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ABSTRACT  

This paper details an evolutionary algorithm that forms a new population by combining genes 

of three members of the current population. The first member is the best member of the 

population, the second one is the current member to be replaced and the third

chosen randomly from the current population. We used this algorithm for component selection 

of a kNN (k Nearest Neighbor) method for breast cancer prognosis. Results with the UCI 

prognosis data set show that we can find components that hel

by almost 3%, raising it above 79%.
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1. INTRODUCTION 

Breast cancer is one of the most common cancers in the world and with a 30% figure, it has 

the highest incidence in women in Japan. However, its early treatment 

rate, reaching it only around 9% in Japan. Advances in VLSI technologies make possible

the access to powerful computers
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Breast cancer is one of the most common cancers in the world and with a 30% figure, it has 

the highest incidence in women in Japan. However, its early treatment reduces its mortality 
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were hard to implement efficiently. Therefore, many methods exist for breast cancer prognosis 

and diagnosis [1-4].  

In this paper, we show one way of improving the average accuracy of the kNN method. It is a 

machine learning method that has high accuracy, it is easy to implement and could be used to 

detect different stages of breast cancer [5] and physiological characteristics with high 

accuracy [6]. We can improve the accuracy of kNN in several ways [7-9]. One survey on its 

several variants could be found in [10]. In the kNN method the similarity metric used for 

classification is usually the Euclid distance. However, the adoption of other distances could 

lead to accuracy improvements [11-12].  

For the evaluation of our approach we used the breast cancer data set of the UCI site [13]. 

This set contains data that is composed of 35 features (components), which 32 are usually 

used to perform classification.  

Evaluating all the combinations of the components to find an optimal one is one possible 

option. But due to the large number of possible settings, it is not practical. 

Principal component analysis (PCA) is one way of selecting them, and it can be used together 

with other methods [14-15]. Heuristic algorithms could also be used to search for 

near-optimal combinations. Genetic algorithms (GA) can also help to reduce the 

dimensionality of the data [16].  

We have implemented a kNN method that evaluates combinations generated by an evolutionary 

algorithm (EA). The EA generates combinations of components from which only the best ones 

are selected. These selected combinations of components are evaluated again, in a more 

exhaustive way, by the kNN method to determine their accuracy characteristics. The UCI data 

is used pre-processed in two ways. We normalize and standardize it before using it for 

classification.  

 

2. KNN METHOD AND EVOLUTIONARY ALGORITHM 

We explain in this section characteristics of the kNN method we implemented and show 

details of the EA we developed for component selection. 
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2.1. kNN Implementation 

The kNN (k Nearest Neighbor) method is one of the most popular algorithms used for 

classification tasks. Although it is simple to implement, it has shown to be very effective with 

several data sets and types of data.  

Some of its shortcomings are the difficulty in determining the number of neighbors k to be 

used in the classification, choosing the metric to measure the similarity and deciding if all the 

attributes (components) of the data must be equally weighted in the classification process.  

There are many modifications and variants of the kNN that try to overcome these and other 

weak points of the kNN method [10]. There exist approaches that try to optimize the weight 

of each attribute and others that aim to improve the performance of kNN by targeting also the 

distances [17-18].  

The kNN method does not have a training phase neither builds a classifier. It needs classified 

data to work. 

The usual way of measuring the accuracy of a kNN implementation is dividing all the 

available and already classified data in ten equal-size groups (i.e., each group contains 10% of 

all the data), then we take together nine of them as the data used for classification and use the 

last (remaining) group as the data for testing. After the first evaluation of the accuracy, we 

change the group used for testing and measure the accuracy again. This process is repeated 

until every group has been used for testing. This is what is called a ten-fold evaluation of the 

classification method. This kind of evaluation uses 90% of all the data for classification, uses 

the 10% for testing and repeat the accuracy evaluation just ten times (once for each group).  

We have implemented the kNN method in such a way that it lets us to control the percentage 

of all the data that it uses for classification. We can set this percentage to any possible value. 

In the evaluation of our approach, we used nine settings of this percentage for evaluating each 

member (combination of components) generated by our evolutionary algorithm.  

The maximum number of neighbors we can use in the classification stage changes with the 

size of the data used for classification. Our implementation of the kNN method evaluates the 

accuracy for each and all possible values of k. It also evaluates the accuracy using 

simultaneously six different similarity metrics. Our kNN method uses the Euclid, Manhattan, 

Chebyshev, Sorensen, Canberra and Mahalanobis distances. We can also repeat the accuracy 

evaluation for more than 10 times. We made its setting (number of trials) independent of the 

percentage of the data used for classification. In our implementation of the kNN method, 

random sampling forms the classification set. 
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Fig.1. Selection process: uses kNN for the evaluation of EA members 

2.2. Evolutionary Algorithm Details 

In our approach, we try to find and optimal combination of components that will give us the 

best average accuracy. To do this, we use an evolutionary algorithm (EA) to find the best 

combination of components. The EA is part of the selection process of Fig. 1. In it we use the 

evolutionary algorithm to generate populations that are evaluated using kNN. 

The members in one population are really a mask composed of zeros and ones (Fig. 2) 

 

Fig.2. Masking of components using an EA member 

That mask is used to select the components of the combination that the kNN method will 

evaluate. 

We use all members in one population to generate the new members of the next one. All the 

populations are composed of 100 members. Each member is used to generate a masked data 

that in turn is evaluated using the kNN method.  

The average accuracy obtained with that data becomes the evaluation (fitness) of the 

corresponding member. After evaluating all the members in one population we sort all them 

to determine the best member (Fig. 3). 
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Fig.3. Sorting of EA members after its evaluation 

In the selection process, we use only 10 populations. New populations are formed mating the 

best member with all other ones (Fig. 4).  

 

Fig.4. Mating process with the best member 

The process of forming a new member is done one gene at a time controlled by a parameter, 

we call probability of best inheritance pbi and calculated as shown in Equation (1). 

pbi =
eb

eb +ec
                                                                (1) 

Here, eb is the evaluation of the best member and ec the evaluation of its current partner. 

To determine if the new member will inherit a gene from the best one we generate a random 

number r between 0 and 1. If r is smaller than pbi,  then the gene of the best member will 

pass to the new one. If the member mating with the best one has a high evaluation, pbi would 

take a value close to 0.5 and the new member will have half of its genes from the best 

member and the other half from members of the current population (Fig. 5).  

 

Fig.5. Controlled inheritance from the best member 



A. P. Pawlovsky             J Fundam Appl Sci. 2017, 9(4S), 173-192             178 
 

 

When the best member mates with low evaluation members, the corresponding members of 

the new population will inherit most of its genes from the best one. This really is subject to 

the differences in evaluation between the best member and the worst ones in the population. If 

the difference is large, pbi will be higher than 0.5 and the new member will inherit genes from 

the best member. As depicted in Fig. 6, for the worst member of the example population of 

Fig. 3, pbi will be equal to 0.72 (probability of inheriting from the best member will be 72%) 

and the new member’s genes will probably be set to those of the best one. 

 

Fig.6. Low evaluation members will inherit from the best member 

If r is larger than or equal to pbi,  first we choose randomly another member from the 

current population and calculate a parameter we call probability of current inheritance pci 

that is given by Equation (2). In it, eo is the evaluation of the randomly chosen member. 

pci =
ec

ec +eo
                                                                (2) 

In this case, we also generate a random number r between 0 and 1 and compare it to pci.  If r 

is smaller than pci, the new gene will be the one of the current member. Otherwise, it will 

be the gene of the randomly chosen member (Fig. 7). If the third member’s evaluation is 

close to the current’s one, pci will take a value close to 0.5 and nearly half of the genes 

determined in this way will be those genes of the member chosen randomly from the current 

population.  

On the other hand, if the current member and the third one have a high difference in 

evaluation, then the new member will inherit most of its genes from the current one. 

We have to recall that the random value r compared to pbi is generated for each gene of 

the new member and not just once. 

 

Fig.7. Inheriting a gene from the current or another member 
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This scheme will cause that members with close evaluations to the best member will produce 

new members that will inherit, in the best case, half of the genes of the best member. 

However, the final type of the genes will also depend on the third member (the one randomly 

chosen).  

This mechanism of inheriting from a third member is what makes our approach unique 

(non-natural) and allows us bring diversity to the new population.  

The selection process showed in Fig. 1 evaluates each member in a population using six 

different metrics (distances), and nine settings for the size of the classification set. The sizes 

start at 10% in increments of 10% up to 90% of all the available (already classified) data.  

After the evaluation of all members in a population, the best one is not only used in the 

generation of a new population but it is also kept as one of the best members found in the 

selection process using the EA. Each one of the best members gets recorded together with the 

percentage for which it gave the highest evaluation. Since we used only 10 populations, 10 

members for each distance, 60 members in total will form the output of the selection process. 

At the end of the evaluation of all the populations, we will sort all the best members for each 

distance and only the best two members (mask patterns) for each distance will pass to the 

detailed evaluation process of Fig. 8. In it, each one of  

 

Fig.8. Detailed evaluation process of the top patterns 

The 12 selected members (patterns) and its corresponding percentage are used to set kNN to 

evaluate them again.  

Since the data for the classification set is chosen randomly from the whole data set, this set 

could be highly biased. In some cases, it could even contain only one class of the data.  
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To avoid this and other cases that could bias the results, in the detailed evaluation of the target 

member (pattern) we repeat the evaluation, with the same classification set size, one hundred 

times, for the six distances, and for all possible values of k. The only parameter that is fixed is 

the percentage of the data taken for the classification set. The results of the detailed evaluation 

are given in the next section. 

 

3. RESULTS AND DISCUSSION 

Processing the (raw) data, before using it for classification, diminishes the effect of 

components with different ranges of values. As indicated in the introductory section, we 

processed the data in two ways. One of them is normalization and the other one is 

standardization. The results shown here are those of the detailed evaluation process. 

The accuracy results were obtained using six distances and in some of the tables, of this 

section, a number indicates a distance. Those are Euclid: 1, Manhattan: 2, Chebyshev: 3, 

Sorensen: 4, Canberra: 5 and Mahalanobis: 6. 

3.1. Results Using Data Normalization 

Normalization makes the data to fit it in the range [0,1]. We used the following formula to 

process each component value. 

vnorm =
vraw - vmin

vmax -vmin

                                                            (3) 

In Equation (3), vraw is the original (raw) component value. The vmax and vmin are 

the maximum and the minimum values the component takes in all available data. 

The 12 patterns selected by the EA using normalized data are shown in Table 1. Each one 

was selected using 9 classification set sizes, repeating the simulations a hundred times for all 

values of k and with all the six distances implemented in the kNN method. 

Table 1. Patterns obtained with our EA with normalized data 

Pattern Components’ Masks 

1 11000101101000100010010010100010 

2 11001101101100100010010010100000 

3 00100110101111100100000001100101 

4 00000110111011100000010101101101 
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5 11101100111111011101000100000011 

6 11101101111111111101000100000010 

7 00101100101110001101110100000000 

8 00101100101110001101110100000000 

9 00000001101001010101111101011010 

10 00100001101001110000101100011010 

11 00001000011110011010111111011110 

12 00101000011110011011111110011110 

We must note that the best top patterns for the Sorensen distance are identical ones (patterns 7 

and 8). The best average accuracy values obtained in the detailed evaluation of these patterns 

are shown in Table 2.  

The best average accuracy was given by pattern 2 using 12 neighbors and the Manhattan 

distance. The best pattern gave an average accuracy of 79.1% with a classification set size of 

90%. 

Table 2. Best accuracy results using normalization 

Pattern k Mean Distance 

1 12 78.4 2 

2 12 79.1 2 

3 12 76.2 1 

4 23 76.2 2 

5 5 77.6 2 

6 14 77.6 1 

7 16 77.4 1 

8 15 77.1 1 

9 17 76.5 3 

10 19 76.4 3 

11 22 78.5 3 

12 17 77.3 3 
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Its average accuracies, for all the possible values of k, are shown in Fig. 9. The average 

accuracy for this pattern remains constant, at a value of 76.7%, for a number of neighbours 

larger than 31. 

 

Fig.9. Average accuracy of the best pattern for normalized data 

When choosing a setting for kNN, it is also important to determine the maximum and 

minimum accuracy values (the range of variation of the accuracy). The range of change of the 

accuracy for this pattern is shown in Fig. 10. 

 

Fig.10. Minimum and Maximum values of the best pattern 
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This range for the best accuracy is 36.84% and the smallest one of all. The range of the 

accuracy fluctuates a lot for small values of k and the largest difference is of 52.6%. However, 

it is constant for a number of neighbours k larger than 15, showing a constant difference 

value of 42.1%. 

We must also take into account the variation of the standard deviation (σ) of the average 

accuracy values. The corresponding ones are shown in Fig. 11. The standard deviation for the 

best average accuracy is just 8.4% and the second smallest one. The standard deviation values 

are constant for all values of k greater than 31 and take a value of 9.6%. 

 

Fig.11. Standard deviation of the average accuracy of the best pattern 

3.2. Results Using Data Standardization 

We also processed the data standardizing it before it was used in the kNN method. In 

standardization, we subtract the mean value v̄  from each value vraw and divide that result 

by the corresponding standard deviation σ (Equation (4)). This makes the average of the 

resulting data equal to 0. 

vstd =
vraw - v

s
                                                               (4) 

The 12 patterns obtained in the selection process by the EA, using standardized data, are 

shown in Table 3. 

Table 3. Patterns obtained with our EA with standardized data 

Pattern Component Masks 

1 00001010100001011110100001100100 

2 00001010100001011110100001100100 

3 00010110011110101010100000110101 



A. P. Pawlovsky             J Fundam Appl Sci. 2017, 9(4S), 173-192             184 
 

 

4 00101100001000001010110001101101 

5 01000100010010001000110010000010 

6 01000000010010001000111010000010 

7 11011100111110100011011111110010 

8 11001100111100100011111101110110 

9 01000100111001011001001010111010 

10 11110100110001001011101001001100 

11 01000011001101010001111110010101 

12 01100100001101100101001100110101 

Again, we must note that the best two patterns (patterns 1 and 2) obtained with the 

Euclidean distance are the same. This is because the best pattern in one population is 

preserved and pass to a new population without changes. If it is also the best pattern of the 

new population, it will get recorded twice in the list of best patterns. Therefore, if it happens 

to also have the best evaluation of all patterns it will appear as the best two ones for a given 

distance. We are aware of this issue and plan to modify the selection process adding a 

mechanism that check for this kind of duplication. 

The best average accuracies, using data standardization, for each pattern are shown in Table 

4. 

Table 4. Best accuracy results using standardization 

Pattern k Mean Distance 

1 18 77.9 3 

2 18 77.7 3 

3 19 75.5 3 

4 34 76.2 3 

5 11 77.2 2 

6 13 77.1 1 

7 13 76.6 1 

8 
7 

11 
79.5 

1 

2 
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9 13 76.6 3 

10 21 77.3 2 

11 18 75.3 2 

12 23 76.6 2 

It is worth nothing that while the best two patterns for the Euclidean distance are the same, 

their best average accuracies differ slightly. This is due to the random method used to form 

the classification sets in the kNN method. Their classification sets use the same percentage 

of the whole data and do have the same size, but their composition will be different. 

The best pattern, using standardization, was pattern 8. It gave the best average accuracy with 

two different distances. It gave a 79.5% average accuracy with the Euclid distance and 7 

neighbors and the same highest accuracy with the Manhattan distance and 11 neighbors. 

 

Fig.12. Results for pattern 8: Standardized data and the Euclid distance 

The average accuracies of pattern 8 for the Euclid distance and all values of k are shown in Fig. 

12. 

The average accuracies, of this pattern are constant for a number of neighbours k greater 

than 31 to a value nearly to 77.5%. The average accuracy of pattern 8 is better than the one 

obtained with the best pattern using normalization. However, the average accuracies of all 
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other patterns are not as high as those obtained with normalization. 

The range of variation (difference between maximum and minimum values) of the average 

accuracy of this pattern for small numbers of neighbors is different from those obtained with 

the best pattern using normalization (Fig. 13). 

 

Fig.13. Maximum and minimum average accuracy values: Euclid distance 

This pattern reaches average accuracy maximums of 100%, for settings of k greater than the 

one for the best accuracy. The best pattern of normalization also reached maximums of 100%, 

but for values of k smaller than the one of the best average accuracy. The variation of values 

for the setting giving the best average accuracy is just 36.8% and the smallest one for all 

values of k. 

The standard deviation (σ) values of pattern 8 are shown in Fig. 14. For the best accuracy 

setting, the standard deviation is almost 9.3% and third to the smallest one of 9.04%. 
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Fig.14. Standard deviation of the average accuracy: Euclid distance 

The average accuracy values of the same pattern, but for the Manhattan distance are shown 

in Fig. 15. The average accuracy gets constant for k greater than 31 and takes the same value 

found for the Euclidean distance, almost 77.5%. 

 

Fig.15. Pattern 8 Results: Standardized data and the Manhattan distance 

The variations of the accuracy for this pattern are shown in Fig. 16. The range of variation 

is almost the same to that found with the Euclidean distance, constant to 42.1% for values of 

k larger than 19. However, for the best k the range of variation is 47.4%, second to the lowest 

one but larger than that of the Euclidean distance.  
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Fig.16. Maximum and Minimum values range: Manhattan distance 

The standard deviation (σ) values, for this pattern and the Manhattan distance, are shown in 

Fig. 17. The standard deviation of the best average accuracy is 9.76%, 8th to the lowest with a 

difference of only 0.4%. 

The comparison of the average accuracies, for the settings that give the highest average 

accuracy, of the two patterns discussed above is shown in Fig. 18. 

 

Fig.17. Standard deviation of the average accuracy: Manhattan distance 

As could be seen in the box plots shown in this figure, the accuracies for the best settings of 

both patterns have almost the same inter-quartile range. With median and mean values almost 

the same. However, pattern 2 and pattern 8 with the Euclid distance show smaller dispersion of 

values when compared to the results of pattern 8 with the Manhattan distance. Hence, they 
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would probably give a prognosis with better accuracy. 

 

Fig.18. Comparison of the average accuracies of the best patterns 

We also wanted to know if it were possible to get high average accuracies levels with the best 

patterns, but for other classification set sizes different from those found by the selection process. 

Those results are briefly explained in the next subsection. 

3.3 Evaluation with Other Classification Set Sizes 

We also evaluated the best patterns with classification set sizes different from those found by 

the selection process. 

The best accuracy values for pattern 2 using data normalization are shown in Table 5 (it 

excludes the 90% size already showed).  

Pattern 2 shows average accuracy values usually found with the kNN method for 

classification set sizes between 10% and 60% of all the available data. For set sizes between 

20% and 50%, Sorensen, Canberra and Mahalanobis distances gave the same highest average 

accuracy for the same number of neighbours. 

Table 5. Accuracy results of pattern 2 

Classification Set Size (%) k Mean Distance (s) 

10 19 76.3 1∼6 

20 15 76.2 4,5,6 

30 15 76.7 4,5,6 

40 11 76.4 4,5,6 

50 17 76.1 4,5,6 

60 7 76.6 2 
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70 9 77.8 2 

80 7 78.9 2 

For sizes larger than 60%, the Manhattan distance gave the best results. The results found for 

pattern 8 using standardization are shown in Table 6. 

Table 6. Accuracy results of pattern 8 

Classification Set Size (%) k Mean Distance (s) 

10 19 76.5 1∼6 

20 13 76.2 4,5,6 

30 15 76.2 4,5,6 

40 21 76.5 4,5,6 

50 11 76.8 1 

60 11 76.9 1 

70 9 77.2 2 

80 11 77.8 2 

With set sizes between 20% and 40%, Sorensen, Canberra and Mahalanobis distances gave 

the same highest average accuracy for the same number of neighbors. The Euclid distance 

gave the best results for sizes of 50% and 60%. Again, the Manhattan distance gave the best 

results for sizes larger than 70%. 

 

4. CONCLUSION 

We presented in this paper an implementation of an EA that uses the best member, the current 

member to be replaced and a third member randomly chosen from the population to set every 

and each gene of the corresponding member in a new population. Therefore, a new member and 

for the data set we used, could in same cases inherit from 32 different members of a population. 

Using an EA implementing this mechanism, for component selection of data to be used by a 

kNN method shows that we can get good combinations that would help to increase the usual 76% 

of average accuracy of the kNN method for breast cancer prognosis up to 79.5%. 

Reviewing all the above results, we can say that any of the two ways of pre-processing the data 

will lead to good results with the patterns found. All of them show almost the same range of 

variations and values of standard deviation. We can also say that for obtaining good results, it is 
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advisable to run the prognosis results at least one hundred times with the Euclidean and 

Manhattan distances. 

There are still several possible improvements to implement in the EA, selection process, and 

detailed evaluation process. They are some of the topics left for future research. 
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