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It found that the BABC had managed to significantly outperform BPSO in terms of 

convergence consistency with a slight advantage in terms of solution quality. 

Keywords: system identification; nonlinear autoregressive moving average; Mackey-glass; 

structure selection. 

 

1. INTRODUCTION 

System Identification (SI) is a process of building a mathematical model of a dynamic system 

from observed input/output data [1-3]. It has been widely use to model observations in 

various fields [1-2, 4-7]. The SI design process generally involves several steps [1]: 

1. Data collection: Collection of dynamic input/output data that represents the characteristics 

of the system [1]. 

2. Model selection: Selection of the general model used to represent the system. Among the 

choices here are Hammerstein, Wiener, Hammerstein-Wiener [8-9], Volterra[10-11], 

Nonlinear Auto-Regressive Moving Average with Exogeneous Inputs (NARMAX) [68] 

and its derivatives [12-20]. 

3. Model estimator: Once a general model has been selected, there are several options of 

model estimators to construct the model, such as polynomials, Multi-Layer Perceptrons 

(MLP) [67], Support Vector Regression, Adaptive Neuro-Fuzzy Inference System 

(ANFIS), etc. [21]. 

4. Structure selection: The SI model usually depends on its past input/output behavior to 

predict its future output. The lagged terms are called regressors. In the design process, 

typically the regressors are selected by an algorithm as not all regressors contribute to 

model accuracy. This is the subject of investigation of our paper where we compare 

between the BABC and BPSO algorithms for structure selection of a Nonlinear 

Auto-Regressive (NAR) model of the Mackey-Glass dataset. 

5. Parameter estimation: After the model structure has been determined, the parameters of 

the model are estimated, typically using some kind of optimization algorithm such as 

Least Squares (LS) estimation [22-26]. 
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6. Model validation: Finally, after the parameters have been estimated, we need to confirm 

whether the model represents the original system without any bias. Methods such as One 

Step Ahead (OSA), residual analysis, correlation tests and histogram analysis are 

important testing methods for this task [27]. 

Regarding design step (4), a vital part in SI is designing an input signal (regressor) which 

involve the selection of delay/lag term to represent the system. The number of lags determine 

the number of regressor that will be used for input. The number of lags depend on the system 

that need to be modeled. Although an increasing number of lag may provide many 

information to model the system, the size of feature may need to consider in designing an 

efficient model [28-30]. 

The structure selection stage in SI is intended to reduce the structure size by selecting only the 

most significant regressors and discarding ones that contribute the least to classification 

accuracy. The Orthogonal Least Squares (OLS) algorithm [31-32] has been originally used for 

structure selection purpose in SI [33]. However, the algorithm tends to select incorrect 

regressor terms when the data is contaminated by noise sequence [34] and it has since been 

proven that optimization algorithms such as BPSO was able to outperform the OLS in the 

selection process [33]. However, the consistency of the convergence has not been explored, in 

which this is a major concern in SI. Our motivation for comparing of BABC and BPSO is that 

complex or multi dynamic system may require adequate lag terms to represent, thus 

increasing solution space (the number of candidate solutions) in the process. Since the 

solution space is extremely large, an inferior optimization algorithm will simply be trapped in 

local minima thus degrading the solution quality. 

The Artificial Bee Colony (ABC) algorithm [35-36] mimics the intelligent behavior of bee 

colonies in searching for food source (potential solutions) [35-37]. In a bee colony, the bees 

are divided per their specific roles in the hive. Scout bees explore new areas for food 

(solutions) and quality, and returns the information back to the hive like a global search 

process. Onlooker bees receive this information regarding the food sources and goes on to 

harvest nectar from the sources while looking for other areas around the food source (local 

search). The ABC algorithm has a unique feature called the limit, where if after a certain 
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number of iterations with no improvement in results, the search process will be reset to 

explore new solutions [38-39]. This gives the ability for ABC to escape the local minima and 

explore new solutions globally when the need arises.  

There have been many comparisons made between the performance of BABC and other 

optimization algorithms such as Genetic Algorithm (GA) [40], Genetic Programming (GP) 

[40-41], Evolutionary Strategy (ES) [42], Evolutionary Programming (EP) [40, 43], PSO and 

also Ant Colony Optimization (ACO) [44-45]. In those comparisons, ABC has been proven to 

outperform the other algorithms in solving multimodal and multidimensional optimization 

problems with using less control parameters [35-37] and the ability to escape from local 

minima [38]. 

 

2. THEORETICAL BACKGROUND 

2.1. Nonlinear Autoregressive Model (NAR) 

The NAR model represents the output behavior of a system based on its past outputs:  

y(t) =  f ��y(t − 1), y(t − 2), … , y�t − n��] + ε(t) �       (1) 

wheref � is the estimated model, y(t − 1), y(t − 2), … y�t − n�� are lagged input terms and 

ε(t) are the white noise residuals.  

The NAR model can be constructed using various methods [46-49, 50-55], although the 

polynomial approach is the only method that can explicitly define the relationship between the 

input/output data.  

The polynomial representation of the NAR model for a given time series is: 

�(�) = � ����

��

���
+ �(�) (2) 

where��  is the number of terms in the polynomial expansion, �� is the � -th regression 

term with �� = 1, and �� is the � -th regression parameter. ��is formed by a combination 

of input, output and residual terms. In matrix form, identification involves the formulation and 

solution of the LS problem: 

�� +  � = � (3) 
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where� is a � × �  regressor matrix, � is a � × 1 coefficient vector and � is the � × 1 

vector of actual observations. �is arranged such that its columns represent the �  lagged 

regressors. �is the white noise residuals. 

The NAR identification process is done in two steps namely model structure selection and 

parameter estimation. Structure selection involves selecting which columns in � that best 

describes the observations, � . After a subset of �  has been selected, the parameter 

estimation step estimates the parameters of the function �� (∎ ) that gives the best fit for �.  

2.2.ABC Algorithm 

A bee colony consists of three groups of bees that fulfill specific roles within the colony: 

scout bees are responsible for searching for potential food sources, while employed bees are 

tasked with collecting honey from discovered food sources. Onlooker bees stay in the hive 

and rotate their roles with scout and employed bees as the scout and employed bees relay 

information through a special dance that indicate the direction and quality of available food 

sources [56-57]. The ABC algorithm was designed based on the cooperative behavior of 

natural bees in the swarm.  

In the ABC implementation [39, 58], initially scout bees are sent out to scout the problem 

space. The position of the scout bees follows: 

��� = �����+  � .������ −  ������ (4) 

where��� = Position of ���  bees at ���  dimension and � = A random number. 

The scout bees evaluate the fitness of the solution (termed nectar amount), and this 

information is shared with onlooker bees waiting in the hive. After the initial search, all scout 

bees now become employed bees. The employed bees go to the food sources (solutions) in its 

memory and determines the neighboring food sources to evaluate the nectar amount. If the 

neighboring food source contains a better solution, the new position is kept. Otherwise the old 

position is maintained [36, 39, 56-57, 59]. The equation to select neighboring food source is 

given by: 

���(� + 1) =  ���(�) +  ∅(���(�) − ���(�)) (5) 
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where�� = The position of the onlooker bee, t = The iteration number, ��  = The randomly 

chosen employed bee, j = The dimension of the solution and ∅(∎ ) = A series of random 

variable in the range  [1,-1]  . 

The info of the new or existing nectar amount then is relayed to awaiting onlookers when the 

employed bees return. Onlookers bees then select a food source depend on nectar amount 

relayed. If the nectar amount increases (solution approaching objective), the probability which 

that food source is selected is higher. The employed bees which carrying high nectar amount 

will attract onlooker bees toward it food sources position. The probability of onlookers bees 

selecting best nectar (solution) in the area is depend on: 

�� =
�(��)

∑ �(��)�
���

 (6) 

wherePi = The probability of selecting the ith employed bee, S = The number of employed 

bees, θi = The position of the ith employed bee and �(��) = The fitness value. 

After selecting potential food source from employed bees, the onlooker bee goes toward the 

direction and evaluate the neighboring food source. Similar to employed bees, if the 

neighboring food source contains a better solution, the new position is kept [36, 39, 56-57, 

59]. Otherwise, the old position is maintained. The process is repeated between employed and 

onlooker bees until the food source is finished. Once this happens, scout bees will now be sent 

to discover new food sources. In ABC, the activation of scout bees is controlled by how many 

iterations in which no better-quality food sources are discovered [39].  

2.3.Binary Artificial Bee Colony Algorithm (BABC) 

In order to binarize the ABC algorithm, we follow the concept outlined by [60] by 

representing the bee positions as “probabilities of change” rather than the actual solution. 

Suppose that the structure selection problem is defined as: 

�������� ⊆ � (7) 

where �  consists of �  columns representing each regressor. To select a feature subset, 

��������  using BABC, a binary string of length 1 × � is defined, so that each regressor 

column has a bit assigned to it. The initial value of the binary string can be randomly defined 
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during initialization. A value of 1 given to the binary string indicates that the column is chosen 

for the construction of ��������, while the value of 0 means that the column is ignored.  

 

In the swarm, each particle carry a 1 × �  vector in solutions ���. This vector contains the 

“probabilities of change” defined earlier. During optimization, the vector elements will be 

used as a reference to alter the binary string from its initial state. For example, assuming the 

initial bit state is 0, if the particle vector element is more than 0.5, the binary bit will be 

changed to 1, otherwise the bit is kept the same. 

 

3. METHODOLOGY 

All experiments were performed on a personal computer with 3.10GHz Intel Xeon E3-1220 

v3 microprocessor and 4GB RAM. The operating system was Linux Mint XFCE version 17.1 

with MATLAB 2014a as the development platform. The flowchart for feature selection 

process is shown Fig.1 and parameter setting for BABC and BPSO for the first test is shown 

in Table 1. These parameters were selected to test the robustness of both algorithms under 

different initialization and exploration conditions.  

The dataset used is Mackey-Glass (chaotic time-series differential equation) [61-63] (MG). 

The lag used was reported as 17 in [64]. For the purpose of this experiment, the lag space was 

expanded to 20.  

The dataset was preprocessed prior to the experiment: 

1. No magnitude scaling, 50:50 training and testing division ratio using block division 

method (PP1). 

2. Magnitude scaling between -1 and 1, 50:50 training and testing division ratio using block 

division method (PP2). 

3. Magnitude scaling between -1 and 1, 50:50 training and testing division ratio using 

interleaving division method (PP3). 

The regressor matrix was created based on the model order of two. A total of 230 regressor 

terms were generated. The number of possible combination of regressor is 2x10230.  
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Apart from the first test, an extended test is design to examine the performance between 

BPSO and BABC comprehensively in 

Table 2. Optimization algorithm parameter setting (extensive test)

Fitness criterion

Swarm size

Max Iterations

Initial Seed

Limit (% from total iteration)

After the regressor matrix was created, the BABC and BPSO algorithms were used to select 

the best possible structure guided by the Akaike Information Criterion (AIC), Final Prediction 

Error (FPE) and Model Descriptor Length (MDL) 
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Fig.1. Optimization process 

. Optimization algorithm parameter setting 

BPSO BABC

Fitness criterion AIC, FPE, MDL AIC, FPE, MDL

Swarm size 10, 20, 30, 40, 50 10, 20, 30, 40, 50

Max Iterations 500, 1000, 1500 500, 1000, 1500

Initial Seed 0, 10000, 20000 0, 10000, 20000

Limit (% from total iteration) N/A 25, 50, 75, 100

Apart from the first test, an extended test is design to examine the performance between 

BPSO and BABC comprehensively in Table 2. 

Optimization algorithm parameter setting (extensive test)

BPSO BABC

Fitness criterion AIC AIC

Swarm size 50 50 

Max Iterations 5000 5000

Initial Seed 0, 10000,....100000 0, 10000,....100000

Limit (% from total iteration) N/A 20, 40, 60, 

After the regressor matrix was created, the BABC and BPSO algorithms were used to select 

the best possible structure guided by the Akaike Information Criterion (AIC), Final Prediction 

Error (FPE) and Model Descriptor Length (MDL) [12] as the fitness function. Several tests, 

           737 

 

BABC 

AIC, FPE, MDL 

10, 20, 30, 40, 50 

500, 1000, 1500 

0, 10000, 20000 

25, 50, 75, 100 

Apart from the first test, an extended test is design to examine the performance between 

Optimization algorithm parameter setting (extensive test) 

BABC 

AIC 

 

5000 

0, 10000,....100000 

20, 40, 60, 80 

After the regressor matrix was created, the BABC and BPSO algorithms were used to select 

the best possible structure guided by the Akaike Information Criterion (AIC), Final Prediction 

as the fitness function. Several tests, 
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namely the One Step Ahead (OSA) prediction, residual plot, correlation tests and residual 

histogram analysis, were performed to validate the model.  

Correlation tests measure the correlation between two time-series sequences at different 

points in time. They are useful indicators of dependencies and co relatedness between two 

sequences. Correlation tests are done by shifting the signals at different lags and measuring 

the correlation coefficients (degree of correlation) between them. Correlation tests are used to 

validate the model by determining the whiteness of its residuals. A residual sequence exhibits 

white noise characteristics if tests Eq. (8) to Eq. (12) hold [53]: 

θ��(τ) = E[ε(t − τ)ε(t)] = δ(τ) (8) 

θ����(τ) = E[ε�(t − τ)ε�(t)] = δ(τ) (9) 

θ��(τ) = E[y(t − τ)ε(t)] = 0, ∀τ (10) 

θ���(τ) = E[(y�(t − τ) − y��(τ))ε(t)] = 0, ∀τ (11) 

θ����(τ) = E[(y�(t − τ) − y��(τ))ε�(t)] = 0, ∀τ (12) 

where θ����
(τ) = correlation coefficient between signals x�and x�, E[∎ ] = mathematical 

expectation of the correlation function, ε(t) = model residuals = y(t) − y�(t), τ = lag space, 

y(t) = observed output at time t and δ(τ) = Kronecker delta defined as: 

δ(τ) = �
1, τ = 0
0, τ ≠ 0

� (13) 

The confidence band reveals the significance of the correlation, and a significantly large 

correlation is indicated by one or more coefficients lying outside the confidence band. In 

correlation tests, the 95% confidence band is required because there is a finite amount of data 

length available [65]. The model is accepted if the correlation coefficients lie within the 95% 

confidence limits, defined as ±1.96/n with n is the number of data points in the sequence. 

 

4. RESULTS AND DISCUSSION  
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Table 3 shows the summary of best result acquired using BPSO and BABC using all 

parameter combinations. In BPSO, the limit parameter is missing as this parameter does not 

exist in the algorithm.  

The Akaike Information Criterion (AIC), Model Descriptor Length (MDL) and Final 

Prediction Error (FPE) was used as the fitness functions to guide the optimization 

performance. These information criteria simultaneously seek to minimize the error produced 

by the model while punishing model structures which are too large.  

The lowest (best) fitness achieved for BPSO and BABC were 2.44x10-09 and 2.53x10-09 

respectively using the AIC criterion and PP1 preprocessing method (no magnitude scaling and 

no interleaving). By selecting AIC, the best MSE achieved by BPSO was better than BABC 

since BPSO produce the lowest MSE in training and testing dataset. The number of training 

and testing violations during correlation shows that BABC performed better since the number 

of violation is smaller during training and testing phase. In the selection of terms, the number 

of regressor selected by BABC was higher than BPSO. Based on these observations, we could 

not determine any significant difference in performance between BABC and BPSO as the 

results were almost similar. The convergence of both optimization algorithms is summarized 

in Table 3.  

Fig.2 is a collection of result using AIC and PP1 as constant properties while others were 

varied (swarm size, max iterations, and initial random seed). For BABC the limit property 

was added as another property to be tested, but this is absent in BPSO. Therefore, the possible 

combination of properties for BPSO was 45 and for BABC was 180 (higher due to limit 

property added into the combination). As can be seen, the convergence distribution pattern 

was comparable. If examined closely, the distribution of solutions for BABC appears to be 

more focused, while BPSO appears to be more scattered. The number of possible solutions for 

this problem (230 regressors) was massive which is 2x10230. From here, we theorized that 1) 

BABC has some positive effect in terms of convergence and clustering of results. However, 2) 

as the solution space was large, BABC may require more time to mature and converge.  
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Table 3: Summary of BPSO and BABC best result using AIC, FPE and MDL fitness 

criterions 

 BPSO BABC 

 AIC FPE MDL AIC FPE MDL 

Magnitude scaling used? 0 0 0 0 0 0 

Interleaving used? 0 0 0 0 0 0 

Initial Random Seed 20000 0 0 10000 20000 10000 

Limit none none none 0.25 0.25 1 

No Particles 50 50 50 50 40 50 

Max Iterations 1500 1000 1000 1000 1500 1500 

Fitness 2.44E-

09 

2.74E-

09 

3.50E-

09 

2.53E-

09 

2.73E-

09 

3.48E-

09 

Number of correlation violations 

(training set) 

33 28 26 29 28 32 

Number of correlation violations 

(testing set) 

38 36 32 35 29 32 

Training MSE 2.42E-

09 

2.38E-

09 

2.73E-

09 

2.45E-

09 

2.51E-

09 

3.02E-

09 

Testing MSE 2.78E-

09 

2.90E-

09 

2.97E-

09 

2.90E-

09 

2.82E-

09 

3.52E-

09 

No Regressors selected 117 127 101 122 114 91 
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Fig.2. Distribution of results using AIC criteria and PP1 preprocessing method 

In the second more extensive test, the maximum number of iterations were increased to 5000, 

the number of particles was set to 50 and the number of initial random seeds tested was 

expanded. A summary of the results is shown in Table 4. The best fitness achieved was 

2.43x10-9 for BABC, while for BPSO was 2.44x10-9. As the results were very near, we 

considered them as similar. Interestingly, as can be seen from Table 4, BABC managed to find 

this best solution nine times out of eleven (81.8%) while BPSO managed to only find this 

solution only two times out of eleven trials (18.2%).  

Based on the above observation, we proceed to examine the convergence properties of both 

algorithms at initial seed 0 (Fig.3). Although the BPSO algorithm was able to quickly find 

better solutions during the initial part of optimization (less than 4000 iterations), it appears to 

stall at higher iterations (saturating at above 4000 iterations). However, BABC holds a distinct 

advantage here as it has the limit mechanism which resets the search process as it saturates. 

This limit property allows the BABC algorithm to find the solution at a much more consistent 

rate than BPSO. 
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Table 4. Fitness result for BPSO and BABC (extensive test) 

Seed 

BPSO 

Conv 

BAB

C 

Limit 

BABC 

Conv Seed 

BPSO 

Conv 

BAB

C 

Limit 

BABC 

Conv 

0 2.49E-09 0.2 2.49E-09 60000 2.50E-09 0.2 2.46E-09 

0 0.4 2.50E-09 60000 0.4 2.47E-09 

0 0.6 2.48E-09 60000 0.6 2.47E-09 

0 0.8 2.47E-09 60000 0.8 2.47E-09 

1000

0 2.55E-09 0.2 2.48E-09 70000 2.48E-09 0.2 2.48E-09 

1000

0 0.4 2.46E-09 70000 0.4 2.46E-09 

1000

0 0.6 2.47E-09 70000 0.6 2.48E-09 

1000

0 0.8 2.47E-09 70000 0.8 2.48E-09 

2000

0 2.44E-09 0.2 2.46E-09 80000 2.52E-09 0.2 2.48E-09 

2000

0 0.4 2.45E-09 80000 0.4 2.50E-09 

2000

0 0.6 2.45E-09 80000 0.6 2.48E-09 

2000

0 0.8 2.46E-09 80000 0.8 2.48E-09 

3000

0 2.49E-09 0.2 2.44E-09 90000 2.58E-09 0.2 2.49E-09 

3000

0 0.4 2.44E-09 90000 0.4 2.46E-09 

3000 0.6 2.44E-09 90000 0.6 2.47E-09 
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0 

3000

0 0.8 2.44E-09 90000 0.8 2.47E-09 

4000

0 2.57E-09 0.2 2.48E-09 

10000

0 2.50E-09 0.2 2.48E-09 

4000

0 0.4 2.48E-09 

10000

0 0.4 2.43E-09 

4000

0 0.6 2.46E-09 

10000

0 0.6 2.44E-09 

4000

0 0.8 2.47E-09 

10000

0 0.8 2.44E-09 

5000

0 2.48E-09 0.2 2.51E-09 

5000

0 0.4 2.49E-09 

5000

0 0.6 2.50E-09 

5000

0 0.8 2.50E-09 
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Fig.3. Expanded test for BPSO and BABC convergence 

By combining all possible combination of properties, the fitness result across all combination 

of BPSO and BABC were visualized using box plot shown in Fig.4. In the extended test, 

BABC achieved the lowest number of fitness for maximum and minimum number in box plot 

scale. Other than that, first quarter, median and third quarter of the box plot scale shows that 

BABC achieved the lowest fitness with very small variance compared to BPSO. From this, 

we can conclude that BABC has higher chance in finding lowest possible number of fitness 

compared to BPSO. 

 

Fig.4. Fitness distribution for all possible combination between BPSO and BABC 

From this result, the best result achieve from BABC was selected for validation. The optimal 

results were obtained using BABC with optimization algorithm and AIC as the fitness 
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criterion with PP1 as the preprocessing method. BABC obtained lowest fitness solution of 

2.43×10-9. The training and testing MSE values from the optimal solutions were 2.45×10-9 and 

2.83×10-9 respectively with 113 regressors selected. 

The OSA prediction for BABC and BPSO training and testing sets are shown in Fig.5 and 

Fig.6 respectively. The prediction results show a close fit between the predicted results and 

original data. This indicates that the model could approximate the dynamics of the original 

system. This observation is also confirmed based on the small magnitude of the residuals as 

shown in Fig.7. 

Fig.5. Fitting result for training Fig.6. Fitting result for testing 

 

Fig.7. Residual between predicted and actual result 

Although the residuals and model fit were very good, another important aspect of modeling 

this result is the model bias. The residuals produced by the model should be random in nature, 

indicating no bias in predicting the results. To test the whiteness of the residuals, the residuals 
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were validated using correlation and histogram tests (Fig.8). The correlation test results are 

shown in Fig.9 to Fig.13.  

Based on Fig.9 to Fig.13, a majority of the correlation coefficients reside between the 95% 

confidence limit while the minority only exceeds the confidence limit by a very small margin 

except in Fig.8 (5/5). This correlation tests produced 32 training and 32 testing violations. 

Additionally, the residuals’ histogram test results in Fig.8 followed the Gaussian distribution. 

Both these observations indicate that the residuals are random and uncorrelated, thus 

exhibiting white noise properties. Based on this, the model is considered as acceptable. 

 

Fig.8. Histogram of residuals 

 

5. CONCLUSION  

BABC and BPSO could solve feature selection problem in SI. The extended test conducted 

for BABC and BPSO showed some significant difference between the algorithms.  

Based on the results, it seems that for a massive solution space, BABC algorithm was able to 

converge consistently better compared to BPSO if the number of iteration is acceptable. This 

has been proven with the experiments conducted. By using BABC as feature selection 

algorithm, the optimal solution achieved was 2.13×10-9 by using AIC as fitness criterion with 

PP1 preprocessing method.  

The solution had passed all the necessary tests for it to be considered a valid model. BABC 

significantly outperformed BPSO by 9 from 11 possible test and BABC still finding the 

possible lowest fitness value in time BPSO started to stall at certain iteration. This finding 
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conclude BABC [66] is more consistent in finding optimal solution compared to BPSO in 

solving feature selection problem for SI. 

Fig.9. Auto-correlation plot (1/5) Fig.10. Auto-correlation plot (2/5) 

Fig.11. Cross-correlation plot (3/5) Fig.12. Cross-correlation plot (4/5) 

Fig.13. Cross-correlation plot (5/5) 
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