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ABSTRACT

Statistical analysis of lifetime distributions under Type-11 censoring scheme is based on precise
lifetime data. However, some collected lifetime data might be imprecise and are represented in
the form of fuzzy numbers. This paper deals with the estimation of exponential mean parameter
under Type-1l censoring scheme when the lifetime observations are fuzzy and are assumed to
be related to underlying crisp redlization of arandom sample. Maximum likelihood estimate of
the unknown parameter is obtained by using EM agorithm. In addition, a new numerical
method for parameter estimation is provided. Using the parametric bootstrap method, the
construction of confidence intervals for the mean parameter is discussed. Monte Carlo
simulations are performed to investigate performance of the different methods. Finally, an

illustrative exampleis aso included.
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1. INTRODUCTION

In many life testing experiments, the experimenter may not observe the lifetimes of all
inspected unitsin the life test. This may be because of time limitation and/or other restrictions

(such as money and material resources, etc) on data collection. Censored data arises in these
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situations wherein the experimenter does not obtain complete information for all the units under
study. Different types of censoring arise based on how the data are collected from the
life-testing experiment. The scheme of type-Il censored sampling is an important method of
obtaining data in life testing experiments. Under this censoring scheme the life testing
experiment will be terminated upon the r-th (r is pre-fixed) failure. This scheme is often
adopted for toxicology experiments and life testing applications by engineers as it has been
proven to save time and money. Several authors have addressed inferential issues based on
Type-11 censored samples; seefor example, [24], [23], [3],[8],[2], [6], [25], [18], [4], [5], [16],
[22]. Their research results for estimating the parameters of lifetime different distributions
under Type-1l1 censoring are based on precise lifetime data. However, in rea situations al
observations and measurements of continuous variables are not precise numbers but more or
less non-precise. This imprecision is different from variability and errors. Therefore also
lifetime data are not precise numbers but more or less fuzzy. The best up-to-date mathematical
model for thisimprecision are so-called non-precise numbers.

Example 1. Assumethat n identical ball bearings are placed on alife-testing experiment, and
we are interested in the lifetime of these ball bearings. In practice, however, measuring the
lifetime of aball bearing may not yield an exact result. A ball bearing may work perfectly over
acertain period but be braking for some time, and finally be unusable at a certain time. So, the
number of revolutions to failure (in millions) for ball bearings may reported by means of the
following imprecise quantities: *“ approximately lower than 45 , “ approximately 50 to 70
7, “ approximately 75 ”, “ approximately 80 ”, * approximately 90 to 100 7, *
approximately higher than 120 ", and so on.

Classical statistical procedures and Bayesian inference are not appropriate to deal with such
imprecise cases. Therefore, we need suitable statistical methodology to handle these data as
well. In recent years, several researchers pay attention to applying the fuzzy sets to estimation
theory. Huang et a. [15] proposed a new method to determine the membership function of the
estimates of the parameters and the reliability function of multiparameter lifetime distributions.

Coppi et al. [ 7] presented some applications of fuzzy techniquesin statistical analysis. Pak et al.
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([19],[20] and [21] ) conducted a series of studies to develop the inferential procedures for the
lifetime distributions on the basis of fuzzy data.

In this paper, our objective is to devise the methods for parameter estimation regarding a
life-test from which the Type-Il censored data are reported in the form of fuzzy numbers. We
analyze the data under the assumptions that the lifetimes of the test units are independent
identically distributed exponential random variables. In Section 2, we first present in greater
detail the problem addressed in this paper. Some preliminary concepts about fuzzy numbersis
included in this section. In Section 3, we propose a procedure to determine the maximum
likelihood estimate (MLE) of the parameter of interest. A new parameter estimation method,
called "computational approach estimation’ (CAE), is established in Section 4. By using the
parametric bootstrap method, construction of the confidence intervals for the unknown
parameter is discussed in Section 5. Simulation study will be carried out to assess the
performance of the different proposed methods in section 6. A practical examplein life testing

isprovided in Section 7 in order to illustrate all the methods of inference discussed here.

2. PROBLEM DESCRIPTION

Consider a reliability experiment in which n identical units are placed on a life-test. Let

Xy,-., X, denote the lifetimes of these experimental units. We assume that these variables are

independent and identically distributed as Exponential E(q), with probability density function

(pdf),
f(xq) = ~exp(—X) x>0, >0. )
g g

Let X, <X,,<..<X,, denote the corresponding ordered lifetimes. Suppose the

nn
experimenter decides to carry out the life-test until the time of the r th failure, then the data

arising from such a life-test would be of the form X, < X, <..<X,,, with the remaining

In —

n—r lifetimes being more than X,.,. This situation is referred to as Type-11 censoring. We
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also denote the observed values of such a Type-Il right censored sample by X, ,..., X.,, -

Based on these observations, the likelihood function is given by:

r

1 Z)(i:n+(n_r)xr:n

CEGTA - q )

Thus the maximum likelihood estimator of g can be obtained by

L(a;Xx) =

Ci\ = %(2)(In + (n_ r)Xr:n)'

In many fields of application it is sometimes impossible to obtain exact observations of
lifetime. The obtained lifetime data may be imprecise most of the time. For example, the
lifetime of units may be between 1500 and 2000h, but near to 2000h. In order to model
these observed lifetimes, a generalization of real numbers is necessary. These lifetimes can be

represented by fuzzy numbers. A fuzzy number is a subset, denoted by X, of the set of real

numbers (denoted by R) and is characterized by the so called membership function m.(.).
Fuzzy numbers satisfy the following constraints ([ 10]):

(1) m.:R—[0,1] isBorel-measurable;

(2 I eRim(%)=1;

(3) The so-caled | —cuts (0<| <1), defined as B (X) ={xeR:m/(x)>1}, are
al closed interval, i.e, B (X)=[a ,h], VI (0,1].

With the definition of afuzzy number given above, an exact (non-fuzzy) number can be treated

as a gpecial case of a fuzzy number. For a non-fuzzy real observation x,eR , its
corresponding membership function is mo(xo) =1. Usudly, LR -type fuzzy numbers (the

triangular and trapezoidal fuzzy numbers are special cases of the LR -type fuzzy numbers) are
most convenient and useful in describing fuzzy lifetime observations. Therefore, we shall

focus on the set of LR -type fuzzy numbers.

Definition 1 ([27] pp.62). Let L (and R) be decreasing, shape functions from R* to [0,1]

with L(0)=1;L(x) <1 for all x>0;L(x)>0 for al x<1;L(1)=0 or (L(x)>0 for al
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x and L(+o0)=0). Then afuzzy number X iscalled of LR-typeif for ma >0,b >0in

R,

m=1 2

where m iscalledthemeanvalueof X and a and b arecalled the left and right spreads,
respectively. Symbolically, the LR -type fuzzy number isdenoted by X =(a,m,b).

Definition 2 Suppose that X =(a,,m,b,),i =1,...,n, bethe LR-type fuzzy numbers. The

fuzzy mean value of these numbers can be obtained as
<« = . 1& 1 — 1
x=(@,m,b),witha :EZai,m:EZm and b :HZbi. @)
i=1 i=1 i=1

Our viewpoint in this paper is based on an epistemic interpretation of fuzzy data, which are
assumed to "imperfectly specify a value that is existing and precise, but not measurable with
exactitude under the given observation conditions® ([13], p. 316). In this model, a fuzzy datum
Is thus seen as a possibility distribution associated to a precise realization of arandom variable
that has been only partially observed. In the next section, we introduce a generalization of the
likelihood function and obtain the maximum likelihood estimate (MLE) of the unknown

parameter ¢ .

3. MAXIMUM LIKELIHOOD ESTIMATION
Now consider the problem where under the Type-Il censoring scheme, failure times are not

observed precisely and only partial information about them are available in the form of fuzzy

numbers X =(a,,m,b,),i =1,..,r , with their corresponding membership functions
mzl(xl),..., m (%) . Let the maximum value of the means of these fuzzy numbersto be m,.

The lifetime of n—r surviving units can be encoded as fuzzy numbers X.,,...,X, with the

membership functions
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_J0 X< My,
mki(x)—{l x>m,

for i =r+1,.,n. The fuzzy data X = (X,,..., X,) is thus the vector of observed lifetimes.

The corresponding observed-data log-likelihood function can be obtained, using Zadeh’s
definition of the probability of afuzzy event ([26]), as

L.(@:%) = X 10 - expt- 1), (0

= i; Iogquexp(—qﬁ)mzi (x)dx+(n—r)|og{ T 1exp(—qﬁ) dx} 3

M(r)

Since the observed fuzzy data X can be seen as an incomplete specification of acomplete data
vector X, the EM agorithm can be applied to maximize the observed-data log-likelihood (3).
Therefore, in the following we use the fuzzy EM (FEM) algorithm ([9]) to determine the MLE
of g. Each iteration of the algorithm involves two steps called the expectation step (E-step)
and the maximization step (M-step). The E-step requires the cal culation of

E(log L(@; X)|%:q™) = —nlog(q)—qliE(xi 1%:q™), (4

=
inwhich L(g;X) isthe complete-data likelihood function and q®™ denotes the current fit of
q at iteration h. The conditional expectations E(X; |x;q™),i =1,..,n, can be computed
using:

E(X1%:9™) = [xg(x| %:q™)dx 5)
where the conditional density of X given X isgiven by

g(x|X:q™) = p(—q(ih)mx) (6)

1
o &X
q " E(m (X))
The M-step then consists in finding q™® which maximizes E(logL(g;x)|X;q™). Thisis

easily achieved by solving the likelihood equation. From

aiang L@ X)|%q™) =0, @)
q
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we get
a0 = 1S E(x 1%:q™). ®)
n=

The MLE of q can be obtained by repeating the E- and M-steps until the difference

L.(q"?;X)-L.(@™;X) becomessmaller than some arbitrary small amount.
It is showed in ([9]) that the observed-data log-likelihood L (q;X) is not decreased after an

EM iteration. Hence, convergence to some value L is ensured as long as the sequence

L.(@™;X) for h=0,1,... isbounded from above.

4. COMPUTATIONAL APPROACH ESTIMATION METHOD

In this section we propose a new parameter estimation procedure called *CAE’. Although the
maximum likelihood estimate obtained in the preceding section is preferable, its computation
requires repeated evaluation of E- and M-steps until convergence occurs. On the other hand, the

CAE method provides not only the computational ease but also reasonable mean squared error.
This finding is further discussed in Section 6. Suppose X =(a;,m,b,), i =1,...,r, be the

observed fuzzy lifetimes under Type-11 censoring from exponential distribution with unknown
parameter q . Grzegorzewski and Hryniewicz [14] considered the generalization of
exponential model which admits vaguenessin lifetimes. They obtained afuzzy estimator of the
mean lifetime g in the presence of vague lifetimes. However, in most applications, crisp
results are required instead of fuzzy ones. So, we propose the following computational

approach to obtain acrisp value as an estimate of q .

Step 1: Order the means of fuzzy numbersas m,; <m, <..<m,.

Step 2: Obtain the fuzzy mean value, say x , of the fuzzy numbers by using (2).

Step 3: Convert the fuzzy number x into areal value by using the center of gravity

*

defuzzification technique. Denote this defuzzified value by ; .
Step 4: The new estimate of g then is computed as:
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X

q= +($—1)mkr). ©)

5. BOOTSTRAP CONFIDENCE INTERVAL

In this section, we discuss the construction of the confidence interval (Cl) for the unknown
parameter q using the two types of bootstrap methods, viz., percentile bootstrap (Boot-p)
method and the bias-corrected and accelerated (BCa) percentile bootstrap method; see[11] and
[12] for pertinent details.

Suppose n identical items are put on atest and in the presence of Type-11 censoring scheme,

the observed lifetimes are reported as fuzzy numbers X =(a;,m,b;), i =1,...,r . Before we

discuss the construction of the bootstrap confidence intervalsfor g, the following algorithmis
used to generate the bootstrap sample of fuzzy numbers based on the original Type-I1 censored

fuzzy sample X,,...,X. .
Step 1: Given the original Type-1l censored fuzzy sample X,,...,X. , compute the MLE

of q, say d , using the iterative agorithm (8).

Step 2: Generate the Type-Il censored sample of size r, say m/,...,m , with the
underlying distribution as E(q) . Define the LR- type fuzzy numbers X'...X' as
X =(a,m,b), i=1..,r.

Step 3: Based on the ssimulated Type-11 censored fuzzy samplein Step 2 ,Calculate the
bootstrap MLE of q, denoted by qA *, from (8).

Step 4. Repeat step 2 and 3, M times. Then, arrange all bootstrapped values of (i "in

ascending order to obtain the ordered bootstrap sample of df < d; <..< ci;; :

With the bootstrap sample generated as above, we propose the following two
parametric bootstrap confidence interval for q .

Boot-p confidence interval:

A twosided 100(1-g)% percentile bootstrap CI for q is
@ 5.0 )

9y’ 9
MG IMA-2)]
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BCa percentile bootstrap confidenceinterval:

A twosided 100(1-g)% BCapercentile bootstrap Cl for q is

(q[aM] 'Oiomy )’

a= @[20 PR Ik I )
1-a(2, - z,,)

b :@(20 +ﬂ] .
1-a(z+z,,)

Here, ®(.) denotesthe CDF of the standard normal distribution, z, istheupper a —point of

where

and

the standard normal distribution and [x] denote the integer part of x . The vaue of

bias-correction Zz, isgiven by

M ~ ~
@] <a)
5 :®—1 j:l

% M

and a good estimate of the acceleration factor a is suggested to be
Zr:(d(" _qA(j))a
i=1

; 32
6{2(&“ _q“(J))z}
j=1

where q is the MLE of q based on the origina Type-1l censored fuzzy sample with the

a=

jth observation deleted for j =1,...,r , and

~o -1 r $3J)
q”==2>9".
roa

6. SIMULATION STUDY
In order to evaluate the performance of all the different methods discussed in the preceding

sections, a Monte Carlo simulation study was conducted and its results are described in this
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section. First, for different choicesof n , r and q we generate the Type-ll censored

sample X,,...,X. from exponential distribution. Then we define fuzzy numbers X,...,X. with

the corresponding membership functions

w Xi_hSXSXi
(X = L=l
i —Xi+::_x X <X<X +h

where h =0.05x . This procedure simulates the situation where the observer has only
approximate knowledge of the failuretimes, and can only provideaguess x and aninterval of

plausible values [x —h,x +h]. From these fuzzy numbers, we obtain the MLE of q, using

the iterative algorithm (8). We have used the initial estimate to be q© :}Zx and the
r

i=1
iterative process stops when the relative change of the log-likelihood becomes less than 107°.

We also obtain the estimate of q using the CAE method. The average values ( AV ) and the
mean squared errors( MSE) of the estimates based on 1000 replication are presented in Table
1. We aso compute the 95% confidence intervals using the Boot-p and BCa percentile
bootstrap methods. The average confidence lengths and the coverage probabilities of the
confidence intervals are reported in Table 2.

From Table 1, the following observations are made. The performance of the MLEs are
satisfactory intermsof AVsand MSEs. For fixed n as r increases, the M SEs decreasefor al
cases as expected. Similar observations are made for the estimates of q obtained from the
CAE method. It is aso observed that, the MSEs of the estimates based on the CAE method are
quite close to that of the MLES.

Among the bootstrap methods for constructing confidence interval of q, BCa percentile
bootstrap method is better than the Boot-p method with respect to the coverage probabilities.

From Table 2, we can see that the coverage probabilities of the BCa confidence intervals are

close to the nominal level unless the effective relative sample fraction (L) issmall, while the
n
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same of the Boot-p confidence intervals are lower than the nominal level. The average
confidence lengths of the Boot-p confidence intervals are dightly smaller than the BCa
confidence intervals. For the two methods it is observed that the average confidence lengths

decrease as the effective sample size increases.

7. ILLUSTRATIVE EXAMPLE

The following data (the centers of fuzzy numbers, m) show the lifetimes (in 1000km) of

front disk brake pads on arandomly selected set of 40 cars (same model) that were monitored
by a dealer network, ([17], p. 337). But, in practice measuring the lifetime of a disk may not
yield an exact result. A disk may work perfectly over a certain period but be braking for some
time, and finally be unusable at a certain time. So, such data may be reported as imprecise

quantities. Assume that the lifetimes of front disk brake pads are reported as fuzzy numbers

given below. In fact, imprecision is formulated by fuzzy numbers X =(h,m), where

h =0.005x, i =1,...,40, with membership functions

m, (x) = w moh=Xsmo oy a0
0 X=m
DATA SET: (0.43,86.2), (0.19,38.4), (0.22,45.5), (0.11,22.7), (0.24,48.8),

(0.21,42.8), (0.36,73.1), (0.29,59.8), (0.22,45.1), (0.20,41.0),
(0.18,36.7), (0.11,22.6), (0.40,81.7), (0.51,102.5), (0.14,28.4),
(0.15,31.7), (0.26,52.1), (0.28,56.4), (0.21,42.2), (0.20,40.0),
(0.30,61.5), (0.21,42.7), (0.23,46.9), (0.16,33.9), (0.27,54.2),
(0.40,81.3), (0.25,51.6), (0.19,38.8), (0.26,53.6), (0.40,80.6),

(0.22,45.9), (0.25,50.6), (0.29,59.0), (0.31,62.4), (0.17,34.4),

(0.25,50.2), (0.25,50.7), (0.32,64.5), (0.16,33.8), (0.28,56.7).
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These data was used by [1] to testing the fuzzy hypothesis for the mean of exponential

distribution. From the given data, a Type-11 censored sample of size m=24 isthus:

(0.11,22.6), (0.11,22.7), (0.14,28.4), (0.15,31.7),
(0.16,33.8), (0.16,33.9), (0.17,34.4), (0.18,36.7),
(0.19,38.4), (0.19,38.8), (0.20,40.0), (0.20,41.0),
(0.21,42.2), (0.21,42.7), (0.21,42.8), (0.22,45.1),
(0.22,45.5), (0.22,45.9), (0.23,46.9), (0.24,48.8),

(0.25,50.6), (0.25,50.7), (0.25,50.2), (0.25,51.6).

24
From these data, and using the starting value q© = 2—142m =40.2250, thefinal MLE of q is
i=1

found from (8) to be (i =74.5685 . Fig.1 shows a plot of the observed-data log-likelihood

function asafunction of g™ . We can check that the MLE corresponds in this case to a global

maximum of the observed data log-likelihood. The estimate of g from the CAE method

becomes q = 74.625.

The 95% confidence intervals based on Boot-p and BCa methods become
(47.3362,109.3762), (49.7358,112.3634)

respectively.

-153  -187
Il 1

-169
1

Fig.1. Plot of the observed-data log-likelihood function, as afunction of g™ under

EM-iterations.
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Table 1. The average values (AV) and the mean squared errors (MSE) of the estimates of q
based on the ML and the CAE methods.

=4 2

MLE

MLE

CAE CAE
AV MSE AV MSE AV MSE AV MSE
15 5 0.9857 0.2154 0.9872 0.2170 1.9564 0.8266 1.9617 0.8275
8 1.0123 0.1118 1.0150 0.1121 2.0333 0.4884 2.0348 0.4888
12 0.9998 0.0830 1.0055 0.0832 1.9807 0.3464 1.9837 0.3470
20 5 1.0053 0.2068 1.0081 0.2080 2.0162 0.7226 2.0189 0.7260
10 0.9962 0.1054 1.0075 0.1061 1.9953 0.4010 1.9970 0.4022
15 0.9981 0.0675 0.9939 0.0677 1.9979 0.2742 2.0050 0.2749
30 10 1.0343 0.0953 1.0062 0.0959 1.9808 0.3723 1.9825 0.3742
15 0.9908 0.0670 0.9916 0.0672 1.9826 0.2713 1.9880 0.2729
20 1.0023 0.0527 1.0021 0.0530 1.9962 0.2111 1.9978 0.2113
40 15 1.0032 0.0657 1.0038 0.0657 1.9974 0.2675 2.0073 0.2681
20 0.9992 0.0496 1.0021 0.0497 1.9976 0.2022 1.9927 0.2025
30 0.9992 0.0331 1.0009 0.0331 1.9999 0.1303 1.9987 0.1304
50 15 1.0035 0.0650 1.0051 0.0653 1.9962 0.2586 2.0080 0.2594
20 0.9955 0.0494 0.9956 0.0495 2.0030 0.1811 2.0064 0.1817
30 1.0004 0.0310 1.0006 0.0310 2.0010 0.1212 1.9983 0.1213
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Table 2. The average confidence lengths and the corresponding coverage probabilities of the
Boot-p and the BCa confidence intervals for different sample sizes

n r 1 2

Boot-p BCa Boot-p BCa

AvelLen Cov.Pr Avelen Cov.Pr AvelLen Cov.Pr Avelen Cov.Pr

1 5 ;l.6688 6.885 .2.1491 6.931 .3.4721 6.903 .4.1228 6.922
13832 0925 15744 0941 27090 0913 31078  0.940

1 11283 0928 12157  0.947 22591 0921 24387  0.956
2 5 17373 0903 20930 0.914 3.468 0885 39722  0.939
12212 0904 14162 0.938 24356 0917 27846 0941
10084 0931 10886  0.949 20144 0929 21712 0948
12319 0925 14277 0.935 24380 0917 29058  0.945
10061 0940 11017 0.947 20134 0927 22012 0.949
0.8740 0942 09227 0951 17485 0927 18850 0.954
1.0072 0917 11396  0.940 20150 0931 22548 0.932
0.8774 0936 09355  0.944 17246 0933 18955  0.943
0.7115 0938 0.7454 0.9%4 14301 0941 15090 0.951
1.0049 0926 15131 0.936 19937 0924 22955  0.936
08806 0933 0.9532 0.943 17485 0932 19130 0944

0.7108 0942 0.7449  0.947 13842 0943 15117 0.948

o
O WO Nl PP O WwWOoONOUIIEFkE ODNOOPRFP Ok O b O k-
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8. CONCLUSIONS
In this paper we have proposed different procedures for estimating the exponential distribution

parameter under Type-11 censoring when the lifetime observations are fuzzy numbers. We have
derived the MLE of the unknown parameter . We have aso introduced a computational
approach method for estimating q from fuzzy numbers. We have presented two procedures
for constructing confidence intervals for g . We have then carried out a simulation study to
assess the performance of all these procedures. Based on the results of this simulation study, we
see clearly that, as the effective sample size increases, the performances of the MLES in terms
of M SEs become better. Also the performance of the estimatesof ¢ based on the CAE method
iIsas good as the MLESs. Hence, we recommend to use the CAE method for estimating q from
fuzzy data since it offers computational feasibility and also performs well in terms of MSEs.
We also see that, compared to the ordinary percentile bootstrap confidence intervals, the BCa
percentile bootstrap confidence intervals perform better in terms of the coverage probabilities
although the confidence lengths are slightly larger. The coverage probabilities of the Cls based

on the BCa percentile bootstrap method are quite close to the nominal level unlessthe effective
relative sample fraction (%) issmall.
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