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1. INTRODUCTION

A long-lived and one of the popular techniques used to solve classification problems is

Artificial Neural Networks (ANNs). It is also known as a powerful modeling technique that is

used in many other applications such as speech recognition, data mining, machine control and

financial series forecasting. Nonetheless, it is also frequently viewed as a black box due to the

vague or very little description over the contributions of the independent variables/input

data/input features in the prediction process [1]. Therefore, ANNs is not able to provide a

good understanding and interpretation of itself, based on how the results were reached and

whether there exist input data/features that play greater or more important role in contributing

such results.

In relation to the classification problem, due to the information that can grow over time and

eventually become huge, it is important for classifiers to be integrated with the method(s) that

can understand the role of each input data/features in the datasetbefore processing takes place.

This can help to identify redundant and irrelevant input data/features which when removed, can

speed up the processing time.

Over the years, as one of the attempts to shed some lights inside the black box, Input

Significance Analysis (ISA) is a research interest that focuses on finding the role of input

data/features that could influence the results. From this research interest, many associated

methods have been created.

From one of the earlier works, ISA is proven to be able to provide an audit trail that can help

in explaining on how the system reached its decisions or conclusions [2]. In other words, the

whole ISA processes can lead to the identification of the best data that is relevant to the

problem in hand. With regards to ANNs, it can reduce the network processing time and that

can lead to a faster training, reducing the size of the network so that its structure will be

optimal and possibly can produce better results [3]. Also in the context of ANNs, ISA can be

defined as the following:

1. The methods applied in a Multi-Layer Perceptron (MLP) to establish the significance or

rank of each of the input data/features (MLP) [4].

2. The relation contribution estimation procedures of each of input data/features [5].

Additionally, the ISA processes may also resemble variable or feature selection (FS). The
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prominent researchers in this area, in [6] described the data that have no redundancy and

irrelevancy is the best representation of data. Other outstanding researchers, in [7] described

FS as when the irrelevant features are removed, the measure of accuracy, consistency,

information, distance or dependence of the remaining features will improve. Another simple

definition of FS is to reduce the number of variables or input features or input neurons[8].

With regards to classification, FS allows that while the classifier’s structure is as simple as

possible, the classifier still can obtain accurate prediction [7]. The following are the objectives

of FS [6]:

1. The prediction performance of the predictor/classifier can be improved.

2. The processes involved in generating the data can be better understood.

Overall, the following are the results of FS [7]:

1. The algorithm can learn faster because of fewer data to be processed.

2. The accuracy is optimal, thus allowing better generalization from the data for the

classifier.

3. Results that is simple and easy to understand.

4. Lesser features, hence no need to run the redundant or irrelevant features.

In both ISA and FS, there can be a process or step called feature ranking (FR). FR is referring

to a ranked features list, ordered according to evaluation measures [7].

In this research, the ISA techniques called Connection Weights (CW) and Garson’s Algorithm

(GA) are the evaluation measures selected. Once the features in the dataset are ranked

according to these evaluation measures, FS is then applied to produce a smaller version of the

dataset, so that the FS results stated above can be achieved. In this work, only FR will be

applied first.

This approach has also been adopted in a recent and similar work for histology image

classification by which the subset selection and also the FR, made up the applied FS

framework. The results showed that even the set of descriptors (the specific name for the

dataset in this work) used is only 0.656% from the initial set, the framework could reach

90.5% accuracy [9].

In another work, the FR is used in combination with Principal Component Analysis (PCA) to

solve the Curse of Dimensionality problem. The Curse of Dimensionality is referring to a
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large or huge dataset and the problem, which is a popular problem in classification tasks. For

the classifier itself is when the dataset is too big, it can cause the classifier to produce less

accurate results. Though it is not mentioned specifically as FS, this work reduced the dataset

based on the combination of PCA and FR and found that the classification accuracy and

computation cost are not compromised [10].

The next example is FR in an incremental FS. The incremental FS is referring to the changing

environment that this work performed on, in which the latest instances contains more features

than the initial features or original data. The FR applied is based on the introduction of new

features information, in specific the pre and post information. The FR then combines this

information, even when the new features’ instances is small in number. The results showed

that when FR is applied to the initial features or original dataset, the FS performed on the new

and larger-dimensional (due to the addition of the latest instances) dataset is improved [11].

Therefore, it can be concluded that FR is an important step prior to FS and works even in a

changing environment such as an online environment where the data is accumulating and

changing at all times.

For the works focused solely on FR, recent works showed that it is applied in various

applications, and mainly to solve the big/large/high-dimensionality data that can compromise

the results.

For example, a work on regression problem that applied a new FR method and stated that FR

may be used as a complementary step to reduce the size of high-dimensionality of real-world

data. The results showed that in term of effectiveness, the proposed FR method is a valid

alternative to existing methods [12].

Another work is the use of FR to solve a large number of features problem in big data field.

FR is achieved by using Hadoop implementation and MapReduce is used to calculate the

distributed and parallel computation of information gain, used as the evaluation measure in

FR. A minor contribution of this work is the computations that are distributed and parallelized

on a cluster can achieve a significance speedup [13].

There are also works on FR that use special FR names, based on their specific function. For

example, in a 3D objects retrieval application, a manifold ranking is used as the FR method.

This type of ranking is referred to a technique to re-arrange the retrieved results [14].
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Then there is an ensemble FR that is created to produce a more robust ranking. This ranking

comprises of 8 feature ranking algorithms that were combined by using the Schulze

aggregation method [15].

In a robust speaker recognition application, feature warping is used together with FR to create

an improved ranking-based feature enhancement called Revised Feature Warping (RFW). The

function of feature warping is to decrease the mismatch between the training and testing

environment, which is commonly used in an automatic speaker or speech recognition field

[16].

Finally, in a visual data mining application, a Ranked Ordered Feature List (ROFL) is used to

identify the least dominant features. These identified features are then removed in order to

improve the classification accuracy [17].

While many classifiers have no problems in tackling classification tasks, there are questions

about the datasets themselves. Does the dataset contain just helpful data? Does the dataset

contain no repetitive data? So, these are the issues that can be tackled in the classification

problem, and when they are being addressed, improved results can be generated. From the

classification algorithms point of view, the disadvantages of having these undesirable features

are [7]:

1. When there are too many input data, that means there will be more instances needed and

this can cause a classification algorithm taking a longer time in learning the extra data.

2. The data that are redundant or irrelevant can misguide the learning algorithms and can

cause overfitting of data.

Historically, ANNs birth can be traced from the days of Connectionist Systems (CSs). CSs is

a type of Computational Intelligence (CI) area. CSs are referring to the systems that are based

on layers of neurons in the human brain. This inspiration came from one of the significant

element of a human brain, which is multi-tasking without much effort. Hence, it is also

referred to as Neurally Inspired Models (NIMs). As for CI, it is an area within Computer

Science that aims to solve the problems of real-world that are complex in nature whereby the

conventional approaches are inefficient. Generally, CI is referring to a set of nature-inspired

computational methodologies and approaches.

Other than that, CSs are also called Parallel Distributed Processing (PDP) due to distributed
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processing among all neuron layers. Neural Networks (NNs) are one of the earliest

connectionist models, followed by its enhanced version called ANNs. Haykin stated that

ANNs mimics the brain in two ways [18]:

1. Learning the process of a network is the method to acquire knowledge.

2. The interconnection strengths between neurons are representing the synaptic weights or

weights that are used to store data.

The second way mentioned above is used as the basis of selection for ISA techniques. The

synaptic weights or weights values can be manipulated. For example, based on the highest

weight to the lowest one, a feature ranking table can be produced.

There are two ANNs-based classifiers selected for this work:

1. Multi-Layer Perceptron (MLP)

2. Evolving Fuzzy Neural Networks (EFuNNs)

The MLP is an example of ANNs that is used extensively in many applications. It can solve

some of the different problems such as the ones that come from pattern recognition and

interpolation applications [19]. The MLP architecture is referring to multiple layers that have

simple, two-state, sigmoid processing elements or neurons. The interaction between them is

achieved through weighted connections [20]. Basically, it adds one or more layers of neurons

to the basic perceptron architecture. The principle weakness of MLP is that it could only solve

problems that are linearly separable [19].

EFuNNs is the advanced concept of ANNs that combines ANNs with Fuzzy Logic (FL) and

come from the family of Evolving Connectionist Systems (ECoSs). Basically, there are two

types of Fuzzy Neural Networks (FuNNs). The one where interpretations of fuzzy rules define

the connectionist structures is the type to which EFuNNs belongs. EFuNNs can be detailed

out as first, a FuNNs where the implementation of fuzzy rules and fuzzy inference is handled

by its connectionist structures and second as an EFuNNs itself, the FuNNs that change over

time based on ECoS principles [21]. In simple terms, it is characterized by embedded fuzzy

logic elements [22].

There are two knowledge manipulation techniques for EFuNNs. The first technique is the

combination of rule insertion and extraction. The fuzzy or exact rules can be inserted or

extracted from anytime/phase of the learning process. The second technique is the



S. Ahmad et al. J Fundam Appl Sci. 2017, 9(4S), 639-662 645

rulesaggregation. This technique allows several rule nodes to be merged into one [21]. The

main advantage of EFuNNs is its knowledge manipulation that causes it to be able to explain

what it has learned in an understandable form. Additionally, the investigation on the role of

ISA has been highlighted as one of the future directions of ECoSs in a particular paper about a

decade of ECoSs[4].

For ISA techniques, the two selected techniques are specifically chosen because they can

manipulate the synaptic weights and they are:

1. Connection Weights (CW)

2. Garson’s Algorithm (GA)

CW and GA have been applied in recent works [23-25]. Specifically for CW, it has been

applied in [26-27]. For GA, the works are in [28-31].

There are contradicting findings. A work that accurately compares the methods for

quantifying variable significance or rank in ANNs reported that CW performed the best. The

correctly ranked significance values of all predictor variables were consistently identified by

CW. While for GA, it has been reported as the poorest performed technique in the same work

mentioned above [1].

Another recent work applied CW to evaluate the factors responsible for industrial energy

consumption CW is applied in an MLP network.Whereby, the activity, structure and intensity

served as input parameters and energy consumed served as the output parameter. The results

showed that CW has successfully identified that the intensity factor should be looked on to

first as a means of saving energy, followed by activity and structure factors [27].

As for GA, apart from the work mentioned earlier, it was also found to perform poorer in the

work of [30]. When a connection weight between the input-hidden layers is negative and

meets with a connection weight between the hidden-output that is positive, they could cancel

out each other, and the final output in the result can be not significantly important. This flaw

can be linked to the deficiency of GA, i.e. the variable contributions were calculated using

absolute connection weights that exclude the counteracting connection between weights

linking input and output neurons [1].

In another work where GA was found to have mixed performance, the GA was used in

combination with correlation and sensitivity analysis to identify the most important
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parameters in deciding the PV power amount. When tested individually, the performance of

each approach was unsatisfactory. Measuring metric for the input variable importance was

devised through a combination of all as a means to solve this problem, and the results showed

improved forecast accuracy and subsequently proved that this selection procedure is effective

[28].

Nevertheless, especially in ecological literature, the most common method used is GA [1].

Therefore, there exist some of the advantages reported in that ecological literature. For

example, a work that reported that GA has benefits when used in the model-building stage

[30].

There is another advantage of GA that was reported in the work in which GA was found to be

one of the most sensitive techniques, despite not belonging to the same group of other

different ANNs methods that seemed to give similar results concerning the order of

significance. The diverse computation of these other ANNs methods caused their variation in

sensitivity and stability. GA is found to be able to distinctly separate the environment

properties into minor and major contributors [32]. Additionally, as mentioned earlier, in the

original paper of Garson’s algorithms stated that it is best used for causal or sensitive analysis

applications [2].

GA was also found to be suitable to be used with Backpropagation Network (BPN). GA was

applied in a backpropagation network (BPN) to capture the significance of interactions among

the input variables. By using BPN together with GA, all input variables are allowed to vary

simultaneously which subsequently creates a multi-parameter sensitivity analysis [31].

Finally, it is worth to highlight that there are other Machine Learning (ML) classifiers that

applying the same method as in this work. For example, a work that combines correlation

criteria as the feature selection method and Support Vector Machine (SVM) as the

classification part [33]. Another example of work uses Genetic Algorithms (GA) as the feature

selection technique and SVM as one of the classifiers used [34].

2. MATERIAL AND METHOD

This section will describe the experimental setup used by this work.
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2.1. Working Environment

The basic laptop is used as the machine to carry out the classification experiments by using

the MATLAB software.

2.2. Data

There are two datasets used. The first one is called gas sensor array drift (or shortly as gas

sensors) [35-36]. The second one is called steel plate’s faults dataset (or shortly as steel) [37]

and both are from UCI Machine Learning Repository [38].

For the gas sensors dataset, originally it came from a large dataset that contains 13910

measurements from 16 chemical sensors. These 16 chemical sensors are exposed to 6

different gassesat different concentration levels. There are ten batches (ten data collections),

organized into 128 independent variables and 6 dependent variables. The 6 dependent

variables are [35-36]:

1. Ethanol

2. Ethylene

3. Ammonia

4. Acetaldehyde

5. Acetone

6. Toluene

The ethanol classification data is the only data used by this work. After searching this data in

all ten batches, a dataset with 2505 instances or rows are identified and with 128 input

features and 1 output feature (ethanol classification).

For the steel dataset, there are 1941 instances with 27 independent variables and 7 dependent

variables which makes the dataset multivariate. The 7 dependent variables (7 types of steel

plates faults) are [37]:

1. Pastry

2. Z_Scratch

3. K_Scratch

4. Stains

5. Dirtiness

6. Bumps
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7. Other_Faults

2.3. Validation Methods

Four validation methods are used in this research and they are:

1. Memory recall

2. Random subsampling

3. K-Fold cross-validation

4. Holdout

For the memory recall validation method as the name suggests, it means to test the classifier’s

recall capability, i.e. 100% dataset is used for both training and testing. This validation

method is applied in both gas sensors and steel datasets.

The random subsampling validation method is only applied to gas sensors dataset. The

dataset’s 2505 rows are separated into 2405 rows for the training set, and the remaining 100

random rows for the testing set. This step is repeated another 2 more times.Therefore, the

overall (averaged) calculations of all measurements will be used.

For the K-Fold cross-validation method, it is also only applied to gas sensors dataset. The

2505 rows of the datasetare divided into 1670 rows of the training set and the remaining 835

selected rows as testing set. This step is repeated three times; hence, the overall (averaged)

calculations of all measurements will be used. The K-Fold cross-validation method is

completed when all datum in the dataset become both trained at one point and tested at

another point in time.

Lastly, for the holdout validation method, it is applied to both datasets. For the gas

sensors,dataset selected 1755 rows of the dataset are for the training set and the 750 rows left

are for the testing set. For the steel dataset, selected 1294 rows of the dataset are selected for

the training set, and the 647 rows left are for testing set.

2.4. Weights Initialization

To be able to calculate the importance value of a feature in the dataset before being applied in

the classifier, synaptic weights initialization values were obtained through Nguyen-Widrow

layer initialization function called INITNW in MATLAB. The Nguyen-Widrow initial

weights distribution is originally designed to improve the learning speed of 2-layer NNs [39].

This improvement is achievable when it generates the initial values for the weights and bias of
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a layer in order to make the active regions of the layers neurons disseminated approximately

uniformly over the input space [40-41].

This weight initialization function has been specifically chosen and applied in the works of

[42-43]. It has been claimed as the best function generating weights and biases that increase

the speed of the training [44]. It is also claimed that a better starting point to the algorithm

used can be created by using the generated weights and biases for input to hidden layer nodes,

obtained from this function [45].

2.5. CW

The formula is referred below [1]. First, the product between the raw input-hidden and

hidden-output connection weights of between each input neuron/feature and output

neuron/feature are calculated. After that, the products across all hidden neurons/features as

summed up [46].

Input = Hidden (1)
2.6. GA

The formula is referred below [1]. First, the partitioning into components is applied to the

hidden-output connection weights. After that, each input neuron/feature that uses absolute

values of connection weights is then linked to these components [46].

Input = | Hidden |∑ | Hidden | (2)
2.7. Steps for CW and GA

The following Fig. 1 shows the steps for CW and GA [1].
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Fig.1. Steps for CW and GA

2.8. Performance Measurements

There are three principal dimensions of FS: search strategy, evaluation measure and feature

generation scheme [7]. The following Fig. 2 illustrates these dimensions.

Fig.2. Three principal dimensions of FS
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This research is interested in the performance of the classifiers. Therefore, evaluation measure

is selected. The measurements selected are:

1. Elapsed training time, etrt(seconds):This measurement is used to observe the network

processing time during training.

2. Overall elapsed training time, otrt(seconds):This measurement refers to the averaged

elapsed training time. The formula is:otrt = etrt + etrt + etrtn (3)
wheren = the count number of training time.

3. Elapsed testing time, ett(seconds):This measurement is used to observe the network

processing time during testing.

4. Overall elapsed testing time, ott(seconds):This measurement refers to the averaged

elapsed testing time. The formula is:ott = ett + ett + ettn (4)
wheren = the count number of testing time.

5. Root-mean-squared-error, RMSE:This is an estimator and is one of many ways to

quantify the difference between values implied by an estimator and the true value of the

quantity being estimated. The lower the RMSE, the better fitting is the model. The formula is:RMSE(f) = (sqrt( 1m + m(f(xi) − yi)2)) (5)
wherem = the number of test examples, f(xi) = the classifier’s probabilistic output on xi
and yi = the actual label.

6. Overall root-mean-squared-error, oRMSE:This measurement refers to the averaged

RMSE. The formula is:oRMSE = RMSE1 + RMSE2 +⋯RMSEnn (6)
wheren = the count number of RMSE.

7. Resubstitutionerror, re (percentage): This refers to the error rate of the training data. It is

an estimator of error based on the differences between the predicted values of a trained model

and the observed values in the training set. This measurement is likely not a good indicator of

future performance because it does not process the unseen data. The formula is:
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re = predicted values (datax) − observed values (datax) (7)

wheredatax = refers to the whole dataset.

8. Error rate, er(percentage): This measurement refers to the error rate from the training and

testing of different data. It means that for testing, unseen data is processed. The formula is:re = predicted values (datax) − observed values (datay) (8)
wheredatax = refers to say 30% of the dataset and datay = refers to the remaining 70% of

the dataset

9. Overall error rate, oer(percentage): Overall error rate simply means the averaged error

rate. The formula is:oer = er + er + ern (9)
wheren = the count number of er.

10. Created nodes, cn:This measurement refers to the number of nodes created initially at the

start of the classification process.

11. Pruned nodes, pn:This measurement refers to the number of nodes pruned or optimized

towards the end of the classification process, in order to ensure optimal functions of the

classifier for the next classification tasks.pn = f(cn) (10)

wheref(cn) = function that perform optimization on created node, cn.

12. Leftover (rule) nodes, ln:This measurement refers to the number of nodes left after the

classification process has ended.ln = cn − pn (11)
2.9. Experiments

There are three groups of experiments conducted.

1. Group 1: To choose a classifier

This group of experiments applied selected ISA techniques in the dataset. The new, filtered

dataset then known as an ISA-filtered dataset. ISA-filtered dataset simply means that the

original dataset has been manipulated in such a way that the order of the columns of data

(features) has been re-arranged according to importance value. This group of experiments

aimed to capture the effect(s) of using the ISA-filtered dataset in their end results.
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2. Group 2: To test the FR method

This group of experiments will be conducted in an online environment or self-tuning EFuNNs.

These experiments are needed to prove that by processing the data in the online environment

or self-tuning EFuNNs, it can give better results than the normal mode of EFuNNs.

3. Group 3: To test FR method by using different dataset

This group of experiments aimed to attest the results obtained in Group 2 above, by using

different dataset, in the same online environment or self-tuning mode.

3. RESULTS AND DISCUSSION

3.1. Group 1

There are three validation methods applied in this group of experiments and they are memory

recall, random subsampling and K-Fold cross-validation. The dataset used is gas sensors, and

the ISA-filtered data are CW- and GA-ranked data.

Table 1. Classification experiments using memory recall validation method

Classifiers Measurements CW-Ranked Data GA-Ranked Data

MLP

Elapsed Training Time (Seconds) 1.98 2.715

Elapsed Testing Time (Seconds) 0.06 0.067

Root-mean-squared-error (RMSE) 33.23 8.04

Resubstitution Error (Percentage) 95.37 85.51

EFuNNs

Elapsed Training Time (Seconds) 24.53 25.06

Elapsed Testing Time (Seconds) 4.95 5.08

Root-mean-squared-error (RMSE) 31.32 27.08

Resubstitution Error (Percentage) 78.00 81.88

For the two classifiers, it is found that CW-ranked data took less training and testing time than

GA-ranked data. For the RMSE measurement, GA-ranked data was found to make both

classifiers better fitting models compared to CW-ranked data.

For the last measurement, specifically for MLP, GA-ranked data was found to be better than

CW-ranked data and for EFuNNs, the latter was found to be the best between the two ranked

data.
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Table 2.Classification experiments using random subsampling validation method

Classifiers Measurements CW-Ranked Data GA-Ranked Data

MLP

Overall Elapsed Training Time (Seconds) 6.23 3.77

Overall Elapsed Testing Time (Seconds) 0.05 0.06

Overall Root-mean-squared-error (RMSE) 33.46 12.81

Overall Error Rate (Percentage) 90.33 91.67

EFuNNs

Overall Elapsed Training Time (Seconds) 25.37 24.24

Overall Elapsed Testing Time (Seconds) 0.25 0.22

Overall Root-mean-squared-error (RMSE) 22.018 17.66

Overall Error Rate (Percentage) 84 93

For the two classifiers, it is found that GA-ranked data took less training time and making

both classifiers better fitting models than CW-ranked data. On the other hand, CW-ranked

data was found to have fewer classification errors than GA-ranked data.

For the testing measurement, specifically for MLP, CW-ranked data took less time compared

GA-ranked data. ForEFuNNs, the latter was found to be the best between the two ranked data.

Table 3.Classification experiments using K-fold cross-validation method

Classifiers Measurements CW-Ranked Data GA-Ranked Data

MLP

Overall Elapsed Training Time (Seconds) 5.5 2.31

Overall Elapsed Testing Time (Seconds) 0.08 0.05

Overall RMSE (Root-mean-squared-error) 28.81 30.21

Overall Error Rate (Percentage) 91.98 90.26

EFuNNs

Overall Elapsed Training Time (Seconds) 42.08 25.04

Overall Elapsed Testing Time (Seconds) 2.408 1.57

Overall RMSE (Root-mean-squared-error) 36.458 28.57

Overall Error Rate (Percentage) 85.87 85.59

For the two classifiers, it is found that GA-ranked data took less training and testing time and

have fewer classification errors than CW-ranked data.

For RMSE measurement, specifically for MLP, CW-ranked data was found to make MLP [47]

a better fitting model compared GA-ranked data. ForEFuNNs, the latter was found to be the

best between the two ranked data.
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For overall conclusion in this Group 1 experiments, GA-ranked data was found to perform

better as an ISA-filtered data. Between the two classifiers, EFuNNs was found to work well

with GA-ranked data. Therefore, EFuNNs is the only classifier that will be used in the next

two groups of experiments.

3.2. Group 2

There are two validation methods applied in this group of experiments; they are memory

recall and holdout. The classifier selected is EFuNNs and the data used will be original gas

sensors dataset, CW- and GA-ranked gas sensors data.

For the measurements involving nodes, only created nodes and rule nodes will be described.

The created nodes measurement will give the initial number of nodes at the point of creation.

The smaller the number of nodes indicates that the classifier’s network does not need to be

larger than necessary to start running a classification process.

For the rule nodes measurement, it will give the number of nodes optimized (reduced) at the

end of the classification process. The larger the number means the next classification process

will start with a smaller number of nodes, and most probably the training and testing time also

will be reduced compared to the first classification process.

Table 4.Classification experiments using memory recall validation method

Measurements Original Data CW-Ranked Data GA-Ranked Data

Elapsed Training Time (Seconds) 447.36 436.1 442.4

Elapsed Testing Time (Seconds) 3.13 3.25 2.88

Created Nodes 282 344 304

Pruned Nodes 262 322 287

Rule Nodes 20 22 17

RMSE 51.03 52.3 52.12

Resubstitution Error (Percentage) 53.25 51.70 54.05

Between the three types of data:

1. Original data was found to perform the best for created nodes and RMSE.

2. CW-ranked data was found to perform the best for rule nodes and resubstitution error.

3. GA-ranked data was found to perform the best for elapsed training and testing time.
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Table 5.Classification experiments using holdout validation method

Measurements Original Data CW-Ranked Data GA-Ranked Data

Elapsed Training Time (Seconds) 367.12 480.8 477.54

Elapsed Testing Time (Seconds) 1.062 1.08 1.09

Created Nodes 291 308 350

Pruned Nodes 273 289 330

Rule Nodes 18 19 20

RMSE 48.702 51.52 57.19

Error  Rate (Percentage) 73.60 72.67 62.53

Between the three types of data:

1. Original data was found to perform the best for elapsed training and testing time, created

nodes and RMSE.

2. CW-ranked data was found to not be able to perform the best for any of the

measurements.

3. GA-ranked data was found to perform the best for rule nodes and error rate.

For overall conclusion in this Group 2 experiments, GA-ranked data was found to perform

slightly better as an ISA-filtered data compared to CW-ranked data. Therefore, GA-ranked

data is the only ISA-filtered data that will be used in the final groups of experiments together

with the original data of a new dataset called steel.

3.3. Group 3

There are two validation methods applied in this group of experiments, they are memory

recall and holdout. The classifier is EFuNNs and the dataset is steel dataset. The ISA-filtered

data is GA-ranked data.Same with Group 2 experiments, only created nodes and rule nodes

will be described.
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Table 6.Classification experiments using memory recall validation method

Measurements Original Data GA-Ranked Data

Elapsed Training Time (Seconds) 177.21 184.6

Elapsed Testing Time (Seconds) 3.19 3.91

Created Nodes 700 692

Pruned Nodes 654 659

Rule Nodes 46 33

RMSE 2.46 2.39

Resubstitution Error (Percentage) 45.80 48.17

Between the two types of data:

1. Original data was found to perform the best for elapsed training and testing time, rules

nodes and resubstitution error.

2. GA-ranked data was found to perform the best for created nodes and RMSE.

Table 7.Classification experiments using holdout validation method

Measurements Original Data GA-Ranked Data

Elapsed Training Time (Seconds) 176.5 198.37

Elapsed Testing Time (Seconds) 0.865 1.28

Created Nodes 714 695

Pruned Nodes 673 655

Rule Nodes 41 40

RMSE 2.51 2.35

Error Rate (Percentage) 47.76 46.21

Between the two types of data:

1. Original data was found to perform the best for elapsed training and testing time and rules

nodes.

2. GA-ranked data was found to perform the best for created nodes, RMSE and error rate.

For overall conclusion in this Group 3 experiments, original data was found to perform

slightly better than GA-ranked data. GA-ranked data was consistent though in maintaining the

smallest number of created nodes at the point of initial creation and making EFuNNs as the

most fitting model.
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4. CONCLUSION

This work aims to evaluate how well FR is when applied in ANNs-based classifiers,

especially EFuNNsand whether the efficiency and accuracy are improved. For efficiency, the

results can be found at the measurements of elapsed training and testing time, created nodes

and rule nodes. As for accuracy, the measurements are RMSE, resubstitution and error rates.

Based on the results described in Group 1, 2 and 3 experiments, when FR is applied, some

efficiency and accuracy are noticeable. Therefore, the classifiers are improved given the

groups of experiments conducted.For future work, FS will be applied to strengthen the results

from this work.
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