
115

Review:  The impact of insulin resistance, gender, genes, glucocorticoids and ethnicity on body fat distribution

2010 Volume 15 No 3JEMDSA

The impact of insulin resistance, gender, genes,  
glucocorticoids and ethnicity on body fat distribution

a Crowther NJ, PhD
b Ferris WF, PhD

a Department of Chemical Pathology, National Health Laboratory Service, University of the Witwatersrand, Johannesburg, South Africa 
b Department of Medicine, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa

Correspondence to: Prof Nigel Crowther, e-mail: nigel.crowther@nhls.ac.za
Keywords: visceral fat; subcutaneous fat; cortisol; oestrogen; testosterone

Introduction

The incidence of obesity and, consequently, obesity-related 

co-morbidities is rapidly increasing in both the developed 

and developing worlds. Recently, the importance of total 

body adiposity has been eclipsed by the finding that 

visceral fat associated with central obesity contributes more 

to pathogenicity than subcutaneous fat.1 This may be due to 

the greater ability of visceral than subcutaneous adiposity 

to increase insulin resistance1 which, in turn, is thought to 

be an important aetiological factor in the development of 

type 2 diabetes, dyslipidaemia and cardiovascular disease.2 

Body fat distribution is therefore highly important and may 

be seen as a possible future predictor of obesity-related 

disease. Understanding the factors that regulate body fat 

distribution should not only give insight into the aetiology 

of obesity-related co-morbidities but also potentially allow 

for different therapeutic interventions depending on body 

phenotype. Whereas increased lipid accumulation in the 

visceral adipose depot may contribute more to whole- 

body insulin resistance than a comparable expansion in 

subcutaneous fat,1 it is possible that insulin resistance may 

regulate lipid accumulation differentially in subcutaneous 

and visceral adipose depots. This review will discuss 

how insulin resistance, gender, hereditary factors and 

glucocorticoids may sculpture body fat and change the 

pathogenicity of obesity.

Insulin resistance and body fat 
distribution

The physiological purpose of insulin resistance may be 

to limit triglyceride deposition within adipocytes and thus 

reduce the accumulation of additional body fat mass in 
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The metabolic consequences of obesity are highly dependent on body fat distribution and total body fat mass. Visceral 
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obese subjects.3 This is likely to be a remnant of an archaic 
response that would have limited weight gain in our distant 
ancestors, maintaining mobility and allowing them to avoid 
predation. Accordingly, it has been found that subjects with 
the highest level of insulin resistance gain less weight over 
time.4,5 Thus, a study of 192 Pima Indians demonstrated 
that those with insulin resistance gained less weight than 
insulin-sensitive subjects (3.1 versus 7.6 kg; p<0.0001) 
over a period of 3.5 years.4 In addition, an investigation 
examining 95 children with an age range of 9.7–14.5 years 
showed that, after three years of follow-up, weight gain was 
lowest in those in the highest tertile of insulin resistance for 
both boys and girls.5

The accumulation of triglyceride in the subcutaneous 
and visceral adipose tissue depots does not occur at the 
same rate. The greater insulin sensitivity of subcutaneous 
compared to visceral adipose tissue6,7 allows the former 
depot to expand at a quicker rate in response to lipid 
loading in non-obese subjects. With increasing body mass 
index (BMI), the subcutaneous depot will expand and insulin 
resistance will increase, and this will lead to a reduction in 
the rate of both adipocyte hyperplasia and hypertrophy at 
this site. Triglycerides not taken up by the subcutaneous 
adipose tissue will then accumulate in the visceral depot, 
a process driven by hyperinsulinaemia. Triglycerides will 
also be deposited at ectopic sites such as the liver, skeletal 
muscle and islet β-cells.8 This process of lipid ‘overflow’ from 
the subcutaneous to the visceral depot has been postulated 
by a number of investigators,9,10 and a recent publication has 
suggested that the factor that limits triglyceride deposition 
within the subcutaneous depot is insulin resistance.11 The 
net result of increased visceral adiposity and ectopic fat 
deposition will be much higher levels of insulin resistance, 
but with a small change in total body fat. This may have 
been an important evolutionary adaption that occurred 
in our ancestors to limit fat deposition during periods of 
higher nutrient intake. However, in modern times cheap, 
calorie-dense foods are plentiful in all developed and 
most developing countries, and this metabolic process 
for limiting weight gain may now have been overwhelmed 
by excessive caloric intake. The consequence of this is a 
high population level of visceral adiposity, leading to an 
increased prevalence of the metabolic disorders associated 
with obesity.8,12,13

The lower level of insulin resistance in subcutaneous, 
compared to visceral, adipocytes would mean that, in 
subjects with a low/normal BMI, fat deposition will occur 
primarily in the subcutaneous depot whilst, in subjects 
with a higher BMI, subcutaneous lipid accumulation will be 
slower but triglyceride deposition in the visceral depot will 

be enhanced. This sequential expansion of adipose depots 

in response to rising levels of insulin resistance has been 

observed in epidemiological studies,14,15 in which a rapid 

increase in waist circumference occurs only at high levels 

of insulin resistance. Also, a study has shown that, in lean 

subjects, free fatty acid uptake in subcutaneous adipose 

tissue is much higher than that observed in obese, insulin-

resistant subjects.16

Insulin resistance is not the only agent that controls body 

fat distribution, with gender, genes and glucocorticoids 

all having important roles. However, it is possible that the 

influence of these factors on body fat depot size occurs via 

the modulation of insulin sensitivity.

Gender-related differences in body fat 
distribution    

Gender differences are observed in body fat distribution, 

with women tending to have less visceral but more 

subcutaneous fat than men.17,18 These differences are 

thought to be due to the effects of the sex steroids,19 

although the mechanisms by which they influence body 

fat distribution are not fully understood. Given the possible 

role of insulin sensitivity in modifying adipose tissue depot 

size, it is tempting to speculate that the sex steroids may 

influence the responsiveness of adipocytes to insulin, and 

there is some evidence to support this.

Oestrogen may increase subcutaneous fat deposition in 

women by increasing insulin sensitivity. Studies in the ob/

ob mouse have shown that administration of oestrogen 

leads to improved insulin sensitivity,20 and adipocytes 

isolated from rats treated with oestrogen have higher 

insulin receptor numbers21 and increased insulin binding.22 

Oestrogen may also have effects downstream of the insulin 

receptor, as treatment of the murine 3T3-L1 adipocyte 

cell line was found to increase insulin-stimulated glucose 

uptake, mediated by increased tyrosine phosphorylation 

of insulin receptor substrate 1.23 Furthermore, the effect of 

oestrogen on insulin signalling has been recapitulated in 

humans, with naturally occurring mutations of oestrogen 

receptor-α resulting in insulin resistance.24

Testosterone in men is associated with lower levels of 

both visceral25 and subcutaneous26 adiposity and reduced 

triglyceride uptake into subcutaneous adipocytes.27 These 

effects may be mediated by the ability of testosterone to 

reduce insulin sensitivity by affecting signalling downstream 

of the insulin receptor. An in vitro study of human 

subcutaneous adipocytes showed that administration of 

testosterone led to reduced insulin-stimulated glucose 

uptake, which was mediated by a reduced level of protein 
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kinase C ζ phosphorylation.28 Testosterone may also 

indirectly reduce insulin sensitivity, since it has been shown 

that testosterone treatment of men leads to lower serum 

levels of adiponectin.29

The ability of sex steroids to modulate body fat distribution 

may not only be due to their effects on insulin sensitivity. 

A number of in vitro experiments and animal studies have 

shown that both testosterone and oestrogen can directly 

alter adipocyte metabolism via interactions with androgen 

and oestrogen receptors.30 Furthermore, it is also known 

that adipocytes express enzymes that metabolise sex 

steroids. Thus, aldo-ketoreductase 1C enzymes (AKR1C) 

metabolise androgens, whilst aromatase converts 

androgens to oestrogens. The former enzymes may be 

important in regulating body fat distribution, as studies have 

shown that increased visceral adiposity is related to higher 

levels of AKR1C expression.31,32 It is therefore possible that 

android and gynoid body fat distribution are partly the result 

of the level of secreted sex hormones, as well as adipose 

depot-specific differences in the level of expression of the 

enzymes that metabolise testosterone and oestrogen and 

of the respective sex hormone receptors.

Data therefore demonstrate that oestrogen has insulin-

sensitising20,23 and testosterone has insulin-desensitising 

effects on adipocytes,28 which may lead to increased lipid 

storage in women compared to men. The direct effects of 

the sex steroids on adipocyte metabolism30 would augment 

these gender differences. Therefore, with increasing BMI, 

women would accumulate more fat in the subcutaneous 

depot than men, whilst men would begin to accumulate fat 

in the visceral depot at a lower BMI than do women. Such 

patterns have been observed in cross-sectional studies.17,33 

However, longitudinal investigations of body fat deposition 

across genders, as well as studies to analyse the effects of 

the sex steroids on insulin sensitivity in both subcutaneous 

and visceral adipocytes, are required to confirm these data. 

Genetic input into body fat distribution

Adipose tissue depot size has important consequences, 

both metabolically and physically, and therefore the 

mechanisms that modulate body fat distribution must 

have a number of control points that allow efficient and 

appropriate regulation. The most basic of these regulatory 

inputs is from the genome. Evidence for a strong genetic 

input into body fat distribution comes from heritability 

studies that show that 50–55% of the variance in visceral 

fat mass is derived from genetic factors.34 Nevertheless, a 

recent investigation has shown that gene polymorphisms 

that affect appetite regulation and that have been repeatedly 

linked to BMI in genome-wide association (GWA) studies 

do not associate with MRI-assessed levels of visceral and 

subcutaneous fat.35 These findings were confirmed in two 

GWA studies in which visceral and subcutaneous adipose 

tissue depot size36 and waist-to-hip ratio37 were linked with 

novel gene polymorphisms that had not previously been 

uncovered in GWA studies that used BMI as the principal 

phenotype. These polymorphisms were near genes 

that may be functionally linked to body fat distribution, 

namely regulator of G-protein signalling 6 (RSG6)36 and 

lysophospholipase-like protein 1 (LYPLAL1).37 The gene 

RSG6 encodes a protein that has been linked to opioid-

associated signalling,38 which would in turn modulate 

cortisol secretion. LYPLAL1 is a triglyceride lipase that is 

involved in the control of triglyceride breakdown within 

adipocytes.37 A third gene, insulin-induced gene 2 (INSIG2), 

has also been linked to visceral and subcutaneous adipose 

depot mass39 and to BMI in some, but not all, association 

studies.40,41 These inconsistent results have been attributed 

to INSIG2 being more strongly associated with body fat 

distribution than with total adiposity.39 INSIG2 has been 

proposed to function in the feedback inhibition of fatty acid 

and cholesterol synthesis.42

Polymorphisms in the fat mass and obesity-associated 

(FTO) gene show the strongest and most frequently 

replicated associations with obesity.43 However, only one 

study has looked at the input of genetic variation at this 

site on visceral and subcutaneous adipose depot size.44 

This investigation reported that a single polymorphism in 

the FTO gene was related to BMI, body weight and total 

body fat mass, as well as both visceral and subcutaneous 

adiposity. This demonstrates that sequence variation in the 

FTO gene modulates body fat depot size, but this is largely 

due to its effect on total body fat mass.

These data demonstrate that the genetic aetiology of 

total body adiposity may be different from that of body 

fat distribution. It is also possible that eligible candidate 

genes for regulating body fat distribution may control 

adipose tissue insulin sensitivity, and it is noteworthy that 

polymorphisms close to the insulin receptor substrate (IRS)  

1 gene have been associated with increased visceral fat levels 

in a genome-wide linkage scan.45 However, this result needs 

to be replicated in a larger patient cohort. The association 

of INSIG1 polymorphisms with body fat distribution also 

implicates adipocyte insulin responsiveness as a possible 

factor in the control of visceral and subcutaneous adipose 

depot mass.
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The role of glucocorticoids in the control 
of body fat distribution

Body fat distribution is influenced by hormones other than 
insulin, particularly the glucocorticoids, which directly modify 
adipocyte gene transcription and promote adipocyte insulin 
resistance.46,47 Thus, increased visceral fat mass observed 
in Cushing’s syndrome is a consequence of the inherent 
hypercortisolaemia of the disease.48 As well as the effects 
on insulin sensitivity, cortisol is able to initiate adipogenesis 
in combination with insulin49 and also increases lipid 
deposition in mature adipocytes by up-regulating adipocyte 
lipoprotein lipase50 and inhibiting lipolysis.51 Cortisol is 
produced in adipocytes from inactive cortisone by the 
action of the enzyme 11β-hydroxysteroid dehydrogenase 
(11βHSD), the expression of which is increased in both 
visceral and subcutaneous adipocytes with increasing body 
fat mass.52,53 The cellular effects of cortisol are transduced 
via interaction with the glucocorticoid receptor, which has 
been shown to be expressed at higher levels in visceral 
than subcutaneous adipocytes.54 Thus, with increasing 
BMI, adipocyte production of cortisol will increase, leading 
to high local concentrations of the hormone. This will 
have greater effects in the visceral adipose depot due to 
higher glucocorticoid receptor expression at the intra-
abdominal site.54 The greater exposure or sensitivity of 
visceral, compared to subcutaneous, adipose tissue to 
cortisol has been suggested by other investigators as the 
reason for the visceral adipocentric effects of cortisol.53,55 

Thus, glucocorticoids may augment lipid accumulation 
in the visceral adipose tissue of obese subjects, allowing 
increased clearance of the triglycerides not taken up by the 
adipocytes within the subcutaneous fat depot.

Ethnic differences in body fat distribution

It is known that in subjects from the Indian subcontinent, 
type 2 diabetes, hypertension, ischaemic heart disease and 
the metabolic syndrome are all more common than in other 
population groups56 and that, at any given level of BMI or 
waist circumference, the level of cardiovascular disease 
risk factors is higher in Indian than in European subjects.57 
It has been demonstrated that the level of visceral fat is 
higher in Indian than in European individuals when matched 
for BMI or waist circumference,56,58 and this may partially 
explain the higher prevalence of cardiovascular disease in 
the former population. We might explain the higher level 
of visceral adiposity in Indian subjects by suggesting that, 
in this population, the subcutaneous fat depot has a lower 
capacity for triglyceride accumulation, and hence increased 
lipid accumulation in the visceral depot would occur at 
lower BMIs, as also hypothesised by Sniderman et al.10 

A possible explanation for this is that the subcutaneous 

adipocytes in Indian subjects are more insulin resistant 

compared to adipocytes in other ethnic groups, as has 

already been demonstrated,59 and this would lead to lower 

lipid storage in this fat depot. Also, serum levels of free 

fatty acids (FFAs) are higher60 and adiponectin lower61 in 

the Indian population. Both these molecules are products 

of adipocytes, with high levels of FFAs and low levels of 

adiponectin being associated with insulin resistance. 

However, given the multitude of recently discovered but 

yet to be fully characterised adipokines, it remains a point 

of conjecture whether ethnic differences in the production 

of one or more of these molecules by subcutaneous 

adipocytes might lead to higher levels of insulin resistance 

within the subcutaneous adipose depot of Indian subjects.

It is known that Indian neonates, although they have lower 

birth weights than those of other population groups, have 

proportionally higher levels of body fat, a phenotype that is 

preserved into adulthood.62 This suggests that the body fat 

pattern observed in Indian populations may be genetically 

determined. However, the genes involved have not yet been 

identified.

African women are known to have lower visceral63,64 

but higher subcutaneous64 fat mass than BMI-matched 

European women. This suggests that, in African women, 

the lipid storage capacity of the subcutaneous depot is 

greater than in European subjects, thus reducing lipid 

overflow into the visceral depot. The greater triglyceride 

storage capacity of the subcutaneous fat depot in African 

than European subjects may be related to the greater 

adipogenic rate observed in preadipocytes isolated from 

the former population group.65 Higher adipogenesis may 

reflect increased sensitivity to the adipogenic properties of 

insulin in subcutaneous preadipocytes of African subjects. 

However, one study has shown that mature adipocytes taken 

from the abdominal and femoral subcutaneous fat depots 

of African women are less sensitive to the anti-lipolytic 

action of insulin than those taken from European women.66 

These data were obtained using adipocytes isolated from 

obese subjects, and the study would have had greater 

relevance if the insulin sensitivity of adipocytes taken from 

lean individuals had also been examined. Therefore, more 

data are required to fully explain the differences in body 

fat distribution observed between European and African 

populations, although current observations suggest that the 

greater adipogenic capacity of subcutaneous preadipocytes 

in African women may play some role in producing ethnic 

differences in adipose depot mass.
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Conclusion

The control of body fat distribution must be viewed as an 

integration of different control systems, of which adipocyte 

insulin sensitivity is but one component. Other systems, 

particularly the endocrine axis, act directly on adipocytes 

but may also modulate adipocyte insulin functionality, 

which subsequently affects body fat distribution. The 

complex nature of the interactions that exist between these 

control mechanisms leads to difficulties in investigating 

and understanding the nature of the regulation of body 

fat distribution. It is for this reason that the use of high-

throughput molecular screening techniques may allow a 

clearer understanding of the subcellular mechanisms that 

are involved in the control of lipid deposition in the different 

adipose tissue depots. Already, GWA studies have revealed 

interesting new data with regard to the genetic input into 

body fat distribution, and the use of proteomic and gene 

expression profiling technology will undoubtedly add to our 

limited knowledge of how body fat depot size and function 

are controlled. A fuller understanding of these pathways will 

lead to increased knowledge on the aetiology of obesity-

related metabolic disorders and will hopefully progress to 

new interventions for these diseases.    
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