Effects of Aqueous Rhizome Extract of Zingiber officinale on Arsenic Trioxide-Induced Spleen Damage in Adult Wistar Rats

Imafidon, E.O. and Ezekiel, B.A.

Abstract

BACKGROUND AND AIM: Arsenic trioxide induces significant spleen toxicity, causing splenomegaly, oxidative stress, inflammation, and compromised immune responses, which can lead to infections, impaired blood filtration, and systemic health decline. Zingiber officinale, known for its anti-inflammatory, antioxidant, and anti-carcinogenic properties, shows potential in mitigating toxicity and oxidative stress. This study aimed to assess the effects of aqueous rhizome extract of Zingiber officinale on arsenic trioxide-induced spleen damage in adult Wistar rats.

METHODOLOGY: Thirty (30) adult Wistar rats (n=5) were randomly assigned into six groups (A-F). Group A served as control; Group B - 10 mg/kg As2O3 only; Group C - 190 mg/kg body weight of Zingiber officinale stem extract and 10 mg/kg As2O3; Group D - 380 mg/kg body weight of Zingiber officinale stem extract and 10 mg/kg As2O3; Group E - 50 mg/kg body weight of standard drug (silymarin) and 10 mg/kg As2O3. Group F - 380 mg/kg body weight of Zingiber officinale stem extract.

RESULTS: Results of haematological parameters showed no significant difference (p>0.05) across groups. The arsenic trioxide-only group had significantly decreased glutathione, catalase, and superoxide dismutase, and increased malondialdehyde levels (p<0.05) compared to control. Pre-treatment with Zingiber officinale and silymarin significantly improved these markers (p<0.05). Histologically, arsenic trioxide caused severe spleen damage, while pre-treatment with Zingiber officinale and silymarin showed marked improvement. In conclusion,

CONCLUSION: Taken together, these findings provide evidence that Zingiber officinale protects against arsenic trioxide-induced spleen damage in Wistar rats.

Keywords: Arsenic trioxide, Spleen damage, Zingiber officinale, Wistar rat.

INTRODUCTION

Arsenic, a naturally occurring metalloid, is ubiquitously present in the environment, primarily due to both natural geological processes and anthropogenic activities (Polya and Lawson, 2015; Khan and Flora, 2023). Despite its industrial and agricultural utility, arsenic exposure poses significant public health risks. In many regions, arsenic contamination of groundwater is a critical issue, affecting millions of people (Shaji et al., 2021). Arsenic exposure, whether through contaminated drinking water, food, or air, leads to an array of adverse health effects. Chronic arsenic exposure is particularly insidious, with long-term ingestion associated with various cancers, cardiovascular diseases, diabetes, and neurotoxicity (Garcia-Vargas and Cebrian, 2023; Hashim, 2023). One of the least-discussed, yet critical impacts of arsenic toxicity, is its effect on the spleen. The spleen, an essential organ in the lymphatic system, plays a vital role in filtering blood, recycling old red blood cells, and supporting immune function (Lewis et al., 2019; Al-Salem, 2023). Arsenic trioxide, a specific form of arsenic, has been documented to induce significant spleen toxicity (Duan et al., 2017). This manifests as splenomegaly (enlarged spleen), oxidative stress, inflammation, and compromised immune responses (Colamartino et al., 2015; Dugo et al., 2017; Paithankar et al., 2021; Akbari

Address for Correspondence: Imafidon, E.O. Department of Anatomy, School of Basic Medical Sciences, University of Benin, Edo State, Nigeria.

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-Non Commercial-Share Alike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: jecajournal@gmail.com

et al., 2022). Given the spleen’s crucial functions, its impairment due to arsenic toxicity can lead to heightened susceptibility to infections, impaired blood filtration, and overall systemic health decline (Kile et al., 2016; Dugo et al., 2017; Alvaro et al., 2021).

In the search for remedies to counteract arsenic toxicity, medicinal plants have garnered substantial attention. Historically, plants have been a cornerstone in the management and treatment of various ailments due to their bioactive compounds, which exhibit antioxidant, anti-inflammatory, and detoxifying properties. Utilising medicinal plants presents a natural alternative to synthetic drugs, which may have their own set of adverse effects. Among the myriad of medicinal plants, Zingiber officinale stands out for its potent therapeutic properties. Zingiber officinale has been used for centuries in traditional medicine systems such as Ayurveda, Traditional Chinese Medicine, and Unani (Shahrajabian et al., 2019; Li et al., 2022). It is renowned for its bioactive compounds, including gingerols, shogaols, and paradols (Dhanik et al., 2017), which confer its strong anti-inflammatory (Ezzat et al., 2018), antioxidant, and anti-carcinogenic properties (Dissanayake et al., 2020). Studies have demonstrated Zingiber officinale’s efficacy in mitigating various forms of toxicity and oxidative stress in biological systems. Its potential to counteract arsenic-induced spleen toxicity lies in its ability to enhance antioxidant defenses, reduce inflammation, and modulate immune responses. Thus, this study is aimed at assessing the effects of aqueous rhizome extract of Zingiber officinale against arsenic trioxide-induced spleen damage in Wistar rats.

MATERIALS AND METHODS

Plant Extract: Ginger stems were obtained from a nearby farm. It was identified, and authenticated at the herbarium (UBH-Z384) of the Department of Plant Biology and Biotechnology, University of Benin, Nigeria. The stems were carefully sorted to remove damaged ones, they were washed, cleaned, and air-dried. Thereafter, it was put into one litre of beaker after being pulverized into a fine powder (500g) with a mechanical grinder and weighed with an electrical weighing balance. The ground plant materials were prepared for aqueous extraction according to the method described by Ikegwu et al. (2010).

Experimental Animals: Wistar rats were procured and bred in the Animal House, Department of Anatomy, University of Benin, Benin City, Edo State, Nigeria. The rats were acclimatized for 2 weeks before the commencement of administration and the animals were fed with standard chow and clean water ad libitum. The study was approved by the Research Ethical Committee of the College of Medical Sciences, University of Benin with the approval number CMS/REC/2023/339.

Experimental Design: Thirty (30) adult Wistar rats weighing between 110 g and 200 g were randomly assigned into six (6) groups of five (5) rats each. Group A – Control; Group B - 10 mg/kg As$_2$O$_3$ only; Group C - 190 mg/kg body weight of Zingiber officinale rhizome extract and 10 mg/kg As$_2$O$_3$; Group D - 380 mg/kg body weight of Zingiber officinale stem extract and 10 mg/kg As$_2$O$_3$; Group E - 50 mg/kg body weight of standard drug (silymarin) and 10 mg/kg As$_2$O$_3$. Group F - 380 mg/kg body weight of Zingiber officinale stem extract. The administration lasted for 28 days and was done orally using an orogastric tube.

Sample collection and Assessments: At the end of the treatment period (28 days), the rats were weighed and then sacrificed under chloroform anaesthesia. Blood samples were collected into EDTA anticoagulant sample bottles for haematological assessment and the spleen was harvested and immediately fixed on 10% formalin to avoid autolysis and used for histological assessments. Evaluation of antioxidant enzyme activity was carried out as previously described; catalase (CAT) [Cohen et al., 1970]; glutathione (GSH) [Nyman 1959]; Superoxide dismutase (SOD) [Misra and Fridovich 1972]. Also, lipid peroxidation assessment was carried out as previously described; Malondialdehyde (MDA) [Buege and Aust, 1978]. The harvested spleen tissues were processed and routinely stained using hematoxylin and eosin, according to the method previously reported by Drury and Wallington (1980).

RESULTS

Effect of Treatment on Hematological Indices: Table 1 shows the effect of treatment on haematological indices. Results showed that there was no significant difference (p>0.05) in platelets, haematocrit, WBC, lymphocytes and granulocytes across the experimental groups.

Effect of Treatment on Oxidative Stress: Table 2 shows the effect of treatment on oxidative stress markers. Results showed that there was a significant decrease (p<0.05) in glutathione (GSH), catalase (CAT) and superoxide dismutase (SOD) levels and a significant increase (p<0.05) in malondialdehyde (MDA) concentration in Arsenic trioxide-only treated rats when compared to control. However, there was a significant increase (p<0.05) in GSH, CAT and SOD and a significant decrease (p<0.05) in MDA concentration in Arsenic trioxide exposed rats pretreated with Zingiber officinale, and Silymarin.

Effect of Treatment on the Histology of the Spleen: Histological plates (Plate 1-6) below show the histology of the spleen throughout the experimental groups. Normal spleen tissue architecture was observed in the control and Zingiber officinale-only groups (Plate 1 and 6 respectively). In contrast, arsenic trioxide-only treated rats (Plate 2) showed severe damage to the spleen. Arsenic trioxide-treated rats pre-treatment with Zingiber officinale and Silymarin (Plates 3, 4, and 5) showed relatively normal spleen histology.
Table 1: showing hematological indices of the experimental animals.

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>10g/kg As$_2$O$_3$ only</th>
<th>190mg/kg Zingiber officinale + 10mg/kg As$_2$O$_3$</th>
<th>380mg/kg Zingiber officinale + 10mg/kg As$_2$O$_3$</th>
<th>50mg/kg Silymarin + 10mg/kg As$_2$O$_3$</th>
<th>380mg/kg Zingiber officinale</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platelets (103/µL)</td>
<td>582.50±57.710</td>
<td>535.25±135.789</td>
<td>653.00±85.772</td>
<td>595.50±109.500</td>
<td>597.80±122.610</td>
<td>715.00±49.825</td>
<td>0.256</td>
</tr>
<tr>
<td>Haematocrit (%)</td>
<td>40.125±1.674</td>
<td>28.325±6.825</td>
<td>36.300±0.183</td>
<td>31.600±1.200</td>
<td>32.940±3.358</td>
<td>36.180±0.667</td>
<td>0.254</td>
</tr>
<tr>
<td>WBC (103/µL)</td>
<td>9.775±1.423</td>
<td>7.625±2.429</td>
<td>10.375±1.162</td>
<td>9.700±0.200</td>
<td>10.040±0.676</td>
<td>9.120±1.041</td>
<td>0.776</td>
</tr>
<tr>
<td>Lymphocytes (%)</td>
<td>93.85±1.012</td>
<td>88.42±5.823</td>
<td>94.80±0.576</td>
<td>92.40±0.800</td>
<td>92.74±1.425</td>
<td>93.84±0.308</td>
<td>0.570</td>
</tr>
<tr>
<td>Granulocytes (%)</td>
<td>1.87±0.810</td>
<td>4.82±3.273</td>
<td>1.85±0.603</td>
<td>1.60±0.100</td>
<td>2.120±0.897</td>
<td>1.460±0.117</td>
<td>0.613</td>
</tr>
</tbody>
</table>

Values are given as mean ±SEM.

Table 2: showing antioxidant enzyme activity (GSH, SOD, CAT) and lipid peroxidation (MDA) in the spleen of the experimental animals.

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>10g/kg As$_2$O$_3$ only</th>
<th>190mg/kg Zingiber officinale + 10mg/kg As$_2$O$_3$</th>
<th>380mg/kg Zingiber officinale + 10mg/kg As$_2$O$_3$</th>
<th>50mg/kg Silymarin + 10mg/kg As$_2$O$_3$</th>
<th>380mg/kg Zingiber officinale</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSH (µM)</td>
<td>55.87±50.356</td>
<td>28.37±1.241</td>
<td>37.69±2.704</td>
<td>46.63±3.628</td>
<td>37.51±0.542</td>
<td>37.51±0.442</td>
<td>0.012</td>
</tr>
<tr>
<td>SOD (U/L)</td>
<td>96.65±0.022</td>
<td>93.38±0.309</td>
<td>95.01±0.332</td>
<td>95.97±0.314</td>
<td>95.97±0.314</td>
<td>95.66±0.271</td>
<td>0.020</td>
</tr>
<tr>
<td>CAT (U/L)</td>
<td>0.04±0.001</td>
<td>0.03±0.002</td>
<td>0.04±0.003</td>
<td>0.04±0.004</td>
<td>0.04±0.004</td>
<td>0.04±0.004</td>
<td>0.010</td>
</tr>
<tr>
<td>MDA (µM)</td>
<td>0.79±0.40</td>
<td>2.63±0.109</td>
<td>1.33±0.153</td>
<td>0.87±0.106</td>
<td>0.96±0.031</td>
<td>1.04±0.055</td>
<td>0.003</td>
</tr>
</tbody>
</table>

Values are given as mean ±SEM. * p<0.05 (significantly different) compared with the control group; # p<0.05 (significantly different) compared to the Arsenic trioxide-only group.

Plate 1: Rat Spleen. Control. Composed of normal tissue architecture: capsule (CA), red pulp (RP), white pulp (WP), sinuses (SN), arteriole (AR): [H&E x 400].

Plate 2. Rat spleen given arsenic trioxide (10mg/kg) only showing: severe vascular congestion (VC), severe vascular dilatation and ulceration (DU), marked red cell sequestration (RS), follicular atrophy (FA): [H&E x 400].
DISCUSSION

A plethora of studies corroborate the induction of oxidative stress (Shahid et al., 2020; Byeon et al., 2021; Zulfiqar and Ashraf, 2022) and haematological toxicity (Shah et al., 2020; Raeeszadeh et al., 2022) as a consequence of arsenic exposure, shedding light on its deleterious effects on blood parameters. Although the findings of this study showed no statistical significance (P > 0.05), a notable upward trend in platelet counts was observed following the administration of Zingiber officinale, especially at the higher dose of 380 mg/kg. Platelets are essential for blood clotting and wound healing (Shariati et al., 2020); a reduction in platelets (thrombocytopenia) can increase bleeding risk (Alvaro et al., 2021), while an increase suggests a protective effect against arsenic trioxide-induced thrombocytopenia. This rise in platelet levels indicates a potential prophylactic capacity of Zingiber officinale to counteract the thrombocytopenic effects induced by arsenic trioxide. This aligns with previous studies that highlight the therapeutic attributes of Zingiber officinale in ameliorating platelet dysregulation (Zarei et al., 2021; Angelopoulou et al., 2022). The observation is also consistent with studies demonstrating that antioxidant-rich compounds can mitigate platelet depletion caused by toxic substances (Gu and Dayal, 2022; Jomova et al., 2024).

Hematocrit values, which measure the proportion of red blood cells (RBCs) in the blood (Kishimoto et al., 2020), significantly decreased with arsenic trioxide exposure, indicating anaemia. Anaemia is commonly associated with oxidative stress and toxicity, leading to reduced oxygen transport capacity in the blood and resulting in fatigue and weakness. This aligns with findings from previous studies, which also noted anaemia as a common consequence of arsenic toxicity (Kile et al., 2016). However, treatments with Zingiber officinale exhibited improvements in hematocrit levels. Although these results were not statistically significant, they suggest that Zingiber officinale may mitigate arsenic trioxide-induced anaemia. White blood cell (WBC) counts, an indicator of immune function (Chabot-Richards and George, 2015), were slightly reduced with arsenic trioxide exposure, indicating immune suppression. WBCs play a vital role in defending the body against infections. A reduction in WBC count can compromise the immune system, making the individual more susceptible to infections. Treatment with Zingiber officinale and Silymarin showed a recovery towards control levels, especially with 190 mg/kg of Zingiber officinale. This indicates a possible protective effect against immune suppression induced by arsenic, consistent with previous studies where antioxidant therapies improved immune parameters after exposure to heavy metals (El-Boshy et al., 2015; El-Boshy et al., 2017; Mahmoud et al., 2022). Lymphocyte percentages, which are critical for immune response and include T cells and B cells, were reduced in the arsenic trioxide-only group, indicative of lymphotoxicity. Both doses of Zingiber officinale showed normalization towards control levels. This suggests Zingiber officinale’s role in...
protecting lymphocyte populations, paralleling findings in other studies that demonstrated herbal remedies' efficacy in safeguarding lymphocytes under oxidative stress conditions (Colamartino et al., 2015; Akbari et al., 2022). Granulocyte percentages, which include neutrophils, eosinophils, and basophils, increased with arsenic trioxide exposure, indicative of an inflammatory response. Granulocytes are part of the innate immune system and their increase often signifies an acute inflammatory or infectious process (Selders et al., 2017; Rosales, 2020). Treatment with Zingiber officinale, particularly at higher doses, reduced granulocyte levels back to near control values, demonstrating anti-inflammatory properties. This observation is supported by previous research showing that Zingiber officinale possesses strong anti-inflammatory effects, reducing granulocyte activation in response to toxins (Ezzat et al., 2018; Karunakaran and Sadanandan, 2019; Azeez and Lunghar, 2021).

Arsenic exposure often leads to oxidative stress through the generation of free radicals. This form of stress results from an imbalance between the production of reactive oxygen species (ROS) and the cell's capacity to repair damage and detoxify these reactive molecules. Such an imbalance can stem from increased ROS production, reduced antioxidant defenses, or a combination of both. Antioxidants, including enzymes like Superoxide Dismutase (SOD), Catalase (CAT), and Glutathione (GSH), are essential for neutralising free radicals and safeguarding cells. Malondialdehyde (MDA), a stable marker of lipid peroxidation, indicates oxidative stress levels. Results from this study showed that rats exposed to Arsenic trioxide exhibited significantly reduced levels of SOD, CAT, and GSH, alongside increased MDA concentrations compared to the control group. These findings support previous research indicating that the toxic effects of Arsenic trioxide are mediated through oxidative stress (Varghese et al., 2014; Dugo et al., 2017; Paithankar et al., 2021). Prior studies have shown that Arsenic trioxide-induced oxidative stress occurs due to decreased activity of antioxidant enzymes (Shahid et al., 2020; Zulfiqar and Ashraf, 2022) and increased lipid peroxidation (Byeon et al., 2021) in experimental animals. Notably, rats pre-treated with Ginger before Arsenic trioxide exposure showed a significant increase in SOD and GSH levels and a significant reduction in MDA levels. This enhancement in the antioxidant defense system is likely attributable to the antioxidant properties of Zingiber officinale, which is known to contain bioactive compounds such as gingerol, shogaol, and paradol, which possess strong antioxidant properties (Zhukovets and Özcan, 2020; Dissanayake et al., 2020). These compounds have been shown to scavenge free radicals and reduce oxidative stress, thereby protecting cells from damage.

Histological results from this study showed that the spleen histology of rats treated with arsenic trioxide only showed a range of toxic pathological changes. This was evident in severe vascular congestion, severe vascular dilatation and ulceration, marked red cell sequestration, and follicular atrophy. Severe vascular congestion observed in the spleens of rats given arsenic trioxide is indicative of impaired blood flow, which can lead to tissue hypoxia and subsequent damage. This is a critical finding as the spleen is an organ that filters blood, manages blood cells and plays a role in immune responses. Vascular congestion may impede these functions significantly. Severe vascular dilatation and ulceration suggest further damage to the spleen's vasculature, potentially compromising the integrity and function of the blood vessels within the spleen. These dilated vessels and resulting ulcerations could lead to increased permeability, haemorrhage, or even thrombosis, further exacerbating tissue damage. Previous studies on arsenic toxicity have similarly reported cytotoxic and immunotoxic effects on various organ systems (Islam, 2015; Bellamri et al., 2018; Giles and Mann, 2022). For instance, arsenic exposure has been associated with a broad range of pathological changes including vascular damage, inflammation, and oxidative stress in various tissues (Varghese et al., 2014; Dugo et al., 2017; Paithankar et al., 2021). Arsenic has been reported to induce endothelial dysfunction leading to cardiovascular diseases, alterations in hematopoiesis, and a weakened immune response (Poller et al., 2020; Theofilis et al., 2021). Interestingly, there were remarkable improvements in the spleen histology of arsenic trioxide-exposed rats pre-treated with Zingiber officinale. Notably, normal lymphoid follicles were preserved with both doses of Zingiber officinale, which suggests a protective effect against arsenic's immunosuppressive action.

CONCLUSION

This study shows that Zingiber officinale protects against arsenic trioxide-induced splenic damage in Wistar rats. In light of these findings, the potential use of Zingiber officinale in conjunction with current chelation therapies, could significantly advance the therapeutic strategies available for arsenic-related pathologies.

REFERENCES

Duan, X; Gao, S; Li, J; Wu, L; Zhang, Y; Li, W; Zhao, L; Chen, J; Yang, S; Sun, G; Li, B (2017). Acute arsenic exposure induces inflammatory responses and CD4+ T cell subpopulations differentiation in spleen and thymus with the involvement of MAPK, NF-kb, and Nrf2. *Mol. Imm.* 81: 160-172.

Kile, ML; Faraj, JM; Ronnenberg, AG; Quamruzzaman, Q; Rahman, M; Mostofa, G; Afroz, S; Christiani, DC (2016). A cross-sectional study of anaemia and iron deficiency as risk factors for arsenic-induced skin lesions in Bangladeshi women. *BMC Pub. Health.* 16: 1-10.

Kishimoto, S; Maruhashi, T; Kajikawa, M; Matsui, S; Hashimoto, H; Takaeko, Y; Harada, T; Yamaji, T; Han, Y; Kihara, Y; Chayama, K; Goto, C; Yusoff, FM; Nakashima, A; Higashi, Y (2020). Hematocrit, hemoglobin and red blood cells are associated with vascular function and vascular structure in men. *Scientific reports,* 10(1): 11467.

Imafidon and Ezekiel: Effects of Zingiber officinale on Arsenic Trioxide-Induced Spleen Damage.

Shahrajabian, MH; Sun, W; Cheng, Q (2019). Clinical aspects and health benefits of ginger (Zingiber officinale) in both traditional Chinese medicine and modern industry. *Acta agriculturae scandinavica, section b—Soil and Plant Science, 69(6):* 546-556.

Theofilis, P; Sagris, M; Oikonomou, E; Antonopoulos, AS; Siasos, G; Tsoufis, C; Tousoulis, D (2021). Inflammatory mechanisms contributing to endothelial dysfunction. *Biomedicines,* 9(7): 781.

Varghese, MV; Manju, A; Abhilash, M; Paul, MS; Abhilash, S; Nair, RH (2014). Oxidative stress induced by the chemotherapeutic agent arsenic trioxide. *3 Biotech,* 4: 425-430.

