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ABSTRACT

The effects of castling on natural frequencies in 3D steel frames were investigated in this study

since accurate assessment of fundamental period (frequency) of a structure is an essential part of

design and analysis processes. The use of LUSAS 14.03 was adopted to calculate free vibration

characteristics of frames. Thin shell element was used to modeling frames. The initial results are

verified by Cinitha.A, Rama Raju. K & Nagesh.R. Iyer (2008) and hand calculations using UBC

code.. Furthermore different parameters such as Number of stories, Height of frames, Percentage

of Castling, stiffness of connections and Supports Conditions were considered in order to

evaluate their effects in frame modal respond. The results of above investigation show that by

increasing the percent of castling the natural frequency will increase. Also by reduction of

connection rigidity fundamental frequency will reduce. In order to achieve effective earthquake

design we also have to consider these two parameters. Finally some suggestions were made in

order to improve steel design against earth quake effects.
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INTRODUCTION

Properly designed, steel frames are very efficient in resisting forces generated from ground

motion because of their ability to dissipate seismic energy through large inelastic deformation

and damping. So steel is often used for buildings in seismically active regions. Beside nowadays

construction of light buildings is common so it is important to study the behavior of high-raised

building under self and dynamic loads [1]. The design of steel structures subjected to natural

hazards such as earthquakes demands safety of structures which is governed by the fundamental

frequency and the magnitude of frame response. Reasonably accurate assessment of these

characteristics is an essential part of design and analysis processes [2]. These days trend to usage

of castled sections in steel frames is increasing since using castled beams makes the building

lighter and more economical. So by considering the importance of periods of building it is

necessary to study the effect of castling on natural frequencies of steel frames. In this study the

effect of castling on dynamic characteristics of the Space Frame such as fundamental frequency

and natural periods of the building are considered[3]. Also the effect of frame height as well as

number of stories has been considered. Effect of connection rigidity and percentage of castling on

fundamental frequency of steel frames also studied. Majority of structural soft wares can evaluate

the natural frequencies of frames using their default beam and column profiles same as standard I

sections or Wide Flanges in a fraction of second, but most of these soft wares does not have

arbitrary castled sections which designer wants to apply in structure[4]. Also when designer

wants to calculate the natural period of steel frame using codes and hand calculation, determining

the natural frequency of castled steel frame which is key element of seismic and dynamic design

of frame is time taking in comparison with non-castled section[5]. Since calculation of exact

value of moment of inertia (I) for castled beams in order to obtain natural periods is not easy and

using FEM is compulsory to evaluate the natural periods of castled frames, proposing an equation

based on various FE analysis can be useful. In this study

 Effect of castling on Moment Resistance Frames

 Effect of castling on Semi-Rigid Frames

For various numbers of stories, frame heights plan ratios and connection rigidities will be

considered.
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MOMENT RESISTANCE STEEL FRAMES

Laurai and Valerga (1987) have investigated the vibrating frames carrying concentrated masses,

and in-plane vibrations of portal frames with end supports, elastically restrained against rotation

and translation by using analytical and numerical method. The natural frequencies and mode

shapes for the in-plane vibration of triangular closed and planar frames have been studied by

using the Rayleigh–Ritz method They assumed frames are 2D and the weight of entire story is

concentrated at center of ceiling beam[6]. The advantage of their assumption is simplicity of

model and using Rayleigh-Ritz method easily but the disadvantage is that the effect of castling

cannot be calculated in models since the model is assumed by lumped mass. Cinitha and Rama

(2008) have Evaluated Free Vibration Characteristics of Steel Space Frames. In their paper they

used Small-scale (1:15) model for experimental analysis. The numerical results of the model

were compared with the experimental results [7]. Numerical studies are extended to find the

influence of the plan and bay dimensions, normalized stiffness, height of stories, on the

fundamental frequency of the moment resisting frames. They have found that the fundamental

frequency decreases with increase in height of the building irrespective of plan dimensions of the

building. It is also found that the variation in fundamental frequency is not much significant with

increase in plan ratio. They have considered rigid connections and non-castled section in their

study. Effect of castling, plan ratio and height of stories did not evaluate simultaneously [8].

Most of the building codes provide empirical formulae that depend on the building material

(steel, reinforced concrete, etc.), building type (frame, shear wall, etc. and overall dimensions but

does not give much information about the geometry and symmetry of the building) Cinitha.A and

Rama Raju. K (2008). Numerical studies are carried out to study the effect of the plan ratio,

castling and connection rigidity on the fundamental frequency. Studies are carried out with

different frame configurations

Miodrag Sekulovic and Ratko Salatic (2002) have worked on effects of flexibility and damping in

the nodal connections on the dynamic behavior of plane steel frames. The effects of viscous and

hysteretic damping on dynamic response of frame structures are taken into consideration. The

complex dynamic stiffness matrix for the beam with flexible connections and linear viscous

dampers at its ends is obtained. Several examples are included to illustrate the efficiency and

accuracy of the present model[9].
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J. Kent Hsiao (2009) worked on hand-calculated approach for the computing frame deflections

using Method B which is specified in the 1997 Uniform Building Code Static. Force Procedure.

The general stiffness matrix of a three-story, three-bay frame was used as an aid to compute the

deflections for any moment frame within three stories in height and within three bays in width.  A

hand-calculated static approach, is proposed in his paper to serve as a convenient tool  that  can

be  used  along  with  the  ASCE/SEI  7-05 Equivalent Lateral Force Procedure to perform both

the  preliminary  design  and  the  final  design  of  low-rise moment frames[10].

His paper just covered rigid connection frames, but the effect of non-rigidity on connection was

not imposed in his calculations.

Masih Izadi Niaki et al. conducted a study entitled “OPTIMUM DESIGN OF 2-D

REINFORCED CONCRETE FRAMES USING A GENETIC ALGORITHM” and stated that

Construction of concrete structures involves at least three different materials: concrete, steel and

formwork. A large number of parameters, therefore, have to be dealt with in proportioning a

reinforced concrete element, including width, depth, number and diameter of rebar.

Consequently, together with experience, trial and adjustment are necessary in the choice of

concrete sections. A trial section has to be chosen for each critical location in a structural system.

The trial section has to be analyzed to determine if its nominal resisting strength is adequate to

carry out the applied factored loads. Since more than one trial is often necessary to arrive at the

required section, this process is time consuming. Also, the final design of a practiced designer is

different from that of a beginner and it is never known whether the result is an optimum design.

The objective of this research is to design optimally reinforced concrete frames that satisfy the

limitations and specifications of the American Concrete Institute (ACI) Building Code and

Commentary using a Genetic Algorithm (GA). The GA used in this study has an adaptive penalty

function. New options are added to the GA, including tournament selection with specified

conditions or repairing operator that acts on beams and columns to accelerate convergence of the

program. Design results show that the algorithm presented here compares advantageously with

classic methods or other GA algorithms used previously for optimum design of concrete

frames[11].
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MODELLING AND ANALYSIS

As mentioned in chapter 3 varieties of models were tested in order to reach behavior of the

building after castling. Table 4.1shows this variation. The fames up to seven stories where

modeled, using different bay ratios, story heights connection type as shown in table below. The

steps of creating the models already have given in chapter 3. Figure 4.2

Table 4.1. Variation of models characteristics

Beams Columns No of

Stories

No of

Bays

Story

Height

(m)

Connection

Type

Percentage

Of

castling

Studied

modes

W24x80 W18x50 1 to 7

1 to 7

1 to 7

3x3

3x1

1x1

3 and 5

3 and 5

3 and 5

Rigid

Rigid

Fixed and

semi-rigid

19,38,49%

19,38,49%

19,38,49%

1-2-3

1-2-3

1

Fig.4.2. Sample of Modeled Frame

ELASTIC CONNECTION MODEL DESCRIPTION

This stage has divided into three parts which is step by step setting the elastic connection properties

of semi-rigid frames. Clearly for MRF this stage is not necessary. Three steps mentioned are as

bellow:
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 Define point mesh

 Define joint space

 Define connection stiffness

Define Point Mesh

Using springs JL46 from LUSAS mesh library. JL46 is 3D joint elements which connects two

nodes by six springs in the local x, y and z-directions. Use JL46 for semi-loof beam end nodes.

Figure 4.7 shows JL46 settings

Fig.4.7. Eigenvalue Window settings

Define Joint Space

Geometric joint should be defined in semi-rigid models in order to create a space between to nodes

which are going to be connected to each other by a spring. Figure 4.87 shows joint space as 22mm

which is used in semi-rigid frames.

Fig.4.8. Semi-rigid joint spaces
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Define Connection Stiffness

All stiffness properties in connections should be inserted to LUSAS in Material/Attribute/Joints.

As figure 4.8 shows Joint Type is chosen Spring Stiffness only by increasing the membrane

stiffness First mode frequency increases. In order to study the effect of castling in semi-rigid

frames finding proper value of stiffness is needed Series of tests were established to demining the

best value of rigidity in which the frequency of frame is almost the same with rigid connection

model.

Fig.4.9. Joint stiffness settings in semi rigid frames

CONVERGANCE STUDY

Convergence Study simply means to increase the number of meshes in FE model in order to

make the results more accurate. When by increasing mesh numbers, results stay constant (by

certain accuracy) we can say convergence happened. In all FE analysis convergence study is a

necessary step to achieve the final answer.

In order to define a certain level of accuracy in convergence procedure in this study, slope of

convergence curve has monitored. The slope of convergence curve has defined by equation 4.1.

000,100
).().(

%
1

1 








ii

ii

NoelementNoelement

ff
S

Equation 4.1 slope of convergence curve

Which:
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%S is slope of convergence curve

if is frequency which is calculated in step i

1if is frequency which is calculated in step i-1

Convergence of 1:15 model

For example for 1:15 experimental model as described by Cinitha.A and Rama Raju (2008)

modeled in LUSAS and the convergence study was run. Figure 4.10 shows model dimensions (all

in mm). The fundamental frequency of a small model were analyzed to evaluate the effect of

castling on short frames, since total height of this mini model is around 1 meter; it can help to

find general difference in frequencies in castled and non-castled frames. The model is a 15 times

smaller than the full scale model of a three-story single bay moment resisting frame (as figure

4.10). In order to get more data about its period one more story was added on it.  This model

designed for gravity and seismic loads for zone III as per IS 800(1984) and IS 1893 (2002) with

moment resistance welded and bolted connection as Cinitha.A and Rama Raju (2008)

Yield stresses, ultimate stress, Modulus of Elasticity of the steel and percentage elongation used

are 204.52N/mm2, 294.20N/mm2, 2x105N/mm2 and 21.8 respectively. The channels are

fabricated from 1.5mm thick steel sheets bent by press braking process, which are spot welded

back to back and fabricated as I sections for columns and beams.

Table 4.2. Specifications of small I beams and columns.

Type Flange

width (mm)

Flange

Thickness(mm)

Total

height(mm)

Web

Thickness(mm)

Beam 18 1.5 28 3.0

Column 21 1.5 21 3.0
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Fig.4.10. Dimensions and Details of 1:15 model

Cinitha.A and Rama Raju (2008)

As shown in figure 4.11 the results of analysis of 1:15 for different element sizes (as described in

4.3) is given. Equivalent number of mesh in each step is calculated by LUSAS after applying

meshes to surfaces.

Fig.4.11. Convergence study of 1:15 model

In table represented in figure 4.11 it is can be seen that by increasing the number of elements F1

which is first mode frequency or fundamental frequency converges. It is obvious that by element

size 20mm as 7188 elements frequency obtained as 39.2737 Hz, while in last stage, using

element size 40mm with 3528 elements, the frequency was 49.6512 Hz. The slope was calculated

using equation 4.1.If the slope comes less than 3% the accuracy will be accepted and calculated

frequency will be final result of the analysis. This level of frequency happens when in two

continuous stage of analysis results are constant by accuracy of 1.0E-4.

Convergence of Full Scale Model
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Another example of convergence study is the analysis of full scale models as described in table

4.1which are main part of this study.

Fig.4.12. Convergence study of experimental model

One Story 3x3Span (story height: 3000mm)

Table 4.3. Convergence Study of Full Scale Model One Story 3x3Span (Story Height 3m)

Slope Element Size
No Of

Elements
F1 F2 F3

400mm 5368 13.161 13.7988 14.777

-51% 300mm 7296 12.1811 12.8032 13.7444

-75% 200mm 12472 8.32004 8.86189 9.67003

-11% 100mm 32732 6.18222 6.64586 7.30679

-1% 70mm 56856 5.8256 6.27343 6.90702

0% 50mm 93952 5.71326 6.15574 6.78125

As we can see in Table 4.3 in last row sloe of convergence curve turned to zero so we can stop

analysis and accept the results. More convergence examples are given in appendix II.

Convergence of Connection Rigidity

Moment Resistance Steel frames was fabricated from mild steel plates of different thickness. In

this simulation, steel beams and columns are modeled using ungraded Mild Steel in LUSAS

material library. The material properties of steel were specified using elastic range. Ungraded

Mild Steel which has Young’s Modulus equal to 209 kN/mm2 and Poisson’s ratio of 0.3. As

explained in section 4.7.4 to define a semi-rigid connection we must spring connection rigidity

in Joint Stiffness Settings. To determining the best relation between S1 and S2 as shown figure
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4.9 series of models where analyzed using different amounts of rigidities.

Table 4.4 shows different characteristics and dimensions of Semi-Rigid model.

Table 4.4. variation of Semi-Rigid models characteristics

Beams Columns No of

Stories

No

of

Bays

Story

Height

(m)

Connection

Type

Percentage

Of

castling

Studied

modes

W24x80 W18x50 1 to 4 1x1 3m Rigid/Semi-

Rigid

19,38,49% 1

To evaluate the best relation between S1 and S2 as shown in tables 4.5 and 4.6 and figure 4.13,

initially S1 was kept constant and then S2. In first case by reducing S2 and in second case by

reducing S1 by considering accuracy and frequency the results of analysis where ridden. The aim

was to find the relation between S1 and S2 which gives minimum error or maximum accuracy so

S1 and S1 were chosen as a big value so we could be sure that rigidity is big enough for

convergence.

Table 4.5. Two Story 3x3 Span Spring Connection (Story Height:3m)

S1(N.mm) S2(N.mm) S1/S3 F1(Hz) Error Rigid F1(Hz) %Difference

1.00E+15 1.00E+09 1000000 2.71213 3.27E-01 2.75E+00 1.31

1.00E+14 1.00E+09 100000 2.70922 3.09E-02 2.75E+00 1.42

1.00E+13 1.00E+09 10000 2.70873 2.62E-03 2.75E+00 1.43

1.00E+12 1.00E+09 1000 2.70868 2.47E-04 2.75E+00 1.44

1.00E+11 1.00E+09 100 2.70868 2.48E-05 2.75E+00 1.44

1.00E+10 1.00E+09 10 2.70868 2.75E-07 2.75E+00 1.44

1.00E+09 1.00E+09 1 2.70868 2.33E-07 2.75E+00 1.44

1.00E+08 1.00E+09 0.1 2.70864 2.22E-07 2.75E+00 1.44

1.00E+07 1.00E+09 0.01 2.70822 2.76E-07 2.75E+00 1.45
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Table 4.6. Two Story 3x3 Span Spring Connection (Story Height:3m)

S1(N.mm) S2(N.mm) S1/S4 Fr(Hz) Error Rigid F1(Hz) %Difference

1.00E+07 1.00E+14 0.0000001 2.71438 3.14E-02 2.75E+00 1.23

1.00E+07 1.00E+13 0.000001 2.7141 2.44E-03 2.75E+00 1.24

1.00E+07 1.00E+12 0.00001 2.71414 2.78E-04 2.75E+00 1.24

1.00E+07 1.00E+11 0.0001 2.71408 2.57E-05 2.75E+00 1.24

1.00E+07 1.00E+10 0.001 2.71352 2.49E-06 2.75E+00 1.26

1.00E+07 1.00E+09 0.01 2.70822 2.76E-07 2.75E+00 1.45

1.00E+07 1.00E+08 0.1 2.67125 4.46E-08 2.75E+00 2.80

1.00E+07 1.00E+07 1 2.58677 3.29E-08 2.75E+00 5.87

1.00E+07 1.00E+06 10 2.51914 3.53E-08 2.75E+00 8.33

The data given in table 4.4 and 4.5is illustrated in figure 4.13

Fig.4.13. Relation between S1/S2 and Error for two story frame

Figure 4.13 shows clearly that S1/S2 converges in the range of 0.1-10 in logarithmic scale; same

results have gotten from 1 and 3 story frames also. So we use S1/S2equal to 1 in order to take

acceptable results with controlled Error. Now we can input the same values of S1 and S2

incrementally step by step into joint stiffness settings as shown in figure 4.9 in order to reach to

stiffness convergence. It means that in a certain amount of rigidity, the frequency derived should

S1
/S
2

Error

Convergence of S1/S2

S1 = S2 has More accurate
results
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be same as fundamental frequency which is calculated by software in rigid connection state as

given in table 4.13.

RESULTS

Rigid Connection Frames

After complete the modeling using procedure mentioned in pervious chapters now we can run the

models. Varieties of models as described in table 4.1 have analyzed. In this part the results of

non-castled moment resistance steel frames and semi-rigid frames will be presented.

Table 4.7. First Mode Frequency of Rigid Connection Steel Frames

Number of

Stories

Total Frame

height (m)

No of

Bays

Connection

Type )(1 Hzf

1 3 3x3 Rigid 5.71326

2 6 3x3 Rigid 2.45073

3 9 3x3 Rigid 1.50588

4 12 3x3 Rigid 1.13587

5 15 3x3 Rigid 0.875367

6 18 3x3 Rigid 0.809366

7 21 3x3 Rigid 0.707011

Table 4.8. First Mode Frequency of Rigid Connection Steel Frames

Number of

Stories

Total Frame

height (m)

No of

Bays

Connection Type
)(1 Hzf

1 3 1x3 Rigid 6.13193

2 6 1x3 Rigid 2.55639



M. Bagheri et al. J Fundam Appl Sci. 2017, 9(1S), 971-1006 984

3 9 1x3 Rigid 1.57833

4 12 1x3 Rigid 1.18565

5 15 1x3 Rigid 0.913901

6 18 1x3 Rigid 0.740397

7 21 1x3 Rigid 0.620797

Table 4.9. First Mode Frequency of Rigid Connection Steel Frames

Number of

Stories

Total Frame

height (m)

No of

Bays

Connection

Type )(1 Hzf

1 5 1x3 Rigid 2.98237

2 10 1x3 Rigid 1.30946

3 15 1x3 Rigid 0.815977

4 20 1x3 Rigid 0.611291

Table 4.10. First Mode Frequency of Rigid Connection Steel Frames

Number of

Stories

Total Frame

height (m)

No of

Bays

Connection

Type )(1 Hzf

1 5 3x3 Rigid 2.7895

2 10 3x3 Rigid 1.26252

3 15 3x3 Rigid 0.785642

4 20 3x3 Rigid 0.590378
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5 25 3x3 Rigid 0.4577

6 30 3x3 Rigid 0.372785

7 35 3x3 Rigid 0.31536

Table 4.11. First Mode Frequency of Rigid Connection Steel Frames

Number of

Stories

Total Frame

height (m)

No of

Bays

Connection

Type )(1 Hzf

1 5 1x1 Rigid 6.54683

2 10 1x1 Rigid 2.74812

3 15 1x1 Rigid 1.7055

4 20 1x1 Rigid 1.2671

Table 4.12. First Mode Frequency of 1:15 model

Number of

Stories

Total Frame

height (m)

No of

Bays

Connection

Type )(1 Hzf

1 0.362 1x1 Rigid 57.9701

2 0.617 1x1 Rigid 38.2758

3 0.9 1x1 Rigid 28.919

4 1.211 1x1 Rigid 23.324

Small 1:15 frame was modeled based on specifications given in table 4.2 and chapter

4.8.2.
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Table 4.13. First Mode Frequency of Rigid Connection Steel Frames

Number of

Stories

Total Frame

height (m)

No of

Bays

Connection

Type )(1 Hzf

1 3 1x1 Rigid 6.54683

2 6 1x1 Rigid 2.74812

3 9 1x1 Rigid 1.7055

4 12 1x1 Rigid 1.2671

Fig.4.14. Deformed shape of Rigid Connection Steel Frame

Model validation

Small 1:15 Model

In order to find out that the model is able to calculate dynamic characteristics of steel frames, a

small-scale (1:15) 3-storey moment resisting steel frame was modeled as mentioned

in part 4.8.2 and the fundamental frequencies calculated. Figure 4.15 shows first mode

shape on eigenvalue analysis under frame self-weight.
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Fig.4.15. Unreformed and Deformed Shape of Small 1:15 Models Under Self-Weight In

Eigenvalue Analysis

Table 4.14 shows comparison between analyzed model and Experimental results in Cinitha.A and

Rama Raju (2008)

Table 4.15. First Mode Frequency Comparison 1:15 small Model

Cinitha.A and Rama Raju

(2008)

Experimental

Cinitha.A and Rama Raju

(2008)

Ansys Model

LUSAS Model Which Is

Used In This Study

29.78 Hz 32.27 28.919Hz

Comparing experimental frequency with analyzed frequency by LUSAS we can see the Error is

only 3% while the result calculated by ANSIS has 8% error. So LUSAS model is capable to

calculate fundamental frequency of the frame with acceptable accuracy.

Mathematical Calculations

As  ASCE/SEI  7-05 proposes in Equivalent  Lateral  Force  Procedure fundamental  period  (Ta)

of  a  structure  in  the specific  direction  can  be determined  using  the following equation:
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x
nta hCT  (4.1)

where nh is the height above the base to the highest level of the structure; Ct = 0.0724 for steel

Moment-Resisting  Frames,  0.0466  for  Reinforced Concrete Moment-Resisting  frames, and x

= 0.8 for  steel  moment-resisting frames, 0.9  for  reinforced  concrete moment-resisting frames.

The Uniform Building Code (UBC) has proposed procedure named as Static Force two methods

for calculation of fundamental period (T), Method A and Method B.

In method A an approximated formula as bellow is given:

4
3

)( nt hCT  (4.2)

Where Ct = 0.0853 for steel moment-resisting frames and 0.0731 for reinforced concrete

moment-resisting frames.

In Method B a formula based on the structural properties and deformation resisting of elements is

proposed which is more accurate in comparison with Method A but more difficult to apply:

)()(2
11

2 



n

i
ii

n

i
ii fgwT  (4.3)

)(

1
1

V
hw

hw
F

n

i

k
ii

k
xx

x


























(4.4)

Where:

iw =  The  portion  of  the  total  seismic  dead load  located  at  or  assigned  to  level  i.

δi =  the  horizontal displacement at level i relative to the base due to applied lateral forces.

g = the acceleration due to gravity

if = The lateral force at level i

Fx = the lateral force induced at level x of the frame, iw , xw are  the  portion  of  the  total  gravity

load of the structure assigned to level i or x, respectively, ih , xh are the  height  from  the  base

to  level  i  or  x,  respectively, k is a distribution exponent related to the frame  period,  k = 1  for
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a  frame  having  a  period  of 0.5 second or less and  V  is the total design lateral force or shear

at the base of the frame.

Although Eq.( 4.3)  is  not  commonly  used  by  structural  engineers because the applied lateral

force and the horizontal  displacement  at  each  level  of  the  frame  are required although it is

more accurate in comparison with Eq.( 4.2) and (3.3).

Example 1: Compute the fundamental period of the three-story frame shown in Fig 4.16  We

assume  that  the beams  are  rigid  (i.e.,  the  flexural  rigidity  = ∞  for each  beam). The

moment of inertia about the x-axis is Ix = 10300 mm4 for the columns and is Ix = 9540 mm4 for

the beams.  The modulus of elasticity is E = 2.09 (10E+5) MPa for all columns.

Fig.4.16. Small 1:15 Frame details

We want to consider the weight of frame as the only applied load we have to calculate the weight

of each floor and concentrate it to related beam. Flexural deformation of column between rigid

beams has shown in figure 4.3.2, this formula will give us the displacement caused by F in a 2D

frame. In order to simplify the calculations model considered as a 2D frame.

Ix (Beams) =9540 mm^4

Ix (Columns) = 10300 mm^4
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Fig.4.17. Flexural Deformation of column between rigid beams

Before calculation the  amount of V should be assumed as Total Design Lateral Force. Any

amount of V can give same results we assume V=100 KN. Using equations (4.4) we will have:

Fig.4.18. two dimensions Frame
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Table 4.16 Computation of the vertical distribution of seismic force

Level x )(mhx )(KNwx xx wh

 ii

xx

wh

wh )(KNFx

3 0.90 0.1 0.090 0.4848 48.6150

2 0.617 0.1 0.0617 0.3323 33.3283

1 0.334 0.1 0.0334 0.1829 18.0566

Total: 100.00

mm
mmN

EI

hFFF

x

1.72
)103002)(209000(12

)334()1000100(

12

)( 33
321

1 








mm
mmN

EI

hFF

x

9.35
)103002)(209000(12

)283()10007106.81(

12

)( 33
32

2 








mm
mmN

EI

hF

x

3.21
)103002)(209000(12

)283()10004770..48(

12

)( 33
3

3 





Table 4.17. Computation of 2
iiw  and if i

iLevel. )(KNWi )(KNFi )(mmi ).( 22 mmKNw ii ).( 2mmKNf ii

3 0.1 48.615 12.91 1674 6290.482105

2 0.1 33.3283 10.80 1176 360.672998

1 0.1 18.0566 72.10 520 1302.211594

Total: 3361 11194.3667
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Using Equation (3) we will have:

Sec
mmKN

Sec

mm
mmKN

T 03476.0
).3667.11194(

9810
.3361

2

2

2

 

)(76879.281
1 HzTF 

The result calculated by LUSAS as mentioned in table 4.15 is 28.919 Hz which is so close to

hand calculated fundamental frequency.

Example 2: Compute the fundamental period of the 3-story 3-Span frame shown in Fig

4.19(Bellow)  We assume  that  the beams  are  rigid  (i.e.,  the  flexural  rigidity  = ∞  for each

beam). The moment of inertia about the x-axis is Ix = 3.33E+8 mm4 for the columns W18x49

and is Ix = 6.49E+8 mm4 for the beams W24x62.  The modulus of elasticity is E = 2.09 (10E+5)

MPa for all columns.

Fig.4.19. Three story-three span Steel frame as modeled in LUSAS

Amount of Load calculated by considering the weight of W24x63 as the only load applied to

frame.

To calculation the  amount of V should be assumed as Total Design Lateral Force. Any amount

of V can give same results we assume V=100 KN. Using equations (4.4) we will have:
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Table 4.18. Computation of the vertical distribution of seismic force

Level x )(mhx )(KNwx xx wh

 ii

xx

wh

wh )(KNFx

3 9.0 2710 24392 0.5000 50.00

2 6.0 2710 16261 0.3333 33.3333

1 3.0 2710 8131 0.1667 16.6667

Total: 100.00

mm
E

mmN

EI

hFFF

x

81.0
)833.34)(209000(12

)30000()1000100(

12

)( 33
321

1 








mm
E

mmN

EI

hFF

x

48.1
)833.32)(209000(12

)3000()10003333.83(

12

)( 33
32

2 








mm
E

mmN

EI

hF

x

89.1
)833.34)(209000(12

)3000()100050(

12

)( 33
3

3 





Using Equation (3) we will have:

Sec
mmKN

Sec

mm
mmKN

T 666727.0
).157(

9810
.17361

2

2

2

 
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Table 4.19. Computation of 2
iiw  and if i

iLevel. )(KNWi )(KNFi )(mmi ).( 22 mmKNw ii ).( 2mmKNf ii

3 2710 50.0000 1.89 9640 94.30

2 2710 33.3333 1.48 5951 49.393700

1 2710 16.6667 0.808 1771 13.471000

Total: 17361 157

And the fundamental frequency will be:

)(499865.11
1 HzTF 

The result calculated by LUSAS model which is mentioned in Table 4.7 is 1.50588 (Hz) which is

again so close to hand calculated result.

A comparison between LUSAS Results and hand calculation results has been given in table 4.20

Table 4.20 Comparison between F1 calculated by LUSAS and Method B

No of Story F1 Calculated by

LUSAS

F1 Calculated by

method B (UBC)

7 0.707011 0.704585

6 0.809366 0.81248

5 0.875367 0.905623

4 1.13587 1.170476

3 1.50588 1.499865
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Comparison with Numerical Results

Fundamental frequencies obtained from ANSYS which is mentioned in Cinitha.A and Rama

Raju (2008) is now going to be verified and compared with the result calculated by LUSAS. This

comparison is given in tablec4.21 and figure 4.20.

Table 4.21 Comparison between Paper results and LUSAS model

Story

Height

(m)

No of

Stories

Plan

Ratio

Span

Length

(mm)

Beam

Section

Column

Section

F1 calculated

by LUSAS

model

(As table 4.6)

F1

Calculated by

Cinitha.A

and Rama

Raju (2008)

6 2 3x3 3000 W24x80 W18x50 2.4573 2.5

9 3 3x3 3000 W24x80 W18x50 1.50588 1.5

12 4 3x3 3000 W24x80 W18x50 1.13587 1.1

15 5 3x3 3000 W24x80 W18x50 .875367 0.85

18 6 3x3 3000 W24x80 W18x50 0.809366 0.75

21 7 3x3 3000 W24x80 W18x50 0.707011 0.60

Fig.4.20. Comparison between Paper results and LUSAS model

Fre
qu
enc
y
(Hz
)

Height of frame (m)
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Although results are almost same, seems that by increasing the frame height difference will

increases. But in height range that we are going to focus in this study the accuracy of results is

satisfying. Beside since the aim of this study is to evaluate the effect of castling on steel frames,

and the results of castled model will be compared by its own non castled model, any difference

and error will be eliminated.

Semi-rigid Model verification

Semirigid frames are frames which   beam-to-column joints are neither pinned nor rigid.  In

reality  all  frames  are semi  because  perfect  pinned  or rigid joints  do  not  exist.  However,

for  design  purposes  if  the amount  of  moment  that  can  be  transmitted  by  the  joint  is

small,  the  joint  can  be  idealized  as  pinned,  and if  the  moment  that  can  be  transmitted  be

large, the  joint  can  be  assumed  as  rigid.

There are two classification systems have been proposed for semirigid frames to separate them

from rigid frames.  The classification system by Bjorhovde and Colson (1990) which is  based

primarily  on  member response  whereas  the  classification  system  by Eurocode  32 is  based

on  overall  frame  response. Both systems classified connections in terms of their stiffness and

strength.  Boundary  lines  were  established  on  the  no dimensional  connection  moment-

rotation  plots  to  identify  regions  in which joints  were  considered  semirigid.

Figure 4.21 shows the semirigid frame model used in this study It has a beam  with  moment  of

inertia sI and  length hL ,  and  two  columns  with  moments  of inertia I and  lengths L, joined

at B  and C  by two  semirigid connections.  The  connections  are  modeled  as  rotational springs

at  the  beam  ends.  We consider only moment-rotational mode of the connections.  The axial and

shear deformation modes of the connections are ignored. The  frame  is  subjected  to  two  types

of loadings:  a  time- dependent  lateral  load F(t)  and  two  time-independent gravity

concentrated  column  loads  Pb  and  Pc which can be considered as frame self-weight.  Frame

analyses under  the  combined  effect of  gravity  and  lateral  loads  are carried  out using  the

stiffness  matrix  method.
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Fig.4.21. Parametric Description of Semirigid Frame

If we consider figure 4.22 as free body diagram of columns and joints we will have for semirigid

frames:

Fig.4.22. Free body diagrams of columns and joints
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0 PVLMM C
B
C

A
C (1)

Which lateral column stiffness can be written as :

CC

B
C

A
Clateral

C L

P

L

MMV
K 







 (2)

It is proven by E. M. Lui and A. Lopes, A
CM and B

CM can be expressed in term of the column end

displacements by assuming 0 B
C

A
C MM and considering axial force of column as a small value

we will have:

C

kb

bb

c

c

b

Shear
Lateral
C L

P
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L

I

I
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




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









3/4
6

1

21

1
1



 (3)

Where:

-
3

12

C

C
Shear L

EI
K  Is lateral column stiffness of a rigid connection and stiff beam.

- Is a factor which accounts for column inelasticity and It  is  defined  as  the  ratio of  the

tangent  modulus tE to  the  elastic  modulus  E  of  the column.  In the present study, this

modular ratio is approximated [20] by the expression.
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If 39.0
yP

P
, 1 and )(724.2

yy P

P
Ln

P

P
 if else.

- KR is the stiffness of connection

The  term in  brackets  is  a stiffness  reduction  factor to  account  for  the  effect  of  beam and

connection  flexibilities  and  the  term  P/L is  a  stiffness reduction  factor  to  account  for  the

effect  of  frame  instability.

Using Eq. (3) if we assume that the P is much less than Py since we have no loading except frame

weight in free vibration analysis, the P-Delta effect will be negligible and Eq. (3) will be

simplified as:
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1
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1
1
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c

c

b

C
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C

RL

EIL

L

I

I

II

(4)

So new moment of inertia of column will be calculated, now using same technique as mentioned

for hand calculation of frequency for moment resistance steel frames we can calculate the natural

period and fundamental frequency of MRF using modified Ic.

Also using try and error we can estimate the fixed connection capacity of the specific connection

with specific beam and column section and materials.

Example 3: Determine fundamental frequency of steel frame given in Example 2 assuming

semirigid connection of beam to column. Determine fully rigid connection stiffness.

Solution:
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In order to calculation the fundamental frequency of semirigid frame while the capacity of

connection is not clear, first we have to estimate rigid connection stiffness using try and error

technique in Equation (4) we will have:

I beam (mm4): 6.49E+08

L beam (mm): 3000

I column (mm4): 3.33E+08

L column (mm): 3000

E (Mpa): 2.09E+05

Rk( N-mm/Rad) : variable and wanted.

Using Equation (4) and )/.(1000.1 RadmmNERk 








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
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








































3

4

1000.1*3000

)849.6)(209(6
1

2

3000

3000

833.3

849.6

1
1)0833.3(

E

EE

E

EI Latteral
C

Lateral
cI 268,065,962 (mm4)

Which almost 81% is of xxI belong to W18x50.

Using calculated Ic and Equation 4.3.3 and 4.3.4 we will have:
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Table 4.21. Computation of the Vertical Distribution of Seismic Force

Level x )(mhx )(KNwx xx wh

 ii

xx

wh

wh )(KNFx

3 9.0 2710 24,392 0.5000 50.0000

2 6.0 2710 16,261 0.3333 33.3333

1 3.0 2710 8,131 0.1667 16.6667

Total: 100.00

mm
mmN

EI

hFFF

x
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)( 33
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x
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2 
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



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mmN
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x

502.0
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)( 33
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




Table 4.22 Computation of 2
iiw  and if i

iLevel. )(KNWi )(KNFi )(mmi ).( 22 mmKNw ii ).( 2mmKNf ii

3 2710 50.0000 2.34 14,874 117

2 2710 33.3333 1.84 9,182 61.3556

1 2710 16.6667 1 2,732 16.7333

Total: 26,788 195
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Using Equation (3) we will have:

Sec
mmKN

Sec

mm
mmKN

T 743086.0
).195(

9810
.26788

2

2

2

 

)(345738.11
1 HzTF 

As shown in example 2 the rigid connection fundamental frequency is 1.4999 but in semirigid

connection the frequency reduced to 1.34574 Hz. To evaluate the rigid connection using try and

error table 4 has presented. Using different values of Rk I lateral was calculated. The result

calculated by LUSAS with same connection rigidity is 1.28337 Hz which has less than 5% error.

Also fundamental frequency calculated by equivalent I presented in table 4. It can be seen that

maximum amount of I lateral is 81% which can give 90% of Rigid connection fundamental

frequency.

Table 4.24. Connection Stiffness and Fundamental frequencies using Equation 4.4 in Three Story

and Three Span Frame

Rk(N.mm/Rad)
I(mm4) F1 (Hz)

I (Lateral) %I. F (Semi-Rigid) %F (1.499Hz)

1.00E+16 269343856 81% 1.345738 90%

1.00E+15 269343845 81% 1.345738 90%

1.00E+14 269343729 81% 1.345738 90%

1.00E+13 269,342,571 81% 1.345738 90%

1.00E+12 269,330,991 81% 1.345738 90%

1.00E+11 269,215,273 81% 1.345738 90%
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1.00E+10 268,065,962 81% 1.345738 90%

1.00E+09 257,308,706 77% 1.31846 88%

1.00E+08 193,270,829 58% 1.142676 76%

1.00E+07 106,763,263 32% 0.84928 57%

1.00E+06 85,903,018 26% 0.761805 51%

1.00E+05 83,518,750 25% 0.749951 50%

1.00E+04 83,250,027 25% 0.749949 50%

1.00E+03 83,250,003 25% 0.749949 50%

1.00E+02 83,250,000 25% 0.749949 50%

1.00E+01 83,250,000 25% 0.749949 50%

1 83,250,000 25% 0.749949 50%

Fig.4.23. Connection Stiffness and Fundamental frequencies Using Equation 4.4

F1 (Hz)
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Fig.4.24. Connection Stiffness and Fundamental frequencies Using LUSAS Model

Connection stiffness convergence (not the frequency) shown in graphs above are free from frame

height, story height, bay size or plan ratio but just beam and column sections and material

properties. From mentioned graphs amount of 1.00E+10 N.mm/Rad can be extracted as fixed

connection stiffness. 81% of moment of inertia can be calculated from another way. If we

consider Equation (4) and input a big value as Rk we will have:
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CONCLUSION

This chapter covered the specification and dimensions of steel frames which are studied include

beam and column sections, number of stories, frame heights, story heights, bay size and plan

ratios. Also defining surface mesh, material properties and supports were covered as well as the
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adjustment of eigenvalue settings. In continue a thorough description about elastic connection

include procedure of modeling and input values added. Some examples about convergence

studies and final results also have given. The final part of this chapter is verification of the

results. Verification in this study done in three ways using experimental data available in

references, numerical verified data which is given in references and mathematical calculations as

mentioned in part 4.10.
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