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ABSTRACT

The present investigation aims to examine the influence of geometric ratios and fibre

orientation on the natural frequencies of fibre-reinforced laminated composite plates

using finite element method based on Yang’s theory and his collaborators. The

transverse shear and rotatory inertia effects were taken into consideration in the

developed Fortran computer program. It has been shown that the use of first-order

displacement field provides the same accuracy as higher-order displacement field when

the number of elements representing the plate structure is increased (refined mesh).

However, poor precision may appear for plates with high thickness-to-side ratio h/a

(thickness/side length). This discrepancy limits the application of the developed theory

to thick plates (h/a<0.5). The various curves show the evolution of the dimensionless

frequency (*) versus fibre orientation angle () and illustrate the apparition of a

“triple-point” phenomenon engendered by the increase of the plate aspect ratio a/b

(length/width) for a specific value of h/a. This point defines the maximum natural

frequency and the associated fibre orientation. Also, results show that for high and/or

low aspect ratios, the triple-point phenomenon does not occur. This latter is rapidly

reached for thick plates than thin plates when the plate aspect ratio a/b is progressively

increased.
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1. INTRODUCTION

In addition to the choice of material and manufacturing process in the design of

fibre-reinforced composite plates, a search for an adequate stacking sequence and

proper fibre orientation is an important step provided to achieve an efficient structural

performance coupled with an optimal design [1]. For symmetrically laminates [2], the

analysis is simplified and the achievement of an optimised stacking sequence is easily

reached. However, for arbitrary laminates the analysis becomes complicated and

analytical formulations are unable to yield appropriate results on the vibrational

behaviour of such laminates. The complexity of the formulation is mainly due to the

presence of coupling parameters and their effects [3-4]. In such situation, the finite

element method [5-6] is among the numerical methods that are enabling approximate

solutions and providing an optimum design of new materials and structures usually in

the form of plates, used as structural key components in different fields of engineering

including those operating on water, in space and on earth. These plates must be

designed strong enough to perform safely in operating conditions, withstand severe

conditions of vibration and stability to which they will be exposed throughout their

service life.

As the stacking sequence is an important factor in the design of laminated composite

plates, it is therefore necessary to undertake studies on the vibration of these plates in

order to predict their natural frequencies and avoid possible resonance phenomena.

Within this context, Sirinivas [7], Jones [8] and Noor [9] have initially studied the

vibration problem of rectangular thick cross-ply laminated plates with simply supported

boundary conditions, where the determination of the fundamental frequencies was based

on the use of the three-dimensional elasticity theory. On the other hand, Fortier &

Rossettos [10] have analysed the free vibration of rectangular antisymmetric cross-ply

laminated plates. Whereas, Bert & Chen [11] have examined the transverse shear effect

on the natural frequencies of antisymmetric laminated plates; they have shown that the

transverse shear effect cannot be neglected when carrying out analysis on thick plates.

Also, Kant & Mallikarjuna [12] have applied the finite element method to investigate

the vibration of antisymmetric laminated plates and sandwich panels; their formulation

was based on higher-order displacement shape function with neglected transverse shear

correction factors. Jing & Liao [13] have undertaken some investigations in hybrid

element method using stress fields. Furthermore, in studies conducted by Shiau &
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Chang [14], the rotatory inertia effect was neglected and high number of triangular

elements with 36 degrees of freedom was used to examine the effect of transverse shear

deformation on the natural frequencies. Conclusively, Tesselar et al. [15], Bachene [5]

and Mohd Sultan Ibrahim [6] have presented a higher-order theory to analyse the

vibration of laminated thick plates.

The objective of the present work is to examine the influence of geometric ratios and

fibre orientation on the natural frequencies of laminated rectangular plates and aims to

accomplish the work previously conducted by Attaf [16]. For this purpose, a FORmula

TRANslator (FORTRAN) computer program was developed enabling to solve

difficulties inherent to the problem of vibration analysis. Also, the present method was

examined by comparing obtained results with those available in literature [11, 12, 15,

17], this has allowed to validate the theory developed via the computer program.

Excluding some no exhaustive indications in Refs. [12], [18] and [14], the literature

review shows that little investigations have been made on this subject matter.

2. MATHEMATICAL FORMULATIONS AND FIELD EQUATIONS

A laminated rectangular composite plate with lateral dimensions a, b and thickness h

was considered. The plate Cartesian coordinates are x, y and z , where x and y lie in the

middle surface and z is measured from the middle surface. The thickness of the plate is

constituted of n-plies differently orientated and composed of the same material.

The displacement field used is based on Yang et al. theory [19], this is given by the

following equations:
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where: u, v, w are the displacements along x, y, z directions; 0u , 0v , 0w are the point

displacements located on the middle surface of the plate along x, y, z directions and x ,

y are the normal rotations to the middle surface about x and y axis, respectively.

Taking into consideration the transverse shear deformations in addition to bending-

extension coupling effects, the constitutive equation in the (x,y,z) laminate system can

be written as:
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Or in compact matrix form as:
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(2b)

in which N, M and Q are the force, moment and transverse shear vectors and 0 ,  and

 are the associated strains and curvatures vectors, respectively. The coefficients ijA

(extensional stiffnesses), ijB (coupling stiffnesses), ijD (bending stiffnesses) and ijF

(transverse shear stiffnesses) are expressed as [3]:
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where ij are the transverse shear correction factors, taken equal to 5/6 in this analysis.

3. FINITE ELEMENT FORMULATIONS

The analysis is based on a nine-node isoparametric quadrilateral element. Each node

possesses 5 independent degrees of freedom (three displacements u, v, w and two

rotations x, y). Thus, the elementary displacement field can be defined by the

following matrix expression [20-21]:
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After some rearrangements, Equation (5a) may be written in compact matrix form as:

    eaNa  (5b)

where [N]=[N1 N2 N9] is the displacement shape function matrix expressed in terms of

natural coordinates (, ), and {ae}={{d1} {d2}   {d9}} is the nodal displacement vector.

The elementary strain-displacement relationship can be obtained from Equation (5) that

is as follows:
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Or in compact matrix form as:

    eaB (6b)

where [B]=[B1 B2 B9] is the interpolation matrix of deformation.

Using the Lagrange equation, it is easy to derive the differential equation of laminated

composite plates under free vibration, where the eigenvalue solutions can be obtained

by solving the following equations of motion:

   0])[]([ 0
2  aMK (7)

where ][K is the plate global stiffness matrix, ][M is the plate global mass matrix,  0a

is the global displacement vector and  is the plate natural frequency (=2f).

The global stiffness matrix and the global mass matrix are obtained by assembling the

elementary stiffness matrices ][ eK and mass matrices ][ eM ; these are given by the

following:
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where Ωe is the elementary surface and ][m is the inertia matrix; they are expressed as:
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and i = 0,1,2

To solve Equation (7), a computer program was developed to search the eigenvalues

and eigenmodes (i.e., natural frequencies and mode shapes) for free vibration problem.

The calculation of stiffness and mass matrices has been performed using selective

integration procedure and Lobatto’s method [22], respectively. On the other hand, the

well-known subspace iteration method [23] was used to solve the eigenproblem.

4. APPLICATION EXAMPLES

4.1. Validation of the computer program

To verify the accuracy of the developed program, a comparative study between the

first eleven natural frequency values obtained by other available approaches and the

present approach was established. Two laminated square plates (specially antisymmetric

and cross-ply symmetric) were considered. The boundary conditions are those

associated to a simply supported plate; these are:

 at: x = 0, a 000  ywu

 at: y = 0, b=a 000  xwv

The material mechanical characteristics are typical to those of carbon/epoxy

composites; these are given as follows:

E1/E2 = 40. G12/E2 = G13/E2 = 0.6 G23/E2 = 0.5 12 = 0.25

The plate was divided into 1010 elements, which corresponds to 441 nodes

representing the entire domain.

For the composite laminated plate with stacking sequence [45°/-45°/45°/-45°], the plate

thickness-to-side ratio (h/a) is kept constant and equal to 0.1. The first eleven

eigenvalues (see Table 1) are compared with results available in Ref.[11] (i.e., Closed
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form solution) and Ref.[12] (i.e., Higher–Order Shear–deformation Theory HOST).

Errors shown in the last column of Table 1 are estimated according to Ref.[11].

For the case of composite laminated plate with stacking sequence [0°/90°/90°/0°], the

plate thickness-to-side ratio (h/a) is variable from 0.001 to 0.50. The results shown in

Table 2 were compared with those available in Ref.[15] and Ref.[17]. Errors are

estimated according to Ref.[15], they can be minimised and reduced if refined meshes

are used.

Tableau 1. Dimensionless frequency 2
2

2 /* hEa  for antisymmetric angle-ply

[45°/-45°/45°/-45°] of simply supported square plate with thickness-to-side ratio

h/a=0.1

M n
Present

Analysis

Bert & Chen

Ref.[11]

HOST

Ref.[12]

Error / to

Ref.[11]

1 1 18.46 18.46 18.32 0.00

1 2 34.87 34.87 34.54 0.00

2 2 50.51 50.52 49.71 -0.02

1 3 54.27 54.27 53.63 0.00

2 3 67.13 67.17 65.02 -0.06

1 4 75.55 75.28 75.65 0.36

3 3 82.72 82.84 83.14 -0.14

2 4 85.15 85.27 86.75 -0.14

1 5 97.45 97.56 99.45 -0.11

3 4 98.73 99.02 100.88 -0.29

2 5 104.67 104.95 103.28 -0.27
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Tableau 2. Dimensionless frequency 2
2

2 /* hEa  for symmetric cross-ply

laminate [0°/90°/90°/0°] of simply supported square plate

h/a
Present

analysis

Tesseler & al.

Ref.[15]

Approach

solution [17]

Error / to

Ref.[15]

0.50 5.499 5.260 5.576 -4.54

0.25 9.394 9.224 9.497 -1.84

0.20 10.853 10.748 10.989 -0.98

0.10 15.142 15.149 15.270 0.05

0.08 16.186 16.187 16.276 0.01

0.05 17.659 17.626 17.668 -0.19

0.04 18.071 18.023 18.050 -0.27

0.02 18.674 18.605 18.606 -0.37

0.01 18.836 18.753 18.755 -0.44

0.001 18.891 18.805 --- -0.46

4.2. Effect of fibre orientation on the first natural frequency (Fig.1)

Laminates in the form of rectangular plates with eight unidirectional plies

alternatively orientated as follows [/-//-//-//-] have been considered. The

mechanical characteristics and the boundary conditions are the same as those used

previously for the plate with thickness-to-side ratio h/a equals to 0.1.

The dimensionless frequency value 10./* 2
2

2 hEa  is calculated according to the

fibre orientation angle  and the different values of the plate aspect ratio a/b. For each

value of a/b, the variation of * versus  is represented in the form of graph. The

resulting various graphs are illustrated in Figure 1, from which the following features

may be distinguished:

 for a plate aspect ratio a/b <1, the dimensionless frequency * decreases when the

lamination angle  increases;

 for a plate aspect ratio a/b =1, the dimensionless frequency * increases slightly in

the interval [0°; 45°] to reach its maximum value at  = 45°, then decreases

approximately with the same slope in the interval [45°; 90°];
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 for a plate aspect ratio 1<a/b10, the dimensionless frequency * increases in the

interval [0°; a] to reach its maximum value at =a, then decreases continually in

the interval [ a , 70°]. The point corresponding to =a is called ‘‘triple-point for

natural frequencies’’. The curve representing the function f()=* is continuous at

=a, but not differentiable at that point. The lamination angle a depends

systematically on the plate aspect ratio a/b;

 for a plate aspect ratio a/b>12, the dimensionless frequency * reaches its

maximum value at =0°, then decreases rationally when  increases. The graph of

* as a function of  is continuous and differentiable on the entire interval [0°;

90°]. The triple-point phenomenon does not occur.

Fig.1. Dimensionless frequency 10./* 2
2

2 hEa  vs. lamination angle ; for

different plate aspect ratios a/b with laminate stacking sequence [/-//-//-//-]

and thickness-to-side ratio h/a=0.1

According to Figure 1, it can be concluded that for a plate aspect ratio a/b>12, the

maximal value of * is always reached at =0°; further increase of the ratio a/b beyond

12 does not affect the dimensionless frequency *. The triple-point corresponding to

the abscissa a characterises the maximum rigidity of the plate, for which all fibres are

orientated at a . In such situation, it may be assumed that the behaviour of a laminated
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composite plate is the same as a quasi-isotropic plate. The triple-point phenomenon is

not discernable when the plate aspect ratio a/b is less than or equal to1.

Fig.2. As Fig.1, with thickness-to-side ratio h/a=0.02

To generalise the previous observations made for a plate with thickness-to-side ratio

h/a=0.1, a thin plate with thickness-to-side ratio h/a=0.02 was considered. The

corresponding results are illustrated in Figure 2. It can be seen that the variation of the

dimensionless frequency * vs. lamination angle, , for different values of a/b yields

similar observations to those discussed previously in Figure 1, except that locations of

various triple-points are different and the function f()=* is totally continuous and

differentiable for a plate with aspect ratio a/b 24: interval in which the phenomenon of

triple-point does not appear. By comparing the results shown in Figure 1 with those

shown in Figure 2, it can be seen that the triple-point position for natural frequencies

depends also on the plate thickness-to-side ratio h/a.
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To further generalise the analysis, Figure 3 shows numerical results for the case of a

thick plate with thickness-to-side ratio, h/a, equals to 0.2. The dimensionless frequency

curve * vs.  (Figure 3) behaves differently from the two cases previously examined

(i.e., Figs.1 & 2). For a plate aspect ratio a/b equals 8 to10, the triple-point is not

reached and the maximal dimensionless frequency * is equal to 27.5241; this

corresponds to a lamination angle  equals to 29°. For a plate aspect ratio a/b1, the

triple-point phenomenon does not occur within this interval and dissimilarities can

easily be discerned in Figure 3.

Fig.3. As Fig.1, with thickness-to-side ratio h/a=0.2

5. CONCLUSION

The influence of geometric ratios (plate aspect ratio a/b and its thickness-to-side

ration h/a) and fibre orientation on the first natural frequencies of antisymmetric

laminated composite plates was examined. It was shown that the use of first-order

displacement field yields the same accuracy as higher-order displacement field when the

number of elements representing the plate structure is increased (refined mesh) and also

when the integration technique used for calculating the stiffness and mass matrices is

performed. Poor precision may appear for plates with high thickness-to-side ratio h/a

(thickness/length side). This discrepancy limits the application of the developed theory

to thick plates with thickness-to-side ratio h/a less than 0.5.

The present analysis has shown that the increase of the plate aspect ratio a/b leads to the

apparition of a triple-point phenomenon within a specific interval of fibre orientation for

which the natural frequencies can reach their maximum values. The triple-point is
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rapidly reached for thick plates than thin plates when increasing the plate aspect ratio

a/b and it does not occur for high and low plate aspect ratios. Finally, it can be

concluded that the shape of the curve * versus  and the triple-point positions depend

significantly on the laminate stacking sequence, the fibre orientation angle and the plate

dimensions (thickness, length and width).
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