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proposed method is developed by using MATLAB software and some numerical simulations 

have been conducted. The findings show that the TSGS method is better than the standard 
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1. INTRODUCTION 

Glioma is the most invasive brain tumor, arising from the abnormal growth of glial cells in 

thebrain [1]. To study the dynamics of brain glioma, researchers develop the mathematical 

model.Most of the mathematical model of brain tumor growth is in the form of partial 

differential equation (PDE) [2]. More specifically, the second order reaction-diffusion 

equation is used widely to model the glioma growth [3]. Generally, finite difference (FD) 

method is applied widely to solve the PDE [4-7]. An implementation of FD method will leads 

to an algebraic system with the sparse coefficient matrix.  

Numerical methods to solve the algebraic system are categorized into two main classes,i.e. 

directand iterative methods [8]. However, for large sparse systems, the limitations of direct 

methods are enormous computational time and slow convergence rate. Consequently, the 

iterative methods are preferred than direct methods to solve the large sparse algebraic systems 

[7]. Among the existing iterative methods, two-stage methods are widely used and efficient 

compared to one-stage methods. A two-stage iterative method often called inner-outer 

iteration method and first proposed by [9]. Many researches have been conducted to 

investigate the effectiveness of two-stage methods, refer [10-17]. 

In this work, the effectiveness of two-stage Gauss-Seidel (TSGS) method for solving large 

sparse linear algebraic system generated from the discretization of glioma growth model will 

be investigated. The considered glioma growth model will be discretized by using FD method. 

The performance of the tested TSGS method will be compared with standard Gauss-Seidel 

(GS) method.  

The outline of the paper is as follows: the mathematical model of glioma growth is explained 

in Section 2. Section 3 describes the numerical methods used to solve the governing model. 

Numerical results are included and discussed in Section 4. Finally, the concluding remarks are 

given in Section 5. 

 

2. MATHEMATICAL MODEL OF BRAIN TUMOR GROWTH 

The reaction-diffusion model introduce by [2] had a significant impact on glioma growth 

modeling. The basic model considers the evolution of glioma tumor cells population to be 

mainly governed by proliferation and diffusion. Initially, the growth of an infiltrating glioma 
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as a mass conservation law was provided by [2]. Mathematically, the model can be 

represented as   





xcfJ
t

c
),(  (1) 

where c  designates the tumor cell density at location x  and time t , )(cf  as the function 

of cell density,  defines the spatial gradient operator and   is the brain domain. Under 

the assumption of classical Flick’s law, the following relation satisfies 

cDJ                                  (2) 

where D  is the diffusion coefficient. 

Three different cancerous growth such as exponential, logistic and Gompertz are used for

)(cf [2]. Brain tumor growth is commonly assumed to be exponential, with constant growth 

rate. If the cell density reached an exponentially high level, then the logistic or Gompertzian 

model was more reasonable. However, in the case of glioma growth, the exponential growth 

is frequently used as the tumor become fatal before the cell density reached the significant 

high intensity. For this reason, the exponential growth is still sound acceptable with the time 

frame considered. Based on the Equation (2) and ccf )( , the Equation (1) can be 

rewritten as 

ccD
t

c 

 2                            (3) 

with initial condition 

)()0,( cfxc   

and Neumann boundary condition 

0),(.  txcDn  

where   is the proliferation rate. 

 

3. NUMERICAL METHODS 

In this section, the implementation of numerical methods used to solve the glioma growth 

model as given in Equation (3) is explained in details. The Backward Time Central Space 
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(BTCS) scheme is applied to discretize the model (3) and then the resulting linear algebraic 

system will be solved by using GS and TSGS methods. 

3.1. Backward Time Central Space (BTCS) Scheme 

Let the solution domain be divided uniformly in both xand t . Thus, the discrete set of points 

of x  and t  respectively be given by xix i  ),1,2,,2,1,0( nnni   and tst s 

),1,2,,2,1,0( mmms   . For simplicity, the notation ),(, sisi txcc  will be used 

subsequently. 

For the implementation of BTCS scheme, the following formula are considered 

)(,1, tO
t

cc

t

c sisi 






  (4) 

and 

)(
)(

2
2

2

1,11,1,1

2

2

xO
x

ccc

x

c sisisi 






 

 (5) 

The implementation of formula given in Equations (4) and (5) into Equation (3) will reduces 

the model to 

1,11,1,1,   sisisisi qcpcqcc (6) 

where







1

21
p  and 
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


1

q with t
D

L


2 and 
2)( x

t




 .Moreover, the 

approximation equation (6) can be rewritten in matrix form as 

bAc  (7) 

where 
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3.2. GS and TSGS methods 

In this section, the formulation of GS and TSGS methods will be explained. Now, consider 
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the splitting [18]  

NMPQPA  ,  (8) 

where M  is the diagonal matrix, N is the strictly lower triangular matrix and Q is the 

strictly upper triangular matrix. Theiterative form of GS and TSGS methods are 

dTcc kk  )()1( , QPT 1 , bPd 1  (9) 

and 

     




 


1

0

)(1)(1)1( 1
j

i

k
i

kjk bQcMNMcNMc , ,,2,1,0 k  (10) 

respectivelywhere j is the inner iteration number, and i is the outer iteration. In the case of 

the stationary two-stage method, inner iteration number is fixed and 1j . Based on the 

theorem, the both methods will converge if the spectral radius is less than one. The algorithm 

of GS and TSGS are described in algorithms 1 and 2 respectively.  

Algorithm 1. One-Stage Gauss-Seidel Method 

Step 1. Initialize all the parameter.  

Step 2. while ,...3,2,1k  until convergence 

    for mmmms ,1,2,3,...,3,2,1   

       for 1,2,3,...,3,2,1  nnni  

 bPQcPc k
si

k
si

1)(
.

1)1(
,

   

Step 3. Convergence test. If the convergence criterion i.e.  )()1( kk cc (where   is 

convergence criterion) is satisfied, go to step 4. Otherwise, go to step 2. 

Step 4. Stop. 

Algorithm 2. Two-Stage Gauss-Seidel Method 

Step 

1. 

Initialize all the parameter.  

Step 

2. 

while ,...3,2,1k  until convergence 
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 for mmmms ,1,2,3,...,3,2,1   

       for 1,2,3,...,3,2,1  nnni  

)(
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k
si

k
s cy   

          for ltoj 1  
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,

  k
sj

k
si yc  

Step 

3. 

Convergence test. If the convergence criterion i.e.  )()1( kk cc (where   is 

convergence criterion) is satisfied, go to step 4. Otherwise, go to step 2. 

Step 

4. 

Stop. 

 

4. RESULTS AND DISCUSSION  

To perform the numerical experiments, the initial and boundary conditions, i.e., 4000)( cf  

cells and no flux boundary respectively are considered. Meanwhile, the value of diffusion 

coefficient, D is 120013.0 daymm and the growth rate,   is 1012.0 day are considered[6]. 

The parameter such as number of iterations ( k ), computational time in seconds (Time) and 

maximum cell density ( maxc ) are measured for the performance analysis of the GS and TSGS 

methods. The value of initial iteration is set as zero for both methods. All the simulations are 

developed by using MATLAB and performed on a personal computer with Intel(R) Core(TM) 

i7- 2600 CPU@ (3.40 GHz, 3.40 GHz) and 8.00 GB RAM. The numerical results are 

considered until 15 days of growth with convergence test for tolerance error 610  . The 

numerical results of GS and TSGS methods are presented in Tables 1 to 3. For TSGS method 

the value of inner iteration is fixed, i.e. 10l . The numerical simulations are carried out for 

four different mesh sizes, i.e. 30, 60, 120 and 240. 
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Table 1.Numerical results for 5s days 

n Methods k  Time 
maxc  

30 GS 2712 112.25 4364 

TSGS 1623 16.28 4355 

60 GS 10045 126.16 4413 

TSGS 5640 25.08 4412 

120 GS 36714 203.32 4439 

TSGS 19047 53.38 4424 

240 GS 132766 1975.50 4443 

TSGS 62038 194.33 4420 

 

Table 2.Numerical results for 10s days 

n Methods k  Time 
maxc  

30 GS 1510 109.14 4634 

TSGS 925 20.07 4584 

60 GS 5571 163.77 4672 

TSGS 3230 29.37 4617 

120 GS 20409 355.02 4682 

TSGS 11039 72.97 4624 

240 GS 74132 821.55 4684 

TSGS 36641 280.66 4622 
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Table 3.Numerical results for 15s days 

n Methods k  Time 
maxc  

30 GS 1055 120.89 4721 

TSGS 655 22.33 4630 

60 GS 3888 179.84 4750 

TSGS 2292 33.08 4653 

120 GS 14262 450.72 4758 

TSGS 7884 87.64 4658 

240 GS 51928 1433.80 4757 

TSGS 26422 347.27 4657 

From the numerical results obtained, the number of iterations for TSGS method reduced 

approximately, 40.15-53.27% (for 5 days), 38.74-50.57% (for 10 days) and 37.91-49.11% (for 

15 days) respectively as compared to GS method. The execution of TSGS method is faster 

approximately by 73.74-90.12% (for 5 days), 65.83-82.06% (for 10 days) and 75.77-81.60% 

(for 15 days) as compared to GS method.  

 

5. CONCLUSION  

In this work, numerical solutions of one-dimensional glioma growth model is 

considered.From the Tables 1 to 3, it can be clearly seen that TSGS method required less 

number of iterations and computational time as compared to GS iterative method. For the 

future works, the numerical solutions obtained can be validated with the real clinical data. 

Also, higher order model can be considered to predict glioma growth. 
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