JOURNAL OF THE CAMEROON ACADEMY OF SCIENCES Vol. 4 No.3 (2004)

Magnetopolaron in a cylindrical nanocrystal

L. C. FAI', I. NSANGOU", V. B. MBORONG"**
*Department of Physics, Faculty of Science, University of Dschang, Cameroon

**Department of Physics, Faculty of Science, University of Buea, Cameroon

ABSTRACT

Magnetopolaron states in a cylindrical nanocrystal (nano-size crystal) with a parabolic confinement poten-
tial are investigated applying the Feynman variational principle. Similar effects of cyclotron and confine-
ment frequencies respectively on electron and polaron energy levels are obtained for the case of 2
cylindrical nanocrystal. Splitting of electron energy level is observed. Energy degeneracy for confine-
ment and cyclotron frequencies is found. Cyclotron and confinement frequencies reduce considerably
regions of weak and intermediate polaron and regions of strong coupling are shifted to ones of weak and
intermediate polaron. Itis observed that the polaron mass and energy increase with increase of Frohlich
electron-phonon coupling constant, confinement and cyclotron frequencies.
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RESUME

Dans ce travail, les états du magnétopolaron dans un nano-cristal de forme cylindrique avec un potentiel
de confinement parabolique ont été étudiés a 'aide du principe variationel de Feynman. Dans ce cas, les
effets similaires des fréquences du cyclotron et de confinement respectivement sur les niveaux d’énergie
de I’électron et du polaton ont été obtenus. La séparation du niveau d’énergie de I’électron a été observée.
La dégénérescence de P'énergie pour les fréquences du cyclotron et de confinement a été détermmpée. Il
a été en outre remarqué que les fréquences du cyclotron et de confinement réduisaient considérablement
les domaines des polarons de liaisons faible et intermédiaire, alots que le domaine du polaron de liaison
forte passait pour celix des polarons de liaisons faible et intermédiaire. Par ailleurs, lors d’une augmenta-
tion aussi bien de la constante a de liaison électron - phonon de Frohlich, que de la fréquence de
confinement ou du cyclotron, la masse et I’énergie du polaron croissent.

Mots clés: : polaron, nano-cristal cylindrique, parabolique,confinement',frequence de cyclotron
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I INTRODUCTION
Recent developments in 21, 1D and 0D nanocrystal fabrication have stimulated theoreticians'
mterest in formulating models describing physical phenomena associated with quantinm wires Hudgios et

al (1997), Lucsak et al (5,9%)? Naganune et al (1992), Osorio et al (1988;1995), Tsukamoto et al {1993),

The present paper investigatey gonfinement, cyclotron frequency, and Frohlich electron-phonon coupling

1 in Pokatilov et al

constant effects on polaron energy and effective mass. Polaron energy is evalu
Foe

(1995), using perturbation theory. The polaron and bipolaron concept has a renewed ion due to the

carrier here 1s a

assumption of their possible participation in high-temperature superconductors, T

> polaron concept

condensed bipolaron gas (that is, charged hard-core bosons). Landay ir

Landau (1965), while Pekar originally suggested the possibility of large bipolaron formation Osorio et al
(1988).

A polaron is a quasi paﬁ;icle that arises as a result of a conduction cicctron (or hole) together with
its self-induced polarization in an ionic crystal or in a polar semiconductor Devreese (1998). Polarons
may be classified using the Froblich clectron-phonon coupling constant value f that is weak-coupling
ifor <1, strong-coupling if ¥ = 7 and intermediate-coupling between these ranges. The rmajority of
crystals are weak or intermediate-coupling polarons. Strong-coupling is not attained even in strong ionic
crystals such as alkaline halides. The polaron character is well pronounced only for strong-coupling

Pekar (1963). Strong-coupling polarons play an important role in bipolaron states formation that, in

general, do not exist for weak-coupling polarons. For nanocrystals it is possible to reduce the lower
bound of the electron-phonon coupling constant’s threshold value to within weak or intermediate-
coupling range. Some review on the polaron theory is found in Devieese (1986). When investigating the
polaron problem in nanocrystals, it is necessary to consider both the clectron and the phonon
confinement. The electron confinement is desceibed in Hudgins et al (1997), Wendler et al
(1993),Mivake (1975),7Zhua (1992), U/ means of a parabolic potential, In Wendler et al (1993),Miyake
(1975), magnetopolaron phenoraena are examined and in Pokatifov et al (1995), Tsukamoto et al

stopolarons in layers, wires and
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modes are rather smoothly distributed in space. For this we do the 3D-phonon approximation.
Consequently, interfuce phonons may not be considered. This approach seems to be adequate as integral
polaron effects results from summation over all phonon spectra. In phenomena with integral phonon
effects we resort to numerical results. It is expected that to confine an electron without using a magnetic

ficld onc needs to affect the crysial structure. It {5 also expecied that the phonon spectrum have to

change. The present investigation shows that this is not so in tf sence of the magnetic field when the

confinement is pre

The model va bolic confinerment is preferable as it examines polaron states covering all

vafues of Frohlich electron-phonon coupling constant. It is of principal importance in this investigation.
In the problem, the magnetic field is considered to be in the direction of the axis of the cylindrical

nanociystal.

2. FEYNMAN VARIATIONAL PRINCIPLE.

The Feynman variational principie is one of the most elfective methods when investigating the

I

polaron problem for arbitrary valiues of the electron-phonon coupling constant&¥ . For the Feynman

considered. The action functional of the

variational principio, the exact and the trial (model) systems ¢

(2.1
and that of the trial system as:
N =1 D O ,
S JFl= |1, di 2.2)

where ¥ is the radius vector, 7 the time, {and Lo arc the Langrangians of the exact and trial systems
respectively.
The statistical sum of state of the exact system is defined by
Z = Sp [ DF exp{sirl} 2.3)
and that of the trial system by.
- —_— ! - ]
z = Sp [DF expis [Fly (2.4)

i - P B . o Ql
Here D7 denoctes path integration and Sp the spur.

In our evaluations, the statistical surm for the exact system is defined as Z

7 = ~Z§: =Sp j D exp{S[F} (2.5)

where Z . 1s the statistical sum due to the lattice vibrations. The expression in 2.5 may also be written in

the form:
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sp [DF expis(F]- s [Flexpis [Fl}
Sp IDF exp{S . [7’1 ‘

Z=Sp IDF exp{S0 [F]}

or
7 = Z, <exp{S [F]— S, [7 ]}) (2.5
The angle brackets in 2.5’ denote averaging over electron paths and are defined as follows
Sp | DFF |7 lexpyS
= Jm[e)]cp{l;f}o}
The basis of Feynman variational method is the Jensen-Feynman inequality Devreese et al (2000):
<exp(S[?]— S, [?])) > exp<S[‘F]— S [F]) (2.6)

The Feynman's statistical sum Z . is evaluated with the help of 2.5' and 2.6:
5 _ e
InZ>InZp =nZ, <s[r] So[r]> @7

The total momentum [_5 of the polaron is considered to be the only continuous quantum number. The

dependence of the energy on the momentum (for the case of an isotropic crystal) has the form: |
E=E,(v)+ p’E,v)+ p*E,(v)+--, 2.8)

Here the quantities E, , E, , E, ,--+, are coefficients of expansion of 2.8 and Vis the totality of

discrete quantum numbers of the system.

To evaluate the sum of state for the system using 2.3 is limited to the first two terms of the

expansion as thgher order terms for low temperatures are exponentially small (in the sum of state

expression) compared to the first two terms. If the polaron effective mass is defined by M = then

from the sum of state Z the expression follows

3 | ‘
InZ =in 4 3(27”%" jz —/1E0+—3-ln % , ZE~1— 2.9)
zry\ 2 2 \m T |

Comparing 2.7 and 2.9 it is possible to obtain the expressions for the Feynman variational polaron energy

E and effective mass M (in units of the electron's mass 7,) at low temperatures T (absolute
temperature) i.e., 7 — 0( A— oc). The polaron ground state energy is obtained as the coefficient of

A in 2.4 and the polaron effective mass from the term independent of A.
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3. ELECTRON WAVE FUNCTION AND ENERGY IN A QUASI 1D
CYLINDRICAL NANOCRYSTAL.

Consider an electron in a quasi-1D nanocrystal with a transverse parabolic confinement
potential. The electron's motion (in the nanocrystal) in the presence of a magnetic field is characterized
by a cyclotron frequency @ . The electron's motion in the direction of the axis of the nanocrystal is free.
The magnetic field is positioned parallel to the cylindrical axis of the nanocrystal. The electron's
Hamiltonian in cylindrical coordinates is:

g o }_i(pi) 1 9 0 ; ho mdp’ o
2m, | pop\’ dp

+ +
pZ a ¢2 a ZZ o 2 ) 2
Here P=x"+ 2, m - electron's band mass, €£2- frequency characterizing the parabolic
y ¢ q

e .
confinement potential, @ = ——- cyclotron frequency, €- electron's charge, C- light speed,
cm, \ ‘
2
~D 2 a ~ .
@~ = €2” +—. The operators £ . = —l——— (the Z- component of angular momentum operator) and

ﬁz commute with each other and with the Hamiltonian H , of the electron's system. Thus they have a
common system of eigenfunctions. The eigenfunctions \anpz ((0, Z, p) of the Hamiltonian 3.1 are found

to be:

|

LY ipz &
¥, (9.2,p)= AS° expilm¢ + . E}F(— lj,lm| +1,¢) 32

where, F (V, ]/,x) is a confluent hypergeometric function Gradstein (1971), Alml the normalization

constant and n,|m| =012,---,

1
P (Ml | 4mQ* Y+
5_2_47’ _’[ PO

The eigenvalues of 3.1 are _

2 2
E, ~L2=E, =" 5101+ 2 (2n+|m|+1)
T 2m 2 4

Here m 1is the angular momentum quantum number (along the Z-axis) and nthat of the two-
dimensional oscillator respectively. The ground state correspondsto n=m =0 .
The limiting expressions for the ground state energy for weak @ << €2 and strong magnetic fields

@ >> € are respectively
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E, =hQ+ ha
8Q

and
2
EOO ~ hQ +h_(l)
w 2

The dependence of the ground state energy spectrum on confinement and cyclotron frequencies

for weak and strong magnetic fields show similar effects of confinement and cyclotron frequency on
electron's energy spectrum. Effects differ only in values of energy levels. This is seen in figures 1 and 2.
In these figures the splitting of the energy levels is observed for the case of the confinement and
cyclotron frequency.. Degeneracies are observed fof the two cases. Thus the suquction of an electron to a

confinement gives similar effects as for the case of the magnetic field.

4. FEYNMAN POLARON IN A QUASI 1D CYLINDRICAL NANOCRYSTAL.
Consider the motion of an electron in a magnetic field (positioned parallel to the cylindrical

axis). The Hamiltonian that describes electron interacting with lattice vibrations is:

H=H, + th + He_,,h

th=Zha)qb;b"q, ﬁe oh Z[}Cb exp{zqr}+ }/ab exp{—lqr}]}

q

A

th - phonon contribution Hamiltonian, He_ph -electron-phonon interaction Hamiltonian, @, -

phonon frequency numbered by wave vector g .

Consider the magnetic cyclotron motion as fast and the translatory motion along the 2 -axis as

slow. The ground state wave function from 3.2 for the fast motion may be selected:
a ( 1 2
w(p)=—=expi~~(pa)
N/ 2

Averaging I:I by ¥ (p)eliminates the fast motion. In fact, this is an adiabatic separation of the slow
translatory motion along the Z -axis and of the fast motion in the xy -plane. This approximation is valid

only in the strong-confinement limit or in the limit of strong magnetic field. This procedure yields the

Lagrangian of the slow subsystem:

L=- - +a) 2
2h2 g Q‘I—J

-2.7,(z)0, (4.1)
7 -

where
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2

N [ ¢

}/q (Z) - 7[7;((7 (Z)expi_ 4612

1

| 15 ! | |
rw Y 2
| ax(h®, a2 2 2 2 [cosq,z q,<0
7= 7( JRp ’RP_[WJ @=L
1 I “eTo sing,z 4,20

Here Qq‘ are the vibrational normal coordinates, &, - non-dispersional polar optical frequency. The

slow subsystem trial Lagrangian L, is selected in one-oscillatory approximation:

. :_mez'2 __Mf Zrz _ M0, (Zf —Z)z :
¥ 2h* 2h? 2

Where Z, is the coordinate of fictitious particle. The quantities M , and @, are the mass and the

(4.2)

elastic coupling frequency of fictitious particle respectively. Both serve as variational parameters. The

quantities Z, m,are the electron coordinate and mass respectively. In the expressions 4.1 and 4.2,

: . d
t=—~ihT and f =—f.

drt
In the evaluation of the magnetopolaron states the ground state for which in particular m =0, is
considered. Thus the inequality in 2.6 can now be valid, as the action cannot be complex.

In 4.2 changing of variables
MZ, +m,z

p]:Zj_—Z,pz——M—+—"1“1—— (4.3)

and then applying it to 2.4 gives

Z, = J__m;t 1'2}1 o 4.4)
2mh A 2sinh(——2—v]

Here [ is a parameter that characterizes the length of the wire and

, M, +m, 1
V=uw, u°=———,a,=—,a, +a, =1
2 1 2
: m u

[

The exact action functional S [Z] may be obtained from the expression 2.5 after integration over phonon

variables Q‘7 . Thus from 2.3, 2.5 and 4.1 is obtained the resﬁlt:
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Z = HSijzexpi fz T)dr+ P, []} (4.5)

where

@,

[ {7,607 @)F, (r-7

is the electron-phonon interaction influence phase and

coshha)(7 [l — -—%]

CD)

Slz]=- 2";1“2 f 2 (r)dr+ @, [z] (4.6)

where @D, [z] = zq:q)wq [Z]

Similarly from 2.4 and 4.2 after integration over the coordinates of the fictitious particle is -

4m ,

Thus from 4.5:

obtained:
Z,=5p[Dz expﬁ 22 (r)d7 + Mf2 o [2*(@)dr+ éwf [z]- lh[z sinh[ h;’ ]}:}(4 )
where

(I);)I[Z] M@, EL 7)z(7')F o, (]T—T'

From 4.7 the action functional § [Z ] of the trial system is obtained:

SO[Z]—

AR
T)d1+ _[ d2'+(I) [z] = In| 2 sinh Al (4.8)
TE i

Considering 4.4, 4.6 and 4.8 the expression for 2.7 may now be obtained. The resultant expression should

be in an explicit form when we evaluate the following:

(7)), (2(2)z(7")) , <cos(q| 22(T)- z(T'))> .9)

These are obtained with the help of the productive function
¥, (&)= (explig, (€ 2(0) -1 2(2')}

that after path integration yields
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¥ (&)= expl, + T (4.10)
where
hq’a ,
T, =—— [ +7°)F,(0)-2&n F,(z - )
4iny
and
g |1 267 AY  én
Ff“‘—“»—-—————ﬂ,— 2 ZFO__ A s
! 4m 6(§ i ) “( ) A [lT ¢ 2) i 6 |

From 4.10 the expressions for 4.9 is obtained:

1 07, =(2(0)e(@)) (2()el@)) o = (27 (7))

;ﬁ 9£dn| &=n=0 (4.11)
(coslg, . 2(2)- o)) =, (L) =¥, (- 1.-1)

In further evaluations of the polaron energy and mass, the Feynman's units Feynman (1955), are used:

h(do for energy and R » for length. Considering equations 4.4 to 4.11 then we now compare 2.7 with

2.9 to obtain the polaron energy and mass. The Feynman polaron dimensionless variational energy is

found to be:

2 g 1—v
., = A -1
E:K(l-m—l;j a2 ﬂ(l—-r)“ ln[ A JM/Z]d (4.12)

4" u) varir A-1

and the dimensionless variational polaron mass as:

. ) )

1 Z' = ln 2(1 Z')l «/—anA Ildfl C a13)

M = exp& “ f U
| % aV \/ VA 4,J(A
Here
2
A= ——z—[azf— a, In(1-7)]
va
The polaron energy and mass are found by minimizing the polaron variational energy and mass. The

numerical results are shown on the figures 1-8 below. In the figures 3, 5 and 7 the absolute value of the

polaron energy is considered for convenience.
From expressions 4.12 and 4.13 the analytic dimensionless expressions for the polaron energy
and effective mass for the strong-coupling polarons are obtained respectively as:

2
E::_g_lnz( 275 j (4.14)
r \ed’a

and
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4
M =40i | 2F

n’ o’a’

4.15)

Rigorous weak-coupling expansion for the polaron ground state energy and effective mass yield

Devreese (1987):
E=—-q—-001592a -, M :1+-2‘—+0,02363oz2 4o

The expansion for the strong-coupling polaron yields [13]:

E=-0.108513c* —2.836, M =1+0.0227019*
Polaron excitations in Haupt (1994) and Zhu (1992) for the strong-coupling polaron in a 3D structure
yield the energy:

2

a

E=—"-
Or

: -1 : .
Since a >1 then from the above results, polaron ground state energy and effective mass in a
cylindrical nanocrystal are greater than those in 3D structures. Also effect of the confinement or the

cyclotron frequency leads to increase in polaron ground state energy and effective mass.

5. CONLUSION

Figures 1 and 2 show the effects of cyclotron and confinement frequencies respectively on
electron's energy levels. They have similar effects. The splitting of energy levels is observed. There is
similar energy degeneracy for confinement and cyclotron frequencies. Figure 3 is a plot of the polaron
energy versus Frohlich electron-phonon coupling constant. The plot deviates slightly from a linear
relation. The regions of strong-coupling polarons are shifted to ones of weak and intermediate polarons.
Thus introducing a confinement or a magnetic field shifts the regions of strong-coupling polarons to ones
of weak and intermediate polarons. This is in agreement with Pokatilov et al (2000;1999;1998) on the
effect of the confinement. It can be seen from the results that the effect of the confinement is similar to
that of the magnetic field. Thus instead of introducing an electron confinement to shift the regions of
strong-coupling polarons to ones of weak and intermediate polarons, it is sufficient to introduce only the
magnetic field. In figure 4, the polaron mass increases with increase Frohlich electron-phonon coupling
constant. Intensifying the confinement or the magnetic field leads to increase in polaron mass. Figure 5 is
the plot of the polaron energy versus the cyclotron frequency. Here it is observed that the polaron energy
increases with increase in cyclotron frequency. Figure 6 is a plot of polaron mass versus cyclotron. It
shows that the polaron mass increases with an increase in cyclotron frequency. Figures 5 and 7 show
similar behaviors for the confinement frequency as for the cyclotron frequency on the polaron energy
levels. The confinement and cyclotron frequencies also have similar effects on the polaron mass as seen
in figures 6 and 8. These results confirm the fact that instead of providing an electronic confinement it is

sufficient to apply a magnetic field.
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Figure-1: Plot of electron energy versus cyclotron frequency
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Figure-2:Plot of electron energy versus confinement frequency
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Figure - 3: Plot of polaron energy versus Frohlich electron -phonon coupling constant

E
8 ,/ o
) y F 7
e e Q=100; ©=100
> & |
P —#— Q=100; w=10
5 1 £ F 4 B EPPPE Q=50; ®=50 *
A =10, @=100
. /ﬁl ° —e— Q=10; =10 |
.
3. j.,/. ,
2 /s
o
4.25 6.25 8.25 10.25

267



REVUE DE L’ACADEMIE DES SCIENCES DU CAMEROUN Vol. 4 No. 3 (2004)

Figure - 4: Plot of polaron mass versus Fréhlich electron -phonon coupling constant
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Figure - 6: Plot of polaron effective mass versus cyclotron frequency
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Figure - 7: Plot of polaron energy versus confinement frequency
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Figure - 8: Plot of polaron effective mass versus confinement frequency
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The Ideal Structure Theorem for Do
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ABSTRACT

In this paper we describe completely the closed ideals of the Banach
algebra of functions f analytic in the unit disc such that their Taylor

coefficients [ satisfy the condition

A+ m) =1l ]P<+e0
n €IN

for 2n+1 > o> 2n -1, (n €IN* fixed), when the skeletons of the closed ideals under
consideration are at most countable.

Keywords: Closed Ideals, Banach Algebras, K-algebra, Skeleton, Inner factors, Standard
Ideals

RESUME

Dans cet article nous décrivons complétement les idéaux fermés de
I’algebre de Banach D, de fonctions f analytiques dans le disque

A

unitaire dont les coefficients de Taylor f  satisfient la condition

Ya+m 7@ k=17P<+o0
nelN '

pour 2nt1>a& >2n-1, (n €IN* est fixe), quand les squelettes des idéaux considerés sont au
plus denombrables. '

Mots clés: Idéaux fermés, Algebres de Banach, K-algebre, Squelette, Facteurs intérieurs,
Idéaux étandards.
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