on GL(k), k € IN such that

[ In™ || g |l +In* || g7 || du(g) < oo. By theorem 2.1, a constant r(p), constants —oco <
GL(k
)\r((u))(,u) <+« < Xo(p) = Ay and subspaces
{Oxx1} = Ly(uy41 (1) C Lguy(p) C -+ C Lo(p) = IRX are associated with p. Set
U, = {X(u), i=0,...,r(p)}. If p is a probability measure on GL(p), p € IV and v a probability
measure on GL(k), k € IN ( k and p not necessarily different). ¥, > ¥, shall be written if A\; > Xy
whenever A\; € ¥, and X2 € ¥, and ¥, < U, if Ao(p) < Ay (v).

lim 1 In [1

n—oo N

} = 0 IP-a.s. Thus

Remark 3.4. Let M be a sequence in G(d, m). By lemma 3.1 the sequece C is a sequence of i.i.d.
random matrices in GL(m). If IE [InT || Mo || +1In* || Mg? ||] < oo, the inequalities (7) and (8) im-
ply E [lnt || Cy || +1n* || ct ] < oo. By theorem 2.1, there exists a constant r{uc), constants
=00 < Arue)(rc) < -+ < Ao(pe) = Ay and subspaces {Omx1} = Ly(ug)+1 (i) C Lyue)(pc) C
<+« C ILo(puc) = IR™ such that for x € IR™, x € Li(uc)\Lit1(pc) < nlj{goéln | 2a(C)x ||I=

Xi(pc) IP-as. Inthis case, if © C IR™, write C(i, j, T) for the statement: ¥ C ILi(uc) and & ¢ ILiy1(pc),Bq C i

Proposition 3.5. Let M be a sequence in G{d, m).
Q) IFE [In" | Mo || +In* || Mg* [|] < 0o, then ¥, is well defined.
(ii) If (i) holds and ¥ is a bounded subset of IR™ which satisfies C(i,]j, X), where

.1
Aipc) < Aj(pwm) then nlglolo Hln | Ra fls= Aj{pm) PP-a.s.
Proof : (i) Since JE [In™ || My || +In* || Mg* ||] < oo, remark 3.4 implies that @, is well defined.
(i) Let i,j € INg and ¥ C IR™ be such that Ai(pc) < Aj(um) and C(i,j,X) holds. By theorem

.1 1
2.7, nlggoﬂln | Coti---Cr [lz= Ailpc) < Ajlum) = nlggoaln I <I>H(M) Ilf?d . IP-a.s. Hence,

. | Cog1--Chlls
lim sup
P T a(M) T,

.1 .1
nl—lglo Hln | Rn |n= nllf& Hln | @a(M) ll5,= Aj(pm) IP-a.s.

< 1 IP-a.s. From proposition 3.3,

1
For a bounded set ¥ C IR™, define Ag(X) := IP-a.s.- lim —1In || Ry ||%.
n—o0 1N
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Theorem 3.6. Let M be a sequence in G(d, m). Assume that
() 18 I || Mo || +10* [ My ] <00 (i) Tpe < Dy,
Then for every bounded set Opmx1 # ¥ C IR™,
(a) Ba C I(pn) and g & Ljg1 (un)
E=Ar(X) = Aj(pm)-
(b) Aw(.) is constant on X.

Proof : (a) Assume that ¥ # Opy; is a bounded set in JR™, Then ¥4 is bounded in IRS*™. Hence
there exist i and j for which C(i, j, £) holds. Since ¥, < ¥
Ai(pc) < Aj(um). By proposition 3.5(ii),

! .1 - .
nll}rgo - lAn | Ry [|z= )\j(uM)A: nlggo - In || ©,(M) ||Zd IP-a.s. By theorem 2.7, this is the case if and
only if ¥y C Ij(um) and Xg & Iy (pm).

(b) is now proven. Remark that for a bounded set C IR™

LX), = L(Sa). T A € 5, then I(A) = I(T) <= LNy = L), <> L(Rq) = L(5y). From

the fact that IL(Aq) = IL(3q), Aq € Yq. By theorem 2.7, A(5q) = A(Aq). Thus Ar(Z) = lim Lin I
n—oo n

Rn HE 1 L

= lim 1 ®u(M) llg,= AEa) = MAa) = im Lin | @,(0) [, =

J5ve

lim S0 || Ry o= Ar(A)
n—+o0 1]

Lemma 3.7. IfV € M(m,k) then S(V), = £(Va), where Vy := [ 0%, V* ]

Proof : Let V € M(m, k). Then by definition, X(V) = {Vx : x € Sx_;} and thus
£(V)y = {%q : x € B(V)}. Therefore S(V), = {[ 0%, V* ] X:x € Sii} = B(Va).
To simplify notation, IL; shall henceforth denote IL;{un) if nothing else is said.

Theorem 3.8. Let M be a sequence in G(d,m). Assume that
(i) B [In* | Mo || +1n* | Mg' |]] < oo (i) Wy, < Tpy,. For any k € IN, let
{Omxk} = Lopy C -+ C Lo = M(m, k) and —oo < A < --- < Xg = X, be the subspaces and
constants given by theorem 2.12. For every matriz V € M(m, k), Define
1
YR(V):=IP -a.s5.- lim —In || RaV ||. Then
-0 11 R

(@) YR (Omxk) = —o0 and if V € M(m, k)\{Omxx}, then V4 € Li\Lj1.1 <= (V) = ;.

(b) vr(.) is constant on V.

(c)The map yr(.) : M(m, k) — IRU {—o0}, V = yr(V) defines a characteristic exponent.

Proof : (a)That vgr(Omxx) = —oo is clear. Let %k # V € M(m,k). Theorem 3.6 implies
AR(E(V)) = N if and only if Z/(V)d C ILj and (V)y ¢ ILjp1. By lemma, 3.7 this is equiva-
lent to B(Vg) C ILj and ©(Vg) ¢ ILji1, which in turn is equivalent to V4 € Lj\Lj;. Since
| RV I=l Ra Isvy, (V) = Ar(B(V)) = Aj¢<=Vq € Lj\Ljy1.

(b) Let W € V. Then IL(E(W)) = IL(Z(V)). (For typographical reasons, LYY is written for
IL(2(W)) and ILy. for IL(%(V)) in the next equivalence).
Thus L(S(V)) = L(S(W))<=>(LY)4 = (Eg)d@m(ﬂvﬁd> = lL(E(V)d)

L (z(v”vd)) ﬂ;(z(V)) For some j, yr(V) = A== Vy € Lj\Lj1
@2(\&1) C I, B(Vq) ¢ 1L]+1¢:>1L(2(Vd>) C ILj, L(X(Va) € It
= IR(Wa)) C ILj, LE(Wy)) ¢ Lip1<=X(Wa) € Lj, B(Wq) € Lj
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=Wy € Li\L; 1 <=y (W) = A;. Therefore yg(W) = yr(V).

(c) yr(V) = A(V) where A() is defined in corollary 2.11. Since A(.) is a characteristic exponent,
~vr(.) is a characteristic exponent.

. .1 . . . .
Define v® := IP-a.s- lim o In || Ry || The considerations so far sum up to the following theorem
n—co
which is the first main theorem of this paper.

Theorem 3.9. Let M be a sequence in G(d, m) with (i) IE [In™ || Mg || +1In™ || Mg |]] < oo,
(i) Wuy < Uy,,. Purther let k € IN, thenthere exists p € IN,
(a) a sequence {Omxx} = Sprt C 8p C --+ C 89 = M(m, k) and
constants —oo < 7yp < -+ < 7y such that, if V.€ M(m,k)\{Opxk}, then
V € Si\Sis1<= lim lln | RaV ||=m P-a.s.
n-—oco 1

(b) vo =™

(¢) If m =k, then GL(m) C Sp\S;.

Proof : By theorem 3.8(c), yr(.) defines a characteristic exponent. By lemma 2.9 there exist
subspaces and constants satisfying the assertion (a). The subspaces are now constructed. Let
V € M(m, k)\{Opxx}. Then by theorem 3.8,

. 1
V4 € Li\Lig; <= lim —In || R,V ||= N\ IP-a.s. Let
n—oo 1

E; = Li\LH—h i€ {r,...,O},
W= {VdeM(d+m,k):VeM(m,k)},
Wiy = o, Wi:ZWﬂEi,iE{r,...,O}.
Then W = Uﬁ:r +1 Wk , -a disjoint union and there exist indices {r>ip > >4 >0} C

{r,...,0}, such that Wy # @ for all j € {p,...,0} (numbering is always started from ip). Set

Wip—H = {O(d—l—m)xk}a Wp+l = {O(d—l—m)xk}
Wi = {Wip+1} U {U{(:pWik}, i=p,.-.,0.

Further set

S; == {VGM(m,k):VdEWj},j:p,...,(),
Sp+1 = {Omxk}a Vo= >\ij> .]:p770

Now {Omxk} = Sp+1 C Sp C -+ C Sg = M(m, k) and
~00 < ¥p < -+ < Yp. It is now shown that if V € M(m,k)\{Onxx} Then
Ve SJ\SJ+1<:>’YR(V) = j- For V € M(m, k), V € Sj\sj—H &> Vg4 € Wij ‘
= V4 € ETJ <= Vg € Lij\Ljy1=>7r(V) = Nj<=r(V) = 9. It therefore only has to be
shown that the sets S; are indeed linear subspaces of M(m, k). This however follows from the fact
that yr(.) defines a characteristic exponent and S; = {V € M(k, p,) : (V) < v}
1 1
(b) Y® = P-a.s-lim ~In || Ry ||= IP-as- lim ~1n || Ryl |[< o
n—o0o 1 n—oo n
ie. YR <. Also, || RyV ||<|| Ry |||l V || implies that if V € Sp\Sy then
1
Yo < lim —In || Ry ||=~®. Therefore vo = y&.
n—o0 1n - —_
(c) Let m = k. Then I, = GL(m). Therefore since yr(Im) = 70 and yg(.) is constant on Iy,
GL(m) C Sp\S;.
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4 The growth rate of related autoregressive processes

The growth rates of the autoregressive processes (Py) and (Qp) defined in the introduction are now
studied. It turns out that under the conditions

IE[Int || Mg || +In" || My? ||] < o0 and 0 < ¥, the processes (P,) and
Ran(A, B, 1) exhibit the same growth rates. The results of this section are corollaries to theorem
3.9. For the proof of corollary 4.3 two lemmata are needed:

Lemma 4.1. Let (2, F, IP) be a probability space and B = (Bi)icn, be a sequence of i.i.d. ran-
dom matrices in M(d, m) defined on , for which IEInt || By ||< co and ¥ be a bounded subset

of IR™. Further, let (¢i)ien, be a sequence of random elements in IR defined on 1, for which
1
hmsup~1n|¢$n| <0 IP-a.s. Then hm |dul || Bn = hm |pnl || Bp ||=0 IP-a.s.

n—o0

Proof : By assumption hmsup~ln|¢n1 < 0 P-a.s. Let 2y be the set of measure 1 on which
n—oo

lim sup H In ¢y < 0. For each w € 1 chosen arbitrarily, there exists &1 (w) > Qand ny (e (w)) sach
tkrll;(xi)'or all n > ny(e1(w)), 21n|¢y(w)| < AMw) + &1(w) < 0, where

AMw) = linrriilép—jzlnlgén(wﬂ. Therefore for all n > n(e1(w)), |¢n(w)| < M+ @)) Now B
is a sequence of i.i.d. random matrices. Therefore (In™ || B; ||) is a sequence of Li.d. random

variables. Since IEIn™ || By ||< oo, Borel cantellis lemma implies IimsupA Int || By [|< 0 IP-as.

Let 2 be the set of measure 1 on which hmsup—ln4 | By < 0and Q:=Q N fwe,
n—oo
v(w) := limsup — 1n+ || Bu(w) || and e2(w) > 0 is chosen arbitrarily, then there exists na(e2(w)) such
n—yoo 11 N
that for all n > na(e2(w)), 21n || Ba(w) |I< y(w) + e2(w). For each w € § choose e3(w) such that
Aw)+e1 (w)+7y(w)+ea(w) < 0. Then for all n > max{ni(e1(w)), na(e2(w))}, 0 < |gn(w)| || Balw) <
W)+ @120 Since Aw) + £1(w) + 7(w) + £2(w) < 0, lim PO @) ) Z g,
n-—00

Therefore lim |¢y(w)| || Bn(w) ||= 0. These arguments may be carried out for every w € €. Since
n—co

P(©) = 1, 1P (lim [g] | By [|=0) = L Since 0 < [¢ul || Bu < I6a] || Ba |l it holds chat

P lim |al || Ba fl5=0) = 1.
For any z, define # to be the the constant sequence with z, = z for all n.

Lemma 4.2. Let (Q,F, IP) be a probability space and (Ai,Biy1)iep, be an ii.d. sequence in
GL(d) x M(d, m) defined on Q satisfying Elnt || By ||< co. Assume that A > 0 and ¥ C IR™ is
bounded. Then in case of ewistence of either almost sure limit, IP-a.s.

! - 1 B
nli?rgoﬁln | Rn(A, B, 1) [[z= A <= nlgréogln | Py l|z= A

1 ~ -
Proof : Assume that IP-a.s. li)n;oaln | Ru(A,B,Iy) lln= A. We have: P, = ARy _1GA, B, In)
n

and R.H(A,B,im) = Aan_1(A,B,im) + Bpt1. Therefore
P, = Ru(A,B,In) — Buyr and

Rn(A’B,im) Bn+1

| Ra(A,B,Tm) Iz | Ra(4A,B,In) |l

I Pa llo=]l Rn(A,B,Tm) Il (17)

%
A B Im) Bn-H

H | Rn (A B,Im) = || Ra(A,B,In) s iz

Let N(Rq, &)
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Then by (17), L1 || Py [lg= L n || Ra(A, B, 1) || +N(Rn, X). Further,

Lo —ABunlle | ong, )< lm|igy M Bun (18)
n I Rn (A, B, Im) [ n | Rn(A, B, Im) [

Since A > 0 and IEIn" || B ||< oo, it follows from lemma 4.1 with
T\ - : Buy1 |z
= Ru(A, B, T ! that IP-a.s. lim “““~ =0.
bn =[] Ran( m) [Is A R B s
Therefore nli)ngo N(Ry, X) = 0, IP-a.s, by (18). Consequently

o1 .1 -
lim —In || Py [|[g= lim —ln || Ra(A,B,Im) [x= A IP-a.s. The proof of the other direction of the
n—o0 1 n—oo 1

Pn + Bn—H

equivalence is similar, starting with || Rn(A, B, In) [lx=| Pu [Is oo TP,
n [|% n ||¥

.
Let (A, Bjr1) be an i.i.d. sequence in GL(d) x M(d, m). With this sequence, a sequenece M* in

G(d,m), MP; . [ Ai Bi+1

is associated.
0m xd Im

Corollary 4.3. Let M? be a sequence in G(d,m), (i)" IE [ln"’ | MPo || +In* || MP;* H] < o0,

()" {0} < ¥

For k € IN and V € M(m,k) define yp(V) = P-a.s-= &m ;11—111 | PuV | and ¥ = IP-q.s-
n—oeo

HyP *

1
lim —In || Py ||. Then
n—o0 11
(a) There exists a sequence {Omxi} = Spr1 C Sp C -+ C 8o = M(m, k) and
constants —oo0 < 7y, < -+ <7y such that, if V € M(m, k)\{Omxk }, then
1
V€ Si\Sit1<= lim —In || P,V ||= % P-a.s.
n—oo 1
(b) v0 ="

(c)If m =k, then vp(V) =~F for all V € GL(m).

Ay B . . . .
! 11 of the sequence MY is compared with a generic matrix

Proof : If a generic matrix
mxd I

Ai Biy
Omxd Ci+1
process (Rp) of that theorem becomes (Ry(A,B,1,)). Notice also that the condition (ii)” in the
present theorem is the condition (ii) of that theorem. Define
Pg(.) := IP-as.- nlLr&%ln | Ra(A,B,1n)(.) || on M(m,k). Then: (i) there exists a sequence
{Omxx} = Sp+1 € Sp C --+ C So = M(m, k) and constants —oco < 7y, < --- < g such that, if
V € M(m, k)\{Omxk}, then V € 8;\Si 11 <=@r(V) =y IP-as.

(ii)y0 = @r(Ix) (iii)If m = k then GL(m) C S¢\S;. By assumption, ; > 0 for all
j€{l,...,p}. By lemma 3.2, IEInt || By ||< co. By lemma 4.2 yp(V) = 5<=P(V) = <=V €
Si\Siy1. Therefore yp(V) = 1=V € S;\Si41.

1
(b)From (ii) above @ (Ix) = yo<=>Ix € So\S1. Therefore vy = HILIEO —1In || Polk ||
n

} of the sequence M of theorem 3.9, C := I, may be set in that theorem and the

1
= lim —In|| P, ||=+F almost suely. Therefore vy = 7¥.
n—oo 11 -
(c) The assertion follows from (b) and the fact thhat Iy = GL(k).

Let (Biy1, Ci41) be an i.i.d. sequence in M(d, m) x GL(m). Associate with this sequence a sequenece
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M® in G(d, m) with M@; := I B
Omxd Ci+1
Proposition 4.4.  Let M® be a sequence in G(d, m), IE [an“ | M% || +1n™* || MQ(]_l I < oo.
(i) Then W, is well defined. (ii) {Aj(uma) € ¥y o * Aj(pma) 2 0} # 0.
(iii) If {Ai(pc) € Uug = Ai(pe) <0} # 0 and ¥ C IR™ is such that C(i,),X) holds for some i and j
. 1
with Ai(pc) < 0 and Xj(pwm) >0, then lim —In || Q [|s=0 P-a.s.
n—eco 11
Proof : The proof of (i) is that of the same statement in proposition 3.5.
(ii) By [4], the condition IE [ln+ | MY || +1n™ || Mle H} < oo implies that either for all x €

le+m\{0(d+m)X1} and IP-a.s. nligzoéln | ®a(M)x ||= Ao(upe) or for some nontrivial pya-
invariant subspace IL of IRY*™, for all x € IL, x # O(d4m)x1 and IP-a.s,
liiris(gp—éln | @,(M)x ||< & < Ao(pya), where oo € IR. Now Span{ey, ..., eq} is pyo-invariant,
where {ej,...,eq.m} denotes the standard basis in IR*™ and for every

x € Span{ey, ..., eq \Dfdtmx1}s nli)rgo }11— In || @,(M)x ||= 0 IP-a.s. This shows that

Ao(pie) 2 0 and thus {Aj(pma) € Uy o = Aj(pme) > 0F # 0.

(iii) is now proven. In (ii) it has been seen that {A;j(upa) € ¥y o © Aj(pme) = 0} # 0. By the
assumption in (iit), {Ai(uc) € Yue = Mi(pc) < 0} # 0. Choose j such that Aj(uye) > 0 and i
such that A\i{uc) < 0 and let X C IR™ be such that C(i,j,¥) holds. Then by proposition 3.5,
lim l—q—ln Il Ra(lg,B,C) |lz= N{pme) P-as. In particular Aj(uy@) > 0. It will now be shown

n—oo

1 .
that A\j(pye) < 0. To do this, it is shown that limsup —In || Ry(I14,B,C) [|x< 0. Since C(i,j, X)

n—-oc 1

holds, theorem 2.7 implies that nli_)ngoé—ln || Cou---Cy llg= Ailuc) < 0 IP-a.s. For cvery w in a set
of measure 1, if e(w) is chosen small enough, there exists ko(e(w)) such that for k > ko(e(w)),

| Cic- - Crfw) [lm< e ). (19)
Since IE [hﬁ | M@ || +In* || MQ* H] < 00, lemma 3.2 implies IEIn" || By ||< co. Since B is a
sequence of i.i.d. random matrices, Borel Cantellis lemma implies
limsup%lrfr | By ||< € IP-a.s, € > O arbitrary. Choose 0 < € < e(w). Then there exists
k?(:))osuch that for k > ki(e), max{1,|| Byi1{w) ||} < e(+1¢, Taking (19) into comsideration,

I By G-+ C1(w) [l <]l Byt [Ilf Cx - - Crlw) [Jn< eltteeme()
= eKe—e(@ee &k > max{kq(e(w)), ki (€)}-
o0

Thus

By41Cx -+ - C1(w) H < 00. This argument holds for aall w in a set of mea-
k=max{ko(e(w)),k1(€)} b

~ n ~
sure 1. Now || Ry(I4,B,C) |ln=|l 3 Bx+1Ck - Cq ||z. Therefore the sequence (H Ry (1g, B, C) “E>nei\’
k=0

is IP-a.s bounded, implying .
1imsuplln | Ra(Ig,B,C) [|s< 0 IP-a.s. Thus lim = In || Ry(14,B,C) |lg= 0 IP-a.s. Let us notice
n—oo 1 n-»oo n

that Qn = Rn(I4, B, C). The assertion now follows.

From proposition 4.4 the following corollary is obtained:

Corollary 4.5. Let M® be a sequence in G(d,m), (i) IE [ln+ | MQq || +1nT || MQal ||} < 00,
(i) U, < {0}. Then for every bounded set & C IR™ with ¥ # {Omx1},

1
lim ~1n || Q, ||g= 0 P-a.5s and for every V € M(m,k)\{Onxx},
n-—->o0 N

.1
nlbrgogln | QuV ||=0 IP-a.s.
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Proof : Let Oyyx1 # X C IR™. Since ¥y, < {0}, proposition 4.4 implies that if (i,j) is a pair of in-
1 e P
dices for which C(i, j, &) is valid, then nliglo . In || Qn |lu= 0 IP-a.s. Further if V &€ M{m,k)\{Omxx}

1 1
then lim ~In || QuV [|= lim —In || Qs [[govy= 0 P-ass.
n-—00 1 n—+oo n

5 The upper Lyapunov exponent

In theorem 3.9 it was shown that yr(.) takes values —oo < 7y, < --- < 9. In particular,
vo = R, Tt is easy to show that yo = v < \,,,. In [11] it is shown that there is a possibility that
Yo < Apy occurs. In this section, we give conditions which ensure that vy = Ay,,,. The proof of
the theorem relies essentially on lemmas 5.3 and 5.4. Let d € IV and let M be a random matrix in
M(d, d). Define ppm(-) :=IP(M € -).

Definition 5.1. Let p be a probability measure on GL(d). A subspace IL C IR is p-invariant if
p({g € GL(d) : gIL C IL}) = 1.

Definition 5.2. For M € GL(d), a subspace I C IR shall be called png~invariant if
P({w:Mw)IL CIL}) =1.

A B
Let M = be a random matrix in G(d,m). Associate with M the following random

Omxd C
A dem C ded dem
, MY = and
Omxd Omxm 0m><d C

MB e l ded B

matrices: MA 1=

Omxd Omxm

Lemma 5.3.  Let u be a probability measure on GL(n), n > 2. Then either (a) all p-invariant
subspaces of IR” are {01} and IR" or (b) there cxists a basis {e1,...,en} of IR™ with respect to
which p(G(d,m)) =1, for some d € IN and m € IN with d +m = n.

Assume that (b) holds and let IL = ILo ® Iy, with IL # {O@im)yx1} be a subspace of IR", where

ILy € Span{ey,...,eq} and Iy C Span{eqyy,...,eqim} are linear subspaces of IRYT™. Let M :=
0 C J be the representation in the basis {e1,...,edrm} , of a random matriz with distribution
mxd
w. Then

(¢) IL is puni-invariant if and only if
(d) (1) ILy = {0yyx1}, IL is pyga-invariant or
(2) Lo = {Onx1}, I is pyc-invariant, and IP(IL; C KerMP(w)) = 1 or
(3) Lo # {Onx1}, &1 # {Oux1} and
(i) ILy is pn-inwariant and pya-invariant,

(1) Iy is pppo-invariant,
(iii) P(ImMB(w)|z, C Iy) = 1.
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Proof : The conditions (a) and (b) are mutually exclusive and one of them always holds. Assume
that (a) is false. Let IL be a py-invariant subspace of IRI™™. Also note that d (1) (2) and (3) are
mutually exclusive. Assume that (d){1) and (d)(2) are false and I = ILy @ IL{, where

Ly # {Oux1}, Ly # {Oux1}, Lo C Span{es,...,eq} and Iy C Span{eqys - edym}. By the pg-
invariance of IL, IP(M(w)IL C IL) = 1. Consequently it is assumed henceforth, that for all w,
M(w)IL C IL. Now IP({w : M(w) acts on Span{e,...,eq}}) = 1 and

P(M(w)|spanier,.nea} = MA(W)|Span{e1,...,ed}) = 1. Therefore the ppr-invariance of a subspace Ly C
Span{ey, -+, eq} is equivalent to its being pyya-invariant.

Since IP(M(w) acts on Span{ei,...,eq}) =1 and Ly C Span{eq,...,eq},

IP({w : M{w)ILy C Span{ei,...,eq}}) = 1. Let v € IL be chosen arbitrarily. Then v can be written
in a unique manner as v = v + vy, where v{ € I,y and vy € II,,. Now

M(w)v = MA(w)vy + MB(w)vy + MC(w)vy € IL. (20)

Also IP(M“(w) acts on Span{eq1,...,eq m}) = 1. Now
MC(w)vy € Span{edst,. .., eqrm} and M2 (w)vi+MB(w)vy € Spaniey, ..., eq}. Therefore M€ (w)v, €
]Ll and

MA(w)V] -+ MB(w)Vz € Ily. (21)

Now IL; is a vector space. Therefore —vy € IL;. Consequently ¥V := v; — vo € IL. For the vector ¥,
M(w)¥ = MA(w)v; — MB(w)vy — MC(w)vy € IL. Also, ~MC(w)vs € IL1 and

MA(QJ)Vl - MB(UJ)V’Q € L. (22)

Since ILy is a vector space, (21) and (22) imply that M*(w)vy € ILg. From this and (21), MB(w)v, €
ILy. Since v was chosen arbitrarily and the argument holds for all w,

ILg is pya-invariant, Iy is pygo-invariant and P(ImMB(w)|y, € Lo)) = 1. Since Lo is pya-
invariant, it is also py-invariant. Therefore (d)(3) (i) — (iii) hold.

Assume that (d)(3) is false and (d)(1) is false, then IL = IL; and Ly = {Oyx1}. Since M acts on
Span{ey,...,eq} with probability 1, (20) implies that for v = vy € ILy,

M(w)v = M®(w)va + MB(w)vse € IL;. Since IP(MP(w)vy € ILg) =1 and ILg = {Oyx1},

IP(IL; C KerMB(w)) = 1. Therefore MB(w)vy = O(d+m)x1 and thus MC(w)vy € IL;. Since vy was
arbitrary and the argument holds for all w, it follows that f,; is gy c-invariant. The remaining case
is trivial and (c) == (d) has been shown. For the other direction of the equivalence, it only has to
be shown that (d)(3) or (d)(2) implies (c), since the assertion is clear in the remaining case. Thus
assume that IL = ILo @ IL; for which (d)(3) holds. Ther again, for every vi +vo =v € I, {20} 1s
valid. By (d)(3)(1), Iy € Span{ey,...,eq} is pya-invariant. By (d)(3)(iii), MA (w)vy +MB(w)vy €
ILy. By (d)(3)(ii), M®(w)vy € IL7. From this, M(w)v € ILy® IL; = IL. Therefore IL is py-invariant.
_If (d}(2) holds, then by a similar argument as the preceeding one, IL is py-invariant.

A B
Omxd C
P(imHB = O(d+m)x1) < 1. If one of the following conditions (a) or (b) holds, then there ezists no
proper py-invariant subspace IL of RYY™ for which
span{eds1,---,€d+m} C IL.

(a) The only proper ug-invariant subspaces I of IR“T™ for which IL C Span{e,...eq} are {8(a+m)yx1}
and Span{ey,...,eq},

(b) For every proper py-invariant subspace IL = ILoy & ILy with IL1 C Span{ea+1,--.,€d+m}>

L1 # Oqm)x1, POMHE (W)L, € Lo) < 1.

Lemma 5.4. LetH= { } be a random matriz in G(d, m). Assume that
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Proof : Assume that there exists a pp-invariant subspace I for which

Span{eqy1,.-.,€dtm} C L. Then IL = Ly @ Span{eqy1,.-.,€dtm} With

ILy C Span{ey,...,eq}. Note that by lemma 5.3 ILj in this representation is py-invariant. By the
condition (a) either Ly = {0(g4m)x1} or Lo = Span{ei,... eq}.

If Ly = Span{ei,...,eq}, then I = IRY™ and is not proper. If Iy = {0(a4m)x1}, then by
lemma 5.3(d)(2), IP(ImH®(w)|spanfeqri, mearm) S O(@rm)x1) = 1. This contradicts the assumption
that IP(ImHB(w) = O(d4m)x1) < 1. Thus under the condition (a) there exists no proper yy-invariant
subspace IL for which Span{egi1,...,eq+m} C IL.

If the assumption (b) holds then the existence of a py-invariant subspaceIL for which Span{egs1,...,ed1m}t €
IL will'lead to a contradiction, since in that case by

lemma 5.3(d)(3)(iii), it must hold that IP(ImH® (@)lspan{eqrs,earm) & fo) = 1 which contradicts
ZPUmHB(w)lSpan{ed+1,...,ed+m} - ILO) <L

The second main theorem of this paper can now be proven.

Theorem 5.5. Let M be a sequence in G(d, m). Assume that IE [In || My || +In® || My' []] <
oo and

Ve < Wy Then the following statements hold:
(D) A = A
(ii) P(ImME! =0) < 1.

In addition to this

{iii) if My satisfies the condition (a) or (b) of letama 5.4, then for every
.1
V € GL(m) and IP-a.s. nlgglo Hln [RaV = py =7 =70 = A -

(iv) if Mo satisfies condition (a) of lemma 5.4 and Span{edi1,--.,edm} and O im)x1 are the
only pago-invariant subspaces of IRIA™  then for every bounded set

.1 R
¥ € IR™ and IP-a.s. nli)rgo;l In[[Ry lls=Auy =7 =% = Auy-

(v) under the conditions of (iv), for every k € IN, for every V € M(m, k)\{Omxx},
.1 R
nlﬁ}rgoﬂ In || RaV [[= Xy =77 =7 = Ay PP-a.s.

Proof : (i) By [4] Ay, = max{A,,, Auc}- Also by the assumption of the theorem (¥, < ¥, ),

Ao(pc) < Argun) (m)-
Therefore X, = Ao(pc) < A () < Aolpm) = Ay = max{A,, Ay, }- Therefore
ANM = Aua-

(i) Assume that P(ImMg* = 0) = 1. Then ¥,,, C ¥, U, . Therefore in that case ¥, NV, #
0. This contradicts U, < U,,,.
(iii) Suppose that the condition (a) or (b) of lemma 5.4 holds. Then there exists no preper py-

invariant subspace JL of IR%T™ such that Spanfeqii, ... €d4m}y C #. By theorem 3:8(b), Ip(3)
is constant on V and in addition to this, yr(V) = >\j<=>\7(3 € Lj\Lj;1. If V € GL(m), then
IL(Z(V)) = IL{X(1n)). This is equivalent to saying that V € I;,. Hence yg(V) = vgr(I). From the
definition of the subsf)aces L;,

Y (Im) = Aj¢=>(Im)a € L\Ljr1¢=2((In)a) € L;j and ((lm)a) & Lj11. But
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Z((im))d = Span{eq.1,-..,€q+m}. and there exists no proper py-invariant subspace

IL ¢ IRY™ guch that Span{edsi,.-.,€a+m}; C IL. Therefore there exists no proper py-invariant
subspace I, C IRYT™ guch that E((fm))d C IL. Z(fm) C IL. As a result IL; = ILy. This implies
that Ly = Lo and Aj = Ay Thus Ar(V) = Ay, = Ay, By theorem 3.9(c), it holds that
GL(m) C Sp\S:. This implies that Ag(V) = 7¢. Thus

Ar(V) =70 <8 < Ay, = Ar(V). Therefore Ag(V) =70 = 7* = Ay = Mpis-

(iv) If the condition (a) of lemma 5.4 holds and Span{eq.1,...,edim} and O(d+m)x1 are the only
tyro-invariant subspaces of IR™ then all pyM-invariant subspaces

I = ILy © Iy with ILy C Span{ey, ..., eq} and Ly C Span{edt1,- .-, €drm} are (1) Ogim)xi @
Span{ed1,.--,€atm} or (2) Span{er,...,eq} @ Span{eat1,.-.,€asm} or (3) Span{er,...,eq} @
Otd+m)x1 (4) O(a4+m)x1- Now the condition (ii) and lemma 5.3(d)(3)(iii) prohibit (1) from occuring.
Therefore all py-invariant subspaces of IRIT™ are O(d+m)x1, Span{er,...,eq} and IR™ . Conge-
quently there exist no proper uy-invariant subspaces of IRIT™ in which non-zero vectors % lie.
As a result, for non-zero bounded subsets X C IR™ there exist no proper uy-invariant subspaces
IL C IRY™™ for which 34 C IL. By theorem 3.6, lim & In || R lo= Ay = Aup = 7 =y P-as.,
for every non-zero bounded subset > ¢ IR™. Frllrgr(;lo ?his and theorem 3.8, for every k € IN, for
every V € M(m, k)\{Omsxx}, lim ;11- In || RaV ||= Ay = 7% =70 = Ay, IP-as.

So far, the almost sure asymptotic behaviour of (% In || (Rn)V |) has been fully described when
the conditions IE[ln* || My || +1n* || Mo—1 |]] < oo and ¥, < ¥, are satisfied, by a sequence

M C G(d, m). Sufficient conditions have also been given under which lim ! In || R,V [|= Ay =
n o T

1
li)m - In || Ry || almost surely for every non-zero vector V for which the process (R,V) is well
n—c0
defined. Simple examples show that when the condition ¥, < ¥, fails, then the existence of the

almost sure limit lim = In || Ry || can no longer be guaranteed, even if
n—oo 11
Eln" | Mg || +1a™ | My ||] < oco. Note that under the latter condition

lim —1In || My, --- Mg || exists almost surely.
n—00 11

Apart from applications in stochastic modelling , numerous examples of which are given in [12],

the results obtained here may be used in the study of the behaviour of sample paths of solutions of
stochastic differential equations. Notice that with a slight change of index X, = A, X1 -+ By
can be written as as X,, = 4, X,,—1 + B,.
Therefore X, — Xp,o1 = (A, — ) Xn_1 + By. In other words, AX, = (A4, — DX, + AW,
where AW,, := B,, ie. B, is the increment of the process W at time n. But then AX,, =
(Ap — 1) X1 -+ AW, 18 the discrete time approximation of the continuous time stochastic differen-
tial equation dX¢ = ((A(¢) —I)X;)dt + dW;. The latter equation is well known when W is brownian
motion.

Acknowledgement:The study of the growth rate of the process (% In || Ry ||) was proposed by
Professor S. Molchianov(University of North Carolina), as a step towards a study of the growth
rate of solutions of a certain class of stochastic functional differential equations.
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