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done on five main air quality pollutants (O

Malaysia. From the data analysis obtained, the concentrations of air quality pollutants all 

around Malaysia starting from 2008 to 2011 we

pollutants had been highlighted. KMO obtained in this study is 0.7760, which show that the 

results are factor well. While, Bartlett’s test shows that the variables correlated to each other’s. 

From these tests, air quality data were acceptable for factor analysis.
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Air quality played an important role as polluted air quality could harm human health, 

environment as well as property. Thus, a study of air quality pollutants assessment using 

chemometrics was performed with the objectives to ensure the air quality data analysis is 

le and interpreted well. Analysis of PCA, FA, KMO and Bartlett’s test were 

done on five main air quality pollutants (O3, NO2, SO2, CO and PM10

From the data analysis obtained, the concentrations of air quality pollutants all 

around Malaysia starting from 2008 to 2011 were acceptable and the most dominant major 

pollutants had been highlighted. KMO obtained in this study is 0.7760, which show that the 

results are factor well. While, Bartlett’s test shows that the variables correlated to each other’s. 
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1. INTRODUCTION 

Principal component analysis (PCA) is used to form the most significant parameter with least 

loss of the original variables by excluding the less significant parameter [1] and this allow 

identification of the pollution source [2]. Diverse possible pollution sources according to the 

activities in the air quality monitoring environment can be identified by applying Factor 

Analysis (FA) where usually carried out after successfully applied the PCA [3]. According to 

[4], FA suggests important variants to explain the observed variances in the data and it is one 

of the data reduction technique while PCA is for different factors extraction. PCA is 

considered as one of the useful statistical methods for the potential structure of a set variables 

and one of the most prevalent. Besides, it can be used to cut down a lot of data set. Most 

dominant major pollutant in this study were determined by PCA where subgroups were pool 

based on the correlation patterns between two or more air pollutants. Analysis from the whole 

data does not include less significant variables with less original data loss. The first factor in 

PCA explains the major variables amount within the original data. While, the second factor 

explained by the factor that has not been explained by the first factor and subsequently [5]. 

It is advisable to rotate the (Principle Components) PCs by varimax rotation with eigenvalues 

equal to or greater than 1, as PCs produced by PCA without rotations are at times not readily 

presented for interpretation [6]. Furthermore, according to [7], most general factor with 

negative coefficients and similar size coefficients on all variables disappears and loadings 

structure been simplified. Besides, simpler structure of coefficients from rotated PCs make 

them easier to interpret. Moreover, varimax factors’s number gained by varimax rotations 

usually equivalent to the variables number of the unobservable, hypothetical and hidden 

variables [8]. Better relationship between the PCs and the original variables can be achieved 

when PCs been rotated by PC varimax rotation. It is vital to rotate the PCs since the factor 

loadings after rotation reveal to what amount one variable is similar to the other and how 

much the variable contributes to that particular PC [3, 9]. Varimax factors (VFs) are new 

variables group obtained from the varimax rotation [10], while variables amount contributes 

to that particular factor and its similarity to the other also can be reflected by the factor 

loadings after rotation [3, 5, 9]. According to [11], PCA and varimax rotation were methods 
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used for factor extraction and matrix rotation respectively. Thus, factor analysis will be 

discussed as principal factor analysis (PFA) since the factor extraction method employed is 

PCA [12]. 

According to [13], rotated factors with two or less variables should be interpreted with 

attention. Highly correlated variables (r > 0.70) only considered for the factor with two 

variables. However, it seems fairly uncorrelated with other variables. Data error will be lessen 

for a larger sample size. Furthermore, according to [14], at least three variables needed for 

something to be labelled as a factor although this depends on the study design. 

Kaiser Meyer Olkin (KMO) and Bartlett’s test were tested for data suitability prior to applying 

of factor analysis [15]. KMO and Barlett’s tests were implemented in the Principal factor 

analysis (PFA) commencement where the KMO test forecasts whether data of interest are 

factor well or not. While, Sphericity Bartlett’s test used to confirm that there are correlated 

variables used in PFA from the rejected results from the hypothesis used. Samples adequacy 

had been tested by applying the KMO of sampling adequacy (MSA) [16] before extracting the 

factors in the PCA, and MSA is acceptable if the value of KMO is ranging between 0.60 to 

1.00 [12] (see Table 1). 

Table 1. Guiding rules for interpretation of KMO test results [17] 

KMO Value Interpretation 

0.90-1.00 Marvelous 

0.80-0.89 Meritorious 

0.70-0.79 Middling 

0.60-0.69 Mediocre 

0.50-0.59 Miserable 

0.00-0.49 Unacceptable 

Variable with high factor loading shows many variables contributes to the variation of that 

factor [18]. Correlation coefficient matrix between the variables was used for the ranking of 

factor loadings [16]. This support by the research done by [19], which states that variables 

with high loadings were grouped in the same factors whereas association between variable 
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and factor shown by the larger the factor loading. From the factor scores obtained, each 

component can be connected with a kind of source [20]. The quantity of variable contributes 

to the factor can be measured by variable of a factor loading. Therefore, factors size are well 

accounted for by the variables [13]. 

Scree plot graph for PCA loadings indicates the cut-off point where strong factors are selected 

for interpretation [21]. Interpretation is based on significance factors [13] and used to clarify 

the extraction method of different factors [4]. Besides, it is also used to decide how many 

factors to retain. According to [13], the cut-off selection may be determine from the ease of 

interpretation together with how complex variables are being handled. 

It is considered strong if factor loadings are greater than 0.75, considered moderate is the 

range between 0.50 to 0.75 and weak if range of factor loadings between 0.30 and 0.49 [3, 22]. 

However, according to [3], for the principal component analysis, only factor loadings with 

absolute values greater than 0.5 are selected in practice. In contrast, in [23] classified range of 

factor loadings quite different from [3, 22] whereby they classified the factor loadings as 

excellent, very good, good, fair and poor if the loadings are in the values of 0.71, 0.63, 0.55, 

0.45 and 0.32 respectively. However, these loadings still in range with the study applied by [3, 

22]. 

While, the range of factor loadings referred by [24-25] in their studied are taken from the 

range of factor loadings applied by [11, 26] respectively. Whereby, they classified the factor 

loadings as strong, moderate and weak if the loadings are in the values of greater than 0.75, 

0.75-0.50 and 0.50-0.30 respectively. These range of factor loadings applied almost the same 

been applied by the [3, 22]. 

 

2. RESULTS AND DISCUSSION   

In this study, four-years (2008-2011) daily average data of five major air pollutants variables 

which are ozone (O3), nitrogen dioxide (NO2), carbon monoxide (CO), particulate matter 

(PM10) and sulphur dioxide (SO2) were studied. Interrelated variables were interpreted using 

PCA where new variables known as principle components (PC) were created. Thus, source of 

emission can be identified [27] through analysis of PCA from factor analysis. 
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Before extracting factors in PCA, KMO measure of sampling adequacy (MSA) was applied to 

test samples adequacy which might be caused by underlying factors [11]. Table 2 shows result 

of KMO measure of sampling adequacy. From the result obtained, measure of sampling 

adequacy (MSA) was acceptable as the value obtained is greater than 0.5. All variables are 

considered adequate and can implement for further analysis. Correlations between variables of 

air quality and the extracted factors can be assess from applying factor loadings [28]. Besides, 

according to [11], principal component/factor analysis may be convenient if high value which 

is close to 1 obtained. In this study, the value of KMO obtained is 0.7660. Thus, the 

principal/factor analysis may be considered convenient. Besides, based on Guiding rules for 

KMO test results interpretation [17] (Table 1), the air quality data is middling which is in the 

range from 0.70 to 0.79. This shows that the data would factor well and air quality data is 

agreeable to PFA [12]. 

Table 2. Kaiser-Meyer-Olkin measure of sampling adequacy 

O3 0.8265 

NO2 0.7110 

CO 0.7362 

PM10 0.8444 

SO2 0.8906 

KMO 0.7660 

Observed chi-square value obtained from this analysis is 111132.783 (p < 0.0001, df = 10) 

(see Table 3). Null hypothesis (Ho) was rejected and alternative hypothesis (Ha) was accepted 

as the computed p-value is lower than the significance level alpha = 0.05. This Bartlett’s test 

of sphericity shown that the air quality variables were correlated and not orthogonal [12] and 

gives correlated and unbiased scores with their own factor. Thus, factor analysis obtained 

from principle component analysis (PCA) will agree for the data variability interpretation with 

less than the original number [13]. From these types of test, it is confirmed that the adequate 

factors had been extracted in PCA were adequate, factor well and correlated with each other’s. 
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Table 3. Kaiser-Meyer-Olkin measure of sampling adequacy (observed values) 

Chi-square (Observed value) 111132.7833 

Chi-square (Critical value) 18.3070 

DF 10 

p-value < 0.0001 

alpha 0.05 

Table 4 shows the loading factors of selected air pollutants parameters for Malaysia air 

monitoring stations (2008-2011). Based on the resulted obtained as depicted in Table 4, it can 

be inferred that correlations between air pollutants parameters can be carried out from the 

factor loadings. The Pearson’s correlation between selected air pollutants parameters were 

also applied for the data interpretation (Table 5). 

Table 4. Loading factors of selected air pollutants parameters for Malaysia air monitoring 

stations (2008-2011) 

Parameters F1 F2 F3 

O3 0.7705 -0.2736 -0.2331 

NO2 0.8803 -0.1305 -0.1078 

CO 0.8600 -0.0635 -0.1626 

PM10 0.3768 0.9079 -0.1544 

SO2 0.5897 0.0649 0.8012 

Eigenvalue 2.5980 0.9245 0.7581 

% of variance 51.9598 18.4899 15.1621 

Table 4 and Figure 1 show the highlights of selected factors with strong positive loadings (> 

0.75), eigenvalues greater than 0.70 and percentage of variance. There are three factors 

represent 85.61% percentage of variability after varimax rotation. Factor 1 (F1) consist of O3, 

NO2 and CO, Factor 2 (F2) consist of PM10 and Factor 3 (F3) consist of SO2. Fig. 2 shows 

scree plots of PCA with five PCs. Generally, to clarify the origin of variation, principal 

components were removed based on an eigenvalue greater than 1 [29]. Although the scree plot 

shows only F1 has an eigenvalue greater than 1, it is still acceptable for F2 and F2 which has 

an eigenvalue less than 1 as based on Jolliffe’s criterion, it suggested retaining factors with 



N. L. Abd Rani et al         

eigenvalue above 0.70 [13]. 

For the selection of factor loadings, previous study done by 

that loading factors with values greater than 0.75 are considered strong. These air pollutants 

parameters (O3, NO2, CO, PM

categorized as potential air pollutants contributor but coming from diffe

as they were divided into three factors (F1, F2, F3) after extracts the factors in the PCA.

Fig.1. Factor loading plot after varimax rotation

Factor 1 with higher factor include O

diesel fuel. The Pearson’s correlation coefficient (see 

between O3, NO2 and CO. All pollutants shows positive correlation between each other. There 

are strong correlation between 
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correlation, air pollutants correlation between NO

0.7260). This confirmed the results of PCA analysis. 
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where there is strong correlation between NO2 and CO with r = 0.805 and r = 0.901 in 2007 

and 2012 respectively. As according to them, CO and NO2 are the main pollutants from diesel 

fuel vehicles. This supported by the research done by [31] found out that CO and NO2 

pollution in ambient air are coming out from the mobile source which are also contributed to 

the formed of secondary pollutant namely ozone [30]. Thus, present of CO and NO2 indirectly 

contributed to the present of O3 from the same sources. These results lend support to the 

suggestion by [21], whereas O3 concentration is largely dependent on its precursors (NOx, and 

CO) availability. 

In [32] mentioned that NO2 is one of the traffic air pollutant while according to [33], local 

anthopogenic activities such as traffic, industries and agriculture generated O3 pollutant. Other 

authors, in [34] have observed the aspect of O3 where O3 production consist of top five 

compounds come mainly from road traffic. 

Factor 2 and Factor 3 show highest factor loading of PM10 and SO2 respectively. Factor 2 has 

high factor loading of PM10 ( r = 0.9079 ) signified that the source is coming from dust fall 

which possibly comes from the construction sites, industrial activities, soil dust and the 

transportation exhaust emission [27]. Besides, present of PM10 was shown to be contributed 

from the forest burning [35]. Anthropogenic activities such as wood burning, vehicles 

combustion activities and power plant also contribute to this most harmful pollutants [36]. 

While, Factor 3 with highest factor loading of SO2 (r = 0.8012). According to [37], industrial 

activities one of the contributor to the high concentration of SO2 present. The results of 

Pearson’s correlation (Table 5) shows other major pollutants namely PM10 and SO2 show low 

correlation with all of the pollutants and the lowest correlation shown by the correlation 

between O3 and PM10 (r = 0.1281). Sites proximities of industrial plants may experiences high 

concentration of SO2 compared to remote sites [38]. 
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Table 5. Pearson’s correlation between selected air pollutants 

Air Pollutants O3 NO2 CO PM10 SO2 

O3 1     

NO2 0.6055 1    

CO 0.5573 0.7260 1   

PM10 0.1281 0.2157 0.2521 1  

SO2 0..2896 0.3976 0.3575 0.1640 1 

 

3. EXPERIMENTAL  

Air pollution data were obtained from 50 continuous air monitoring stations around Malaysia 

(see Figure 3). In order to standardize all the data from 2010 to 2015, continuous air 

monitoring stations at locations number 13 and 34 which represent continuous air monitoring 

stations at ILP, Miri and Taman Semarak, Nilai were removed from the analysis due to lack of 

data from 2010 to 2011 and 2015 respectively.  

All the data were collected and gathered from the Air Quality Division (DOE) Malaysia 

(2015). The data starts from 1st January 2008 to 31st December 2011. In this study, 367,080 

data points were analyzed and used which compromises of five pollutants (73,416 data for 

each pollutants). All the data were interpreted in daily average. The locations of continuous air 

monitoring stations are stated in Table 6 (a) to Table 6 (n). Main air pollutant parameters 

namely ozone (O3), nitrogen dioxide (NO2), sulphur dioxide (SO2), carbon monoxide (CO) 

and particulate matter (PM10) were studied in this study. 

BAM-1020 Beta Attenuation Mass Monitor from Met One Instrument, Inc. USA was used to 

monitor PM10. While, SO2, NO2, CO and O3 were monitored using the Teledyne API Model 

100A/100E, Teledyne API Model 200A/200E, Teledyne API Model 300/300E and Teledyne 

API Model 400/400E respectively. Because of their accuracy, robustness and reliability, these 

instruments were chosen. 
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Fig.3. Air monitoring stations throughout Malaysia 

Table 6 (a). Sampling point for air quality monitoring stations in Selangor 

 Locations Lat. (N) Long. (E) 

4 SM (P) Raja Zarina, Klang N03°00.602 E101°24.484 

5 SK Bandar Utama, Petaling Jaya N03°06.612 E101°42.274 

6 SK TTDI Jaya, Shah Alam N03°06.286 E101°33.367 

7 SM Sains, Kuala Selangor N03°19.592 E101°15.532 

8 Kolej MARA Banting N02°49.001 E101°37.381 
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Table 6 (b). Sampling point for air quality monitoring stations in Johor 

 Locations Lat. (N) Long.  (E) 

45 SM Pasir Gudang 2  N01°28.225 E103°53.637 

46 Institut Perguruan, Larkin  N01°28.225 E103°53.637 

47 SM Teknik, Muar  N02°03.715 E102°35.587 

48 SMA Bandar Penawar  N01°33.500 E104°13.310 

Table 6 (c). Sampling point for air quality monitoring stations in Kedah 

 Locations Lat. (N) Long.  (E) 

41 SK Bakar Arang, Sg Petani  N05°37.886 E100°28.189 

42 Kompleks Sukan Langkawi  N06°19.903 E099°51.517 

43 SM Agama Mergong  N06°08.218 E100°20.880 

Table 6 (d). Sampling point for air quality monitoring stations in Kelantan 

Locations Lat. (N) Long. (E) 

39 SMK Tanjung Chat, Kota Bharu N06°09.520 E102°15.059 

40 SMK Tanah Merah N05°48.671 E102°08.000 

Table 6(e). Sampling point for air quality monitoring stations in Melaka 

 Locations Lat. (N) Long. (E) 

37 SMK Bukit Rambai, Melaka N02°15.510 E102°10.364 

38 SM. Tinggi N02°12.789 E102°14.055 

Table 6 (f). Sampling point for air quality monitoring stations in Negeri Sembilan 

 Locations Lat. (N) Long. (E) 

35 SM. Teknik Tuanku Jaafar, N02°43.418 E101°58.105 

36 Pusat Sumber Pendidikan N02°26.458 E101°51.956 

Table 6 (g). Sampling point for air quality monitoring stations in Pahang  

 Locations Lat. (N) Long. (E) 

28 Pej. Kajicuaca Batu Embun N03°58.238 E102°20.863 

29 SK Indera Mahkota, Kuantan N03°49.138 E103°17.817 

30 SK Balok Baru, Kuantan N03°57.726 E103°22.955 
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Table 6 (h). Sampling point for air quality monitoring stations in Perak 

 Locations Lat. (N) Long. (E) 

23 SM Jalan Tasek, Ipoh N04°37.781 E101°06.964 

24 SK. Air Puteh, Taiping N04°53.940 E100°40.782 

25 Pej. Daerah Manjung N04°12.038 E100°39.841 

26 UPSI, Tanjung Malim N03°41.267 E101°31.466 

27 SM. Pagoh, Ipoh 2, Perak N04°33.155 E101°04.856 

Table 6 (i). Sampling point for air quality monitoring stations in Perlis 

 Locations Lat. (N) Long. (E) 

44 ILP, Kangar N06°25.424 E100°11.046 

Table 6 (j). Sampling point for air quality monitoring stations in Pulau Pinang 

Locations Lat. (N) Long. (E) 

31 SK Cenderawasih N05°23.470 E100°23.213 

32 SK. Sebarang Jaya II, Perai N05°23.890 E100°24.194 

34 USM, Pulau Pinang N05°21.528 E100°17.864 

Table 6 (k). Sampling point for air quality monitoring stations in Sabah 

Locations Lat. (N) Long. (E) 

19 SMK Putatan, Tg Aru N05°53.623 E116°02.596 

20 Pejabat JKR, Tawau, Sabah N04°15.016 E117°56.166 

21 SMK. Gunsanad, Keningau N05°20.313 E116°09.769 

22 Pej JKR Sandakan N05°51.865 E118°05.479 

Table 6 (l). Sampling point for air quality monitoring stations in Sarawak 

  Locations Lat. (N) Long. (E) 

 14 Medical Store, Kuching N01°33.734 E110°23.329 

 15 Ibu Pej. Polis Sibu, Sarawak N02°18.856 E111°49.906 

 16 Balai Polis Pusat Bintulu N03°10.587 E113°02.433 

 17 SM Dato’ Permaisuri Miri, N04°25.456 E114°00.731 

 18 Balai Polis Pusat Sarikei N02°07.992 E111°31.351 

 9 Dewan Suarah, Limbang N04°45.529 E115°00.813 
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Table 6 (m). Sampling point for air quality monitoring stations in Terengganu          

 Locations Lat. (N) Long. (E) 

1 SK. Bukit Kuang N04°16.260 E103°25.826 

2 Kuarters TNB, Paka-Kertih N04°35.880 E103°26.096 

3 Sek. Keb.Chabang Tiga, N05°18.455 E103°07.213 

Table 6 (n). Sampling for air quality monitoring stations in Wilayah Persekutuan 

 Locations Lat. (N) Long. (E) 

50 SK. Putrajaya 8(2), Jln P8/E2 N02°55.915 E101°40.909 

51 SMK. Seri Permaisuri, Cheras N03°06.376 E101°43.072 

52 SK. Batu Muda, Batu Muda N03°12.748 E101°40.929 

49 Taman Perumahan MPL N05°19.980 E115°14.315 

 

4. CONCLUSION  

Analysis of data using chemometrics are reliable where concentrations of five main air quality 

pollutants consist of ozone (O3), nitrogen dioxide (NO2), sulphur dioxide (SO2), carbon 

monoxide (CO) and particulate matter (PM10) from 2008 to 2011 were acceptable as KMO 

and Bartlett’s test obtained in this study is factor well and the variables correlated to each 

other’s respectively. Generally, air quality data were acceptable for factor analysis. 
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 10 Pej. Daerah, Kota Samarahan N01°27.308 E110°29.498 

 12 Pej. Perumahan, Sri Aman N01°14.425 E111°27.629 

 11 Stadium Tertutup, Kapit N02°00.875 E112°55.640 
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