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ABSTRACT

This study deals with estimating the parameters of the received signal of the poly phase in

three orders. The process of estimation occurs in two stages: in the first stage, the high orders

of the signal are estimated highly accurately using the Non Uniform FFT. The received signal

passes through the componential match filter which has been estimated highly accurately. As

it passes through this filter, the order of the ploy phase decreases. In the second stage, the

components of the low order of the ploy phase signal are estimated highly accurately using

the Short Time Frequency Transform (STFT) method. Finally, the findings of the stimulation

in these two stages indicated the efficiency of the presented algorithm for the received signal

parameters including the initial frequency, the chirp rate, and the change chirp rate.
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1. INTRODUCTION

This paper deals with the analysis as well as the estimation of the parameters of chirp signals

with constant amplitude. This type of signal is raised in many applications of signal

processing, one of the most important being the radar problem. For instance, consider a radar

illuminating a target. Then, the transmitted signal will be affected by two different

phenomena. First, it will undergo a phase shift induced by the distance and relative motion

between the target and the receiver. Assuming this motion is continuous and differentiable,

the phase shift can be adequately modeled as 2 3
0 1 2 3( )t a a t a t a t     , where the 1a , 2a

and 3a are either related to speed and acceleration or range and speed, depending on what the

radar is intended for and on the kind of waveforms transmitted [1].

Many algorithms have been presented to estimate the received ploy phase signal parameters

in many articles. Among various approximate maximum likelihood (ML) sinusoidal

parameter estimators [1-4], quadratic interpolation of magnitude peaks in a zero-padded Fast

Fourier Transform (FFT) [5] has been widely used due to its simplicity and accuracy.

Although it works as an approximate ML estimator for well-separated sinusoids with a large

zero-padding factor, its accuracy in practice is restricted by the choice of its design

parameters, such as window type, FFT length and zero-padding factor. In order to estimate

the initial frequency and the chirp rate parameters, many algorithms have been proposed, and

they generally fall into two categories: correlation algorithms and non-correlation algorithms.

The correlation algorithms include the higher order ambiguity function [6], cubic phase (CP)

function [7-8], higher-order ambiguity function-integrated cubic phase function [9], product

generalized cubic phase function [10], and parameters estimation algorithm based on non-

uniformly spaced signal sample method [11]. The maximum likelihood method [12], and the

modified discrete chirp Fourier transform algorithm for CPS [13] belong to non-correlation

algorithms. Correlation algorithms have lower computational cost (  2logO N N

or  2
2logO N N , where N is the effective signal length, but suffers from poor performance

in the low SNRs. Compared with the correlation algorithms, non-correlation algorithms are

just the opposite, with higher performance, but higher computational load   3
2logO N N . It

is worth noting that all these algorithms above cannot achieve a trade-off between

computational cost and anti-noise performance.
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2. SIGNAL MODEL

In this section we present the received signal model. To summarize, the model to be

considered here is given by

(1

)

2 332
0 0 1( ) exp( ( ( ) ( ) ( ) )) ( );        - ,....,0,...., 1

2 6 2 2

aa N N
y n A i a a nT nT nT w n n      

Where ( )w n denotes additive noise, and 0A is the constant amplitude. The Fourier transform

(FT) can be represented as
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Where ( )X n is Fourier Transform of signal, 0A is the constant amplitude, N is an odd

integer representing the number of samples, T is the sampling interval, ( )w n is the additive

complex white Gaussian noise with a variance of w , and 1a , 2a and 3a denote the centroid

frequency, chirp rate and its change rate, respectively. The input signal to noise ratio (SNR)

can be obtained as

(3)
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2.1. The relation between signal length with chirp rate and change rate of chirp rate

In this section, we attempt to relate signal length with chirp rate and change chirp rate. The

result, after using the Fourier Transform, can be represented as

(4)
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In order to perceive the relationship between the chirp rate and the change chirp rate and the

length of the signal more, the impact of each one of them on the length of the signal is taken

into consideration individually. To do so, we investigated the relationship between the length

of the signal and the FFT output using equations (4) and (5), and ultimately the relationship

between the length of the signal and the FFT output will be obtained through the optimization

of equation (6):

(6)
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1 1
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2 dB
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Figure 1 (left) shows the maximum Fourier Transform with different signal lengths and the

Figure 1 (right) shows power spectral density of   1
1FT X f when compensated initial

frequency and change chirp rate and Figure 2 (left) shows the maximum Fourier Transform

with different signal lengths and Figure 2 (right) shows power spectral density of

  1
2FT X f when compensated initial frequency and change chirp rate and parameters

are: 2 60 / ,a Hz s and
1

T=
600

s. In those figures, we select several representative signal

length and   1FT ( ), 1, 2iX f i  .

Fig.1. The maximum amount of the signal Fourier transform y(n) with the compensated effect

of the initial frequency and the change chirp rate (on the right) and the Power spectral density

of signal according to signal length, N, with the compensated the effect of the initial

frequency and the change chirp  rate (on the left)
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Fig.2. The maximum amount of the signal Fourier transform y(n) with the compensated effect

of the initial frequency and the change chirp rate (on the right) and the spectrum signal with

the compensate in the effect of the initial frequency and the chirp rate (on the left)

As it can be seen from the above Figures, the optimal amounts of the length of the signal to

the chirp rate and change chirp rate have been determined separately. However, if we take

these two into account, it will be difficult to determine the optimal amount of the length of the

signal. According to [14], the relationship between the length of the signal, chirp rate, and

change chirp rate can be determined as follows:

(7)
 2 dB

1, dB
30.1

2opt

a
N     

(8)
 3 dB

2, dB
31.4

3opt

a
N     

Therefore, in order to obtain the amounts of 2a and 3a , we used the above searching stages; in

other words, in the first stage of estimation, the following searching stages are used to find the

amount of 2a . By so doing, the complexity of its implementation can be reduced by adjusting

the search stage. By considering the computational cost and result of energy accumulation, we

perform NUFFT corresponding to 3a . The change chirp component and its initial frequency

are at first reduced using the following cost function.

(9)  3

1 2

22
1coarse 2coarse 3 1( )

,

ˆ ˆ ˆ, , arg max ( )exp 2 ( ) ( )
2nT

a a a NUFFT y n i nT nT
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

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     

As it can be seen from the above equation, we need two dimensional searches that increase

the complexity and the implementation time of the algorithm. Also, in the above equation
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where 3( )nT
NUFFT denotes NUFFT operator with respect to 3( )nT . Hence, by estimating 3a ,

we can define a match filter as follows:

(10)
3 23 2

1

ˆ ˆ ˆRMF( ) exp( ( ) ( ) ( ))
6 3

a a
n j nT j nT ja nT   

Where in the above terms is the change chirp rate. In case the match filter of one of the

components is achieved, we can either remove that component from the received signal or

reduce its influence a lot. Hence, upon passing through the match filter, the signal will be as

follows:
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Fig.3. Step of signal parameter estimation by the proposed method

Where in the above equation, 1 1coarsea a   , 2 2coarsea a   ,  3' 3 3fine

0
A A exp

6

a a
j nT


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is considered as fixed amount. Finally, by ' RMFw w  the multiple of the noise in the

response match filter has been achieved. So, if we estimate one of the expressed parameters

we can reduce the difficulty of estimation of other parameters. As it was mentioned earlier,

the estimation methods of those received signals that have chirp rate can be classified into two

groups: associate or formal and informal. The STFT is used to find the initial frequency and

the chirp rate. To gain so, the STFT method is implemented on the signal obtained from the

stated match filter. So, the analysis framework is based on the uniform-rate short-time Fourier

transform (STFT). Hereafter, the centered form of the Fourier transform (FT) is used
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where h is the analysis window, L is the sample size of the Fourier transform, sF is the

sampling frequency, k is the frequency bin, and n sn F  is the time in seconds of the

corresponding sample number n . The time corresponding to the center of the STFT window

is noted m st m F . Finally, 2k sw kF N is the frequency of the bin k . The signal

processing based on the STFT relies on the definition of the local model ( ) ( )m Ly t y   .

This model is assumed to be valid in the neighborhood of mt , and in particular, on the

analysis interval centered in mt , with a length W . This interval usually includes a few

overlapping frames (W N ). Then, the output signal obtained from the match filter of the

previous stage is investigated by the STFT method which has better estimation of the initial

frequency and the chirp rate. To do so, we take the signal obtained from the match filter as

follows:

(13)
2

' 'y ( ) exp
2L A w
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 

 
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Where  and  are, respectively, the phase, frequency, and frequency change rate for the

time mt . To emphasize that the amplitude and the chirp rate and initial frequency are constant

within the analysis window, the M has been dropped. For the estimation of  and  , the

estimation method was used as it has good performance. Perform STFT on real chirp signal

y ( )L  , the spectrum of which is symmetry about 0f  . Define the spectrum corresponding

to the positive frequency as PF( , )t f [15]:
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The spectrum is the square product of the absolute value of (STFT , )S t f , which is defined as

(15)
2

0SPE SC ( TF, ) T| ),(Sr ff tt f 

Using the maximum spectrum on the Sloping line in the (f-t) space, the initial frequency and

chirp rate are estimated. The estimated values are obtained as follows [15]:
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So using the above equation, the initial frequency,  , and chirp rate,  can be obtained. In

term , in the above equation, shows the error that depends on the estimated frequency.

3. SIMULATION

In this section we describe the simulation using the theory in the previous section on

MATLAB software. The simulation will be raised in two stages for analysis. In the first stage,

the change chirp rate is estimated using the NUFFT method with high precision. Also in this

stage, the amounts of the initial frequency and chirp rate are estimated with low accuracy. In

the second stage, the estimated parameters of the initial frequency and chirp rate are estimated

using NUFFT Method. In simulation parameters the following are set:

0 1 2 31,  ,700 15 ,  70 8A a a a    . Also, this simulation sampling rate equals F 10s KHz .

Fig.4. Mean square error from estimation of NUFFT step for chirp rate and change chirp rate

Figure 4 shows the estimation mean square error in step NUFFT and this Figure shows

simulations of the estimation error according to SNR. The estimates performance will

improve as the SNR increases. As SNR decreases, the performance of estimation method

decreases as well. In the presented Figure, the mean square error values are obtained for the

chirp rate and change chirp rate. At this stage, the chirp rate component is estimated to be

inaccurate; in other words, the coarse values are obtained for chirp rate whereas the change
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chirp rate component is estimated with high accuracy and this description is evident from the

Figure. By estimating the change chirp rate component, the matched filter based on estimation

can implemented. By implementation of the matched filter, the effect of this component can

be compensated and this makes it easier to estimate other parameters.

Figure 5 illustrates the simulation STFT stage. This is also expressed by the estimation Root

Mean Square Error at this point to different component according to SNR. As it can be seen in

this Figure, if SNR increases, the estimation error has low values and that the performance of

the estimation increases. In the other case, if SNR decreases, the performance of estimation

decreases too. Another very important note is that in low SNR, RMSE has low values.

Fig.5. Root mean square error (RMSE) from chirp rate and initial frequency estimation

4. CONCLUSION

This paper deals with estimating the parameters of the received signal of the poly phase

in three orders. The process of estimation occurs in two stages: in the first stage, the

high orders of the signal were estimated highly accurately using the Non Uniform FFT.

The received signal passes through the componential match filter which has been

estimated highly accurately. As it passes through this filter, the order of the ploy phase

decreases. In the second stage, the components of the low order of the ploy phase signal

are estimated highly accurately using the Short Time Frequency Transform (STFT)

method. Finally, the findings of the stimulation in these two stages indicated the
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efficiency of the presented algorithm for the received signal parameters including the

initial frequency, the chirp rate, and the change chirp rate.
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