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ABSTRACT

Statistical analysis of lifetime distributions under Type-II censoring scheme is based on precise

lifetime data. However, some collected lifetime data might be imprecise and are represented in

the form of fuzzy numbers. This paper deals with the estimation of exponential mean parameter

under Type-II censoring scheme when the lifetime observations are fuzzy and are assumed to

be related to underlying crisp realization of a random sample. Maximum likelihood estimate of

the unknown parameter is obtained by using EM algorithm. In addition, a new numerical

method for parameter estimation is provided. Using the parametric bootstrap method, the

construction of confidence intervals for the mean parameter is discussed. Monte Carlo

simulations are performed to investigate performance of the different methods. Finally, an

illustrative example is also included.
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1. INTRODUCTION

In many life testing experiments, the experimenter may not observe the lifetimes of all

inspected units in the life test. This may be because of time limitation and/or other restrictions

(such as money and material resources, etc) on data collection. Censored data arises in these
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situations wherein the experimenter does not obtain complete information for all the units under

study. Different types of censoring arise based on how the data are collected from the

life-testing experiment. The scheme of type-II censored sampling is an important method of

obtaining data in life testing experiments. Under this censoring scheme the life testing

experiment will be terminated upon the r-th (r is pre-fixed) failure. This scheme is often

adopted for toxicology experiments and life testing applications by engineers as it has been

proven to save time and money. Several authors have addressed inferential issues based on

Type-II censored samples; see for example, [24], [23], [3], [8], [2], [6], [25], [18], [4], [5], [16],

[22]. Their research results for estimating the parameters of lifetime different distributions

under Type-II censoring are based on precise lifetime data. However, in real situations all

observations and measurements of continuous variables are not precise numbers but more or

less non-precise. This imprecision is different from variability and errors. Therefore also

lifetime data are not precise numbers but more or less fuzzy. The best up-to-date mathematical

model for this imprecision are so-called non-precise numbers.

Example 1. Assume that n identical ball bearings are placed on a life-testing experiment, and

we are interested in the lifetime of these ball bearings. In practice, however, measuring the

lifetime of a ball bearing may not yield an exact result. A ball bearing may work perfectly over

a certain period but be braking for some time, and finally be unusable at a certain time. So, the

number of revolutions to failure (in millions) for ball bearings may reported by means of the

following imprecise quantities: “ approximately lower than 45 ”, “ approximately 50 to 70

”, “ approximately 75 ”, “ approximately 80 ”, “ approximately 90 to 100 ”, “

approximately higher than 120 ”, and so on.

Classical statistical procedures and Bayesian inference are not appropriate to deal with such

imprecise cases. Therefore, we need suitable statistical methodology to handle these data as

well. In recent years, several researchers pay attention to applying the fuzzy sets to estimation

theory. Huang et al. [15] proposed a new method to determine the membership function of the

estimates of the parameters and the reliability function of multiparameter lifetime distributions.

Coppi et al. [7] presented some applications of fuzzy techniques in statistical analysis. Pak et al.
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([19],[20] and [21] ) conducted a series of studies to develop the inferential procedures for the

lifetime distributions on the basis of fuzzy data.

In this paper, our objective is to devise the methods for parameter estimation regarding a

life-test from which the Type-II censored data are reported in the form of fuzzy numbers. We

analyze the data under the assumptions that the lifetimes of the test units are independent

identically distributed exponential random variables. In Section 2, we first present in greater

detail the problem addressed in this paper. Some preliminary concepts about fuzzy numbers is

included in this section. In Section 3, we propose a procedure to determine the maximum

likelihood estimate (MLE) of the parameter of interest. A new parameter estimation method,

called ’computational approach estimation’ (CAE), is established in Section 4. By using the

parametric bootstrap method, construction of the confidence intervals for the unknown

parameter is discussed in Section 5. Simulation study will be carried out to assess the

performance of the different proposed methods in section 6. A practical example in life testing

is provided in Section 7 in order to illustrate all the methods of inference discussed here.

2. PROBLEM DESCRIPTION

Consider a reliability experiment in which n identical units are placed on a life-test. Let

nXX ,...,1 denote the lifetimes of these experimental units. We assume that these variables are

independent and identically distributed as Exponential )(E , with probability density function

(pdf),

0.>0,>,)(exp
1

=);( 


 x
x

xf  (1)

Let ... ::2:1 nnnn XXX  denote the corresponding ordered lifetimes. Suppose the

experimenter decides to carry out the life-test until the time of the r th failure, then the data

arising from such a life-test would be of the form ... ::2:1 nrnn XXX  with the remaining

rn  lifetimes being more than nrX : . This situation is referred to as Type-II censoring. We
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also denote the observed values of such a Type-II right censored sample by nrn xx ::1 ,..., .

Based on these observations, the likelihood function is given by:
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In many fields of application it is sometimes impossible to obtain exact observations of

lifetime. The obtained lifetime data may be imprecise most of the time. For example, the

lifetime of units may be between 1500 and h2000 , but near to .2000h In order to model

these observed lifetimes, a generalization of real numbers is necessary. These lifetimes can be

represented by fuzzy numbers. A fuzzy number is a subset, denoted by x~ , of the set of real

numbers (denoted by R ) and is characterized by the so called membership function (.)~x .

Fuzzy numbers satisfy the following constraints ([10]):

(1) 0,1][:~ Rx is Borel-measurable;

(2) 1;=)(: 0~0 xx xR

(3)  The so-called  cuts 1),<(0  defined as })(:{=)~( ~   xxxB xR , are

all closed interval, i.e., (0,1].],,[=)~(  baxB

With the definition of a fuzzy number given above, an exact (non-fuzzy) number can be treated

as a special case of a fuzzy number. For a non-fuzzy real observation R0x , its

corresponding membership function is 1=)( 00
xx . Usually, LR -type fuzzy numbers (the

triangular and trapezoidal fuzzy numbers are special cases of the LR -type fuzzy numbers) are

most convenient and useful in describing  fuzzy lifetime observations. Therefore, we shall

focus on the set of LR -type fuzzy numbers.

Definition 1 ([27] pp.62). Let L (and R ) be decreasing, shape functions from R to [0,1]

with 1<)(1;=(0) xLL for all 0>)(0;> xLx for all 0=(1)1;< Lx or 0>)(( xL for all
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x and 0)=)(L . Then a fuzzy number x~ is called of LR -type if for 0>0,>, m in

R ,
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where m is called the mean value of x~ and  and  are called the left and right spreads,

respectively. Symbolically, the LR -type fuzzy number is denoted by ),,(=~  mx .

Definition 2 Suppose that nimx iiii 1,...,=),,,(=~  , be the LR -type fuzzy numbers. The

fuzzy mean value of these numbers can be obtained as
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Our viewpoint in this paper is based on an epistemic interpretation of fuzzy data, which are

assumed to "imperfectly specify a value that is existing and precise, but not measurable with

exactitude under the given observation conditions" ([13], p. 316). In this model, a fuzzy datum

is thus seen as a possibility distribution associated to a precise realization of a random variable

that has been only partially observed. In the next section, we introduce a generalization of the

likelihood function and obtain the maximum likelihood estimate (MLE) of the unknown

parameter  .

3. MAXIMUM LIKELIHOOD ESTIMATION

Now consider the problem where under the Type-II censoring scheme, failure times are not

observed precisely and only partial information about them are available in the form of fuzzy

numbers rimx iiii 1,...,=),,,(=~  , with their corresponding membership functions

)(),...,( ~11
~ rrxx xx  . Let the maximum value of the means of these fuzzy numbers to be )(rm .

The lifetime of rn  surviving units can be encoded as fuzzy numbers nr xx ~,...,~
1 with the

membership functions
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for nri 1,...,=  . The fuzzy data ,...,~(=~
1xx )~

nx is thus the vector of observed lifetimes.

The corresponding observed-data log-likelihood function can be obtained, using Zadeh’s

definition of the probability of a fuzzy event ([26]), as
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Since the observed fuzzy data x~ can be seen as an incomplete specification of a complete data

vector x , the EM algorithm can be applied to maximize the observed-data log-likelihood (3).

Therefore, in the following we use the fuzzy EM (FEM) algorithm ([9]) to determine the MLE

of  .  Each iteration of the algorithm involves two steps called the expectation step (E-step)

and the maximization step (M-step). The E-step requires the calculation of

),;~|(
1

)(log=);~|;(log( )(

1=

)( h
ii
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i

h xXEnLE 


 xX) (4)

in which X);(L is the complete-data likelihood function and )(h denotes the current fit of

 at iteration h . The conditional expectations ,1,...,=),;~|( )( nixXE h
ii  can be computed

using:

.);~|(=);~|( )()( dxxxxgxXE hh   (5)

where the conditional density of X given x~ is given by
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The M-step then consists  in finding 1)( h which maximizes );~|;(log( )(hLE  xx) . This is

easily achieved by solving the likelihood equation. From

0,=);~|;(log( )(hLE 


xX)



(7)
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we get

).;~|(
1

= )(

1=

1)( h
ii

n

i

h xXE
n

  (8)

The MLE of  can be obtained by repeating the E- and M-steps until the difference

)~;()~;( )(1)( xx h
c

h
c LL   becomes smaller than some arbitrary small amount.

It is showed in ([9]) that the observed-data log-likelihood )~;( xcL is not decreased after an

EM iteration. Hence, convergence to some value L is ensured as long as the sequence

)~;( )( xh
cL  for 0,1,...=h is bounded from above.

4. COMPUTATIONAL APPROACH ESTIMATION METHOD

In this section we propose a new parameter estimation procedure called ’CAE’. Although the

maximum likelihood estimate obtained in the preceding section is preferable, its computation

requires repeated evaluation of E- and M-steps until convergence occurs. On the other hand, the

CAE method provides not only the computational ease but also reasonable mean squared error.

This finding is further discussed in Section 6. Suppose ,1,...,=),,,(=~ rimx iiii  be the

observed fuzzy lifetimes under Type-II censoring from exponential distribution with unknown

parameter  . Grzegorzewski and Hryniewicz [14] considered the generalization of

exponential model which admits vagueness in lifetimes. They obtained a fuzzy estimator of the

mean lifetime  in the presence of vague lifetimes. However, in most applications, crisp

results are required instead of fuzzy ones. So, we propose the following computational

approach to obtain a crisp value as an estimate of  .

Step 1: Order the means of fuzzy numbers as )((2)(1) <...<< rmmm .

Step 2: Obtain the fuzzy mean value, say
«
x , of the fuzzy numbers by using (2).

Step 3: Convert the fuzzy number
«
x into a real value by using the center of gravity

defuzzification technique. Denote this defuzzified value by


x .

Step 4: The new estimate of  then is computed as:
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.1)(= )(rm
r

n
x 


 (9)

5. BOOTSTRAP CONFIDENCE INTERVAL

In this section, we discuss the construction of the confidence interval (CI) for the unknown

parameter  using the two types of bootstrap methods, viz., percentile bootstrap (Boot-p)

method and the bias-corrected and accelerated (BCa) percentile bootstrap method; see [11] and

[12] for pertinent details.

Suppose n identical items are put on a test and in the presence of Type-II censoring scheme,

the observed lifetimes are reported as fuzzy numbers rimx iiii 1,...,=),,,(=~  . Before we

discuss the construction of the bootstrap confidence intervals for  , the following algorithm is

used to generate the bootstrap sample of fuzzy numbers based on the original Type-II censored

fuzzy sample rxx ~,...,~
1 .

Step 1: Given the original Type-II censored fuzzy sample rxx ~,...,~
1 , compute the MLE

of  , say ̂ , using the iterative algorithm (8).

Step 2: Generate the Type-II censored sample of size r , say 
rmm ,...,1 , with the

underlying distribution as )ˆ(E . Define the LR type fuzzy numbers 
rxx ~,...,~

1 as

rimx iiii 1,...,=),,,(=~   .

Step 3: Based on the simulated Type-II censored fuzzy sample in Step 2 ,Calculate the

bootstrap MLE of  , denoted by ̂ , from (8).

Step 4: Repeat step 2 and 3, M times. Then, arrange all bootstrapped values of ̂ in

ascending order to obtain the ordered bootstrap sample of .ˆ<...<ˆ<ˆ
21


M

With the bootstrap sample generated as above, we propose the following two

parametric bootstrap confidence interval for  .

Boot-p confidence interval:

A two sided )%100(1  percentile bootstrap CI for  is

)ˆ,ˆ(
)]

2
(1[)]

2
([






 

MM
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BCa percentile bootstrap confidence interval:

A two sided )%100(1  BCa percentile bootstrap CI for  is

 ,ˆ,ˆ
][][


MM  

where
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Here, (.) denotes the CDF of the standard normal distribution, z is the upper  point of

the standard normal distribution and ][x denote the integer part of x . The value of

bias-correction 0ẑ is given by

,

)ˆ<ˆ(

=ˆ 1=1
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and a good estimate of the acceleration factor â is suggested to be

,
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where )(ˆ j is the MLE of  based on the original Type-II censored fuzzy sample with the

jth observation deleted for rj 1,...,= , and

.ˆ1
=ˆ )(

1=

(.) j
r

jr
 

6. SIMULATION STUDY

In order to evaluate the performance of all the different methods discussed in the preceding

sections, a Monte Carlo simulation study was conducted and its results are described in this
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section. First, for different choices of n , r and  we generate the Type-II censored

sample rxx ,...,1 from exponential distribution. Then we define fuzzy numbers rxx ~,...,~
1 with

the corresponding membership functions

,1,...,=,

)(

=)(~ ri
hxxx

h

xhx

xxhx
h

hxx

x

iii
i

ii

iii
i

ii

ix


















where ii xh 0.05= . This procedure simulates the situation where the observer has only

approximate knowledge of the failure times, and can only provide a guess ix and an interval of

plausible values ],[ iiii hxhx  . From these fuzzy numbers, we obtain the MLE of , using

the iterative algorithm (8). We have used the initial estimate to be
1

=
1=

(0)
i

r

i

x
r and the

iterative process stops when the relative change of the log-likelihood becomes less than 610 .

We also obtain the estimate of  using the CAE method. The average values ( AV ) and the

mean squared errors( MSE ) of the estimates based on 1000 replication are presented in Table

1. We also compute the 95% confidence intervals using the Boot-p and BCa percentile

bootstrap methods. The average confidence lengths and the coverage probabilities of the

confidence intervals are reported in Table 2.

From Table 1, the following observations are made. The performance of the MLEs are

satisfactory in terms of AVs and MSEs. For fixed n as r increases, the MSEs decrease for all

cases as expected. Similar observations are made for the estimates of  obtained from the

CAE method. It is also observed that, the MSEs of the estimates based on the CAE method are

quite close to that of the MLEs.

Among the bootstrap methods for constructing confidence interval of  , BCa percentile

bootstrap method is better than the Boot-p method with respect to the coverage probabilities.

From Table 2, we can see that the coverage probabilities of the BCa confidence intervals are

close to the nominal level unless the effective relative sample fraction )(
n

r
is small, while the
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same of the Boot-p confidence intervals are lower than the nominal level. The average

confidence lengths of the Boot-p confidence intervals are slightly smaller than the BCa

confidence intervals. For the two methods it is observed that the average confidence lengths

decrease as the effective sample size increases.

7. ILLUSTRATIVE EXAMPLE

The following data (the centers of fuzzy numbers, im ) show the lifetimes (in km1000 ) of

front disk brake pads on a randomly selected set of 40 cars (same model) that were monitored

by a dealer network, ([17], p. 337). But, in practice measuring the lifetime of a disk may not

yield an exact result. A disk may work perfectly over a certain period but be braking for some

time, and finally be unusable at a certain time. So, such data may be reported as imprecise

quantities. Assume that the lifetimes of front disk brake pads are reported as fuzzy numbers

given below. In fact, imprecision is formulated by fuzzy numbers ),,(=~
iii mhx where

ii xh 0.005= , 1,...,40,=i with membership functions

1,...,40.=
0

)(
=)(~ i

mx

mxhm
h

hmx
x

i

iii
i

ii

ix














DATA SET: ),(0.24,48.8),(0.11,22.7),(0.22,45.5),(0.19,38.4),(0.43,86.2

),(0.20,41.0),(0.22,45.1),(0.29,59.8),(0.36,73.1),(0.21,42.8

),(0.14,28.45),(0.51,102.),(0.40,81.7),(0.11,22.6),(0.18,36.7

),(0.20,40.0),(0.21,42.2),(0.28,56.4),(0.26,52.1),(0.15,31.7

),(0.27,54.2),(0.16,33.9),(0.23,46.9),(0.21,42.7),(0.30,61.5

),(0.40,80.6),(0.26,53.6),(0.19,38.8),(0.25,51.6),(0.40,81.3

),(0.17,34.4),(0.31,62.4),(0.29,59.0),(0.25,50.6),(0.22,45.9

).(0.28,56.7),(0.16,33.8),(0.32,64.5),(0.25,50.7),(0.25,50.2
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These data was used by [1] to testing the fuzzy hypothesis for the mean of exponential

distribution. From the given data, a Type-II censored sample of size 24=m is thus:

),(0.15,31.7),(0.14,28.4),(0.11,22.7),(0.11,22.6

),(0.18,36.7),(0.17,34.4),(0.16,33.9),(0.16,33.8

),(0.20,41.0),(0.20,40.0),(0.19,38.8),(0.19,38.4

),(0.22,45.1),(0.21,42.8),(0.21,42.7),(0.21,42.2

),(0.24,48.8),(0.23,46.9),(0.22,45.9),(0.22,45.5

).(0.25,51.6),(0.25,50.2),(0.25,50.7),(0.25,50.6

From these data, and using the starting value 40.2250=
24

1
=

24

1=

(0)
i

i

m , the final MLE of  is

found from (8) to be 74.5685=̂ . Fig.1 shows a plot of the observed-data log-likelihood

function as a function of )(h . We can check that the MLE corresponds in this case to a global

maximum of the observed data log-likelihood. The estimate of  from the CAE method

becomes 74.625=


 .

The 95% confidence intervals based on Boot-p and BCa methods become

12.3634)(49.7358,109.3762),(47.3362,1

respectively.

Fig.1. Plot of the observed-data log-likelihood function, as a function of )(h under

EM-iterations.
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Table 1. The average values (AV) and the mean squared errors (MSE) of the estimates of 
based on the ML and the CAE methods.

n r = 1 = 2
MLE CAE MLE CAE

AV MSE AV MSE AV MSE AV MSE

15 5 0.9857 0.2154 0.9872 0.2170 1.9564 0.8266 1.9617 0.8275

8 1.0123 0.1118 1.0150 0.1121 2.0333 0.4884 2.0348 0.4888

12 0.9998 0.0830 1.0055 0.0832 1.9807 0.3464 1.9837 0.3470

20 5 1.0053 0.2068 1.0081 0.2080 2.0162 0.7226 2.0189 0.7260

10 0.9962 0.1054 1.0075 0.1061 1.9953 0.4010 1.9970 0.4022

15 0.9981 0.0675 0.9939 0.0677 1.9979 0.2742 2.0050 0.2749

30 10 1.0343 0.0953 1.0062 0.0959 1.9808 0.3723 1.9825 0.3742

15 0.9908 0.0670 0.9916 0.0672 1.9826 0.2713 1.9880 0.2729

20 1.0023 0.0527 1.0021 0.0530 1.9962 0.2111 1.9978 0.2113

40 15 1.0032 0.0657 1.0038 0.0657 1.9974 0.2675 2.0073 0.2681

20 0.9992 0.0496 1.0021 0.0497 1.9976 0.2022 1.9927 0.2025

30 0.9992 0.0331 1.0009 0.0331 1.9999 0.1303 1.9987 0.1304

50 15 1.0035 0.0650 1.0051 0.0653 1.9962 0.2586 2.0080 0.2594

20 0.9955 0.0494 0.9956 0.0495 2.0030 0.1811 2.0064 0.1817

30 1.0004 0.0310 1.0006 0.0310 2.0010 0.1212 1.9983 0.1213
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Table 2. The average confidence lengths and the corresponding coverage probabilities of the

Boot-p and the BCa confidence intervals for different sample sizes

n r = 1 = 2
Boot-p BCa Boot-p BCa

Ave.Len

.

Cov.Pr

.

Ave.Len

.

Cov.Pr

.

Ave.Len

.

Cov.Pr

.

Ave.Len

.

Cov.Pr

.

1

5

5 1.6688 0.885 2.1491 0.931 3.4721 0.903 4.1228 0.922

8 1.3832 0.925 1.5744 0.941 2.7090 0.913 3.1078 0.940

1

2

1.1283 0.928 1.2157 0.947 2.2591 0.921 2.4387 0.956

2

0

5 1.7373 0.903 2.0930 0.914 3.468 0.885 3.9722 0.939

1

0

1.2212 0.904 1.4162 0.938 2.4356 0.917 2.7846 0.941

1

5

1.0084 0.931 1.0886 0.949 2.0144 0.929 2.1712 0.948

3

0

1

0

1.2319 0.925 1.4277 0.935 2.4380 0.917 2.9058 0.945

1

5

1.0061 0.940 1.1017 0.947 2.0134 0.927 2.2012 0.949

2

0

0.8740 0.942 0.9227 0.951 1.7485 0.927 1.8850 0.954

4

0

1

5

1.0072 0.917 1.1396 0.940 2.0150 0.931 2.2548 0.932

2

0

0.8774 0.936 0.9355 0.944 1.7246 0.933 1.8955 0.943

3

0

0.7115 0.938 0.7454 0.954 1.4301 0.941 1.5090 0.951

5

0

1

5

1.0049 0.926 1.5131 0.936 1.9937 0.924 2.2955 0.936

2

0

0.8806 0.933 0.9532 0.943 1.7485 0.932 1.9130 0.944

3

0

0.7108 0.942 0.7449 0.947 1.3842 0.943 1.5117 0.948
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8. CONCLUSIONS

In this paper we have proposed different procedures for estimating the exponential distribution

parameter under Type-II censoring when the lifetime observations are fuzzy numbers. We have

derived the MLE of the unknown parameter  . We have also introduced a computational

approach method for estimating  from fuzzy numbers. We have presented two procedures

for constructing confidence intervals for  . We have then carried out a simulation study to

assess the performance of all these procedures. Based on the results of this simulation study, we

see clearly that, as the effective sample size increases, the performances of the MLEs in terms

of MSEs become better. Also the performance of the estimates of  based on the CAE method

is as good as the MLEs. Hence, we recommend to use the CAE method for estimating  from

fuzzy data since it offers computational feasibility and also performs well in terms of MSEs.

We also see that, compared to the ordinary percentile bootstrap confidence intervals, the BCa

percentile bootstrap confidence intervals perform better in terms of the coverage probabilities

although the confidence lengths are slightly larger. The coverage probabilities of the CIs based

on the BCa percentile bootstrap method are quite close to the nominal level unless the effective

relative sample fraction )(
n

r
is small.
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