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ABSTRACT  

A Bieberbach group with point group 2 2C C  is a free torsion crystallographic group. A 

central subgroup of a nonabelian tensor square of a group ,G denoted by ( )G  is a normal 

subgroup generated by generator g g for all g G  and essentially depends on the 

abelianization of the group. In this paper, the formula of the central subgroup of the 

nonabelian tensor square of one Bieberbach group with point group 2 2C C , of lowest 

dimension 3, denoted by 3(3)S  is generalized up to n dimension. The consistent polycyclic 

presentation, the derived subgroup and the abelianization of group this group of n dimension 

are first determined. By using these presentations, the central subgroup of the nonabelian 

tensor square of this group of n dimension is constructed. The findings of this research can be 

further applied to compute the homological functors of this group. 
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1. INTRODUCTION 

1.1. Introduction  

A Bieberbach group is a free torsion crystallographic group. This group is an extension of free 

abelian group L of finite rank by a finite group P which satisfy the short exact sequence 

    1 1L G P  such that the quotient group ( )G L P   isomorphic to group 

P. Here L is called as the lattice group and P is a point group. The dimension of G is also 

known as the rank of  L. In this case, G  is called as a Bieberbach group with point group P.  

Many properties of this group can be explored where one of the properties is its central 

subgroup of the nonabelian tensor square, ( )G . The nonabelian tensor square, G G  of a 

group G  is generated by the symbols ,g h  for all , ,g h G  subject to relations  

' ( ' )( )g ggg h g h g h     and ' ( )( ')h hg hh g h g h     [1] 

for all , ', , ' ,g g h h G  where 1' 'g g gg g . The nonabelian tensor square is a specialization 

of the more general nonabelian tensor product introduced by Brown and Loday [1]. 

The computations of ( )G  of some Bieberbach groups with certain point groups can be 

found in previous studies. Masri [2] has constructed the abelianization and the ( )G  of 

Bieberbach groups with cyclic point group of order 2. The results of the ( )G of the groups 

were then used to compute the nonabelian tensor square of the groups. The studies of the 

( )G  of some Bieberbach groups with dihedral point group can be found in Mohd Idrus et al. 

[3]. She used the central subgroup of the nonabelian tensor square of the group in order to 

determine the presentation of the nonabelian tensor square of the group. Also recently, Tan et 

al. [4] and Masri et al. [5]  have explored the formula of the ( )G  of the Bieberbach group 

with symmetric point group of certain dimension. 

The subgroup ( )G  is normal and is generated by g g  for all g  in .G  Blyth, Fumagalli 

and Morigi [6] have showed that there is a relationship between the structure of ( )G  and the 

abelianization of the group, abG  given by the following proposition.  
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Proposition 1 [6] 

Let G  be a group such that abG  is finitely generated. Assume that abG is the direct product of 

the cyclic groups 'ix G , for 1, ,i s   and set ( )E G  to be [ , ] | [ , ' ]i jx x i j G G  . Then 

( )G  is generated by the elements of the set {[ , ],[ , ][ , ] |1 }.i i i j j ix x x x x x i j s        

In this paper, our main interest is the Bieberbach group of lowest dimension 3 with 

elementary abelian 2-group point group, 2 2 ,C C  denoted as 3(3)S . The presentation of 

3( (3))S which has been determined in Abdul Ladi et al. [7] will be generalized up to 

dimension n. The consistent polycyclic presentation of the group 3(3)S has been constructed in 

Abdul Ladi et al. [7] as in the following : 
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  

  

(1) . 

1.2 Preliminaries 

 Some basic definitions and structural results related to this study are presented in this section. 

The consistent polycyclic presentations of group S3(n) is constructed based on the following 

two definitions of the polycyclic presentation of group and the consistent polycyclic 

presentation of group [8]. First, the definition of the polycyclic presentation is given as 

follows: 

Definition 1 [8] 

Let nF  be a free group on generators 1,..., ng g  and R  be a set of relations of group G . The 

relations of a polycyclic presentation of nF R   have the form:  

, 1 ,
1

i i ie x i x n
i nig g g

      for ,i I   

, , 1 , ,1
1

i iy j j y j n
j i j njg g g g g

     for ,j i  
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, , 1 , ,1
1

i iz j j z j n
j i j njg g g g g

           for ,j i .j I   

for some {1, , },I n  certain exponents ,ie   for ,i I  and , , , , ,, , ,i j i j k i j kx y z   for all 

,   and .i j k  

Definition 2 [8] 

Let G  be a group generated by 1,..., ng g  and the consistency relations in G can be determined 

using the following consistency relations. 

 

( ) ( )j i j ik kg g g g g g    for ,k j i    

   1( ) ( )j jee
j i j jg g g g gi

    for , ,j i j I    

      1( ) ( )i iee
j i j i ig g g g g    for , ,j i i I   

        ( ) ( )i ie e
i i i ig g g g    for ,i I  

                1( )j j i ig g g g    for ,j i i I   

 

for some {1, , },I n   for certain exponents ,ie   .i I  Therefore, the consistent 

polycyclic presentation of 3( )S n can be determined by using Definition 1 and 2.   

The consistency of polycyclic presentation of group 3( )S n  need to be determined in order 

to use the computational method of polycyclic groups [9]. Next, the definition of the 

abelianization of group is given as follows. 

Definition 3 

The abelianization of a group G  , abG  is the quotient of group G  by its derived subgroup, 

'G   

 In 1991, Rocco [10] has initiated in investigating the group ( )G which is defined as in the 

following. 

Definition 4 
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Let G  be a group with presentation |G R  and let G  be an isomorphic copy of G  via the 

mapping : g g   for all g G . The group ( )G  is defined to be  

( ) , | , , [ , ] [ ,( ) ] [ , ], , , .x x x xG G G R R g h g h g h x g h G
           

Next theorem shows that G G  is isomorphic to a subgroup [ , ]G G of ( ).G  

 

Theorem 1 ([10],[11]) 

Let G  be a group. The map : [ , ] ( )G G G G G     defined by ( ) [ , ]g h g h    

for all ,g h  in G  is an isomorphism. 

With this theorem, all the tensor computations can be translated into the commutator 

computation within the subgroup[ , ]G G  of ( ).G   

In this paper, the subgroup [ , ]G G
 of ( )G will be used to compute the presentation of the 

central subgroup of the nonabelian tensor square of group S3(n), denoted by 3( ( ))S n . Next, 

a list of commutator identities in ( )G  is given as follows. Let ,x y  and z  be elements of 

group G . Then, for the left conjugation, 1x y xyx  and the list of commutators are 

presented as in the following: 

 

[ , ] [ , ] [ , ]xxy z y z x z                   (2) 

[ , ] [ , ] [ , ]yx yz x y x z                   (3) 

1 1 1 1[ , ] [ ,[ , ] ] [ , ]x y x x y x y                 (4) 

1 1 1 1[ , ] [ ,[ , ] ] [ , ]x y y x y x y                (5) 

1 1 1 1 1 1[ , ] [ ,[ ,[ , ]]] [ ,[ , ]] [ ,[ , ]] [ , ]x y x y x y y x y x x y x y             (6) 

[ , ] [ , ]z z zx y x y                (7) 

 



R. Masri et al.               J Fundam Appl Sci. 2017, 9(7S), 98-110               
103 

 

Proposition 2 [2] 

Let G  be any Bieberbach group of dimension n  with point group P and lattice group .L  Let 

ab
mB G F   where ab

mF  be a free abelian group of rank .m  Then B is a Bieberbach group of 

dimension n m  with point group .P  

The derived subgroup 3(3)S , 3(3) ',S  the abelianization of 3(3)S , 3(3)abS  and the central 

subgroup of the nonabelian tensor square of 3(3)S , 3( (3))S  have been determined as 

follows.  

Proposition 3 [7] 

The group 3(3)S  has derived subgroup, 2 2
3 1 2(3) ' ,S l l   and the abelianization of 3(3)S  

is generated by cosets 1 3(3) 'l S  of order 2, 2 3(3) 'l S of order 2 and 3 3(3) 'l S of infinite order. 

In symbols,  

2
3 1 3 2 3 3 3 2 0(3) (3) ', (3) ', (3) ' .abS l S l S l S C C    

Proposition 4 [7] 

The subgroup 3( (3))S  is generated by generators 
1 1

[ , ]l l   and 
2 2

[ , ]l l   of order 4, 

generator 
3 3

[ , ]l l   of infinite order, generators 
1 2 2 1

[ , ][ , ],l l l l   
1 3 3 1

[ , ][ , ],l l l l   and 

2 3 3 2
[ , ][ , ],l l l l   of order 2. In symbols,  

13 1 2 2 3 3 1 2 2 1 1 3 3 1 2 3 3 2
( (3)) [ , ],[ , ],[ , ],[ , ][ , ],[ , ][ , ],[ , ][ , ]S l l l l l l l l l l l l l l l l l l           

     3 2
2 4 0.C C C     

The following propositions are some basic identities used in this paper. 

Proposition 5 [6] 

Let G  be any group. Then the following hold: 

(i) If 1 'g G or 2 ',g G  then 1
1 2 2 1[ , ] [ , ].g g g g     

(ii) [ ( ), ( ') ] 1Z G G   .  
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(iii) If A  and B are two subgroups of G  with ',B G  then [ , ] [ , ].A B B A   In 

particular, [ , ' ] [ ', ].G G G G   

Proposition 6 ([2], [9]) 

Let g  and h  be elements of G  such that [ , ] 1g h  . Then, in ( )G , 

(i) [ , ] [ , ] [ , ( ) ]n n ng h g h g h     for all integers n ; 

(ii) [ , ( ) ][ , ( ) ] ([ , ][ , ])n m m n nmg h h g g h h g    for all integers n, m  ; 

(iii) [ , ]g h  is in the centre of ( )G . 

Proposition 7 [2] 

Let G  and H be groups and let .g G  Suppose   is a homomorphism from G onto .H  If 

( )g  has finite order then | ( ) |g  divides | | .g  Otherwise the order of ( )g  equals to order 

of .g  

Proposition 8 [12] 

Let ,A B  and C  be abelian groups. The properties of the ordinary tensor product of two 

abelian groups are given as in the following. 

(i) 0 ,C A A    

(ii) 0 0 0 ,C C C   

(iii) gcd( , ) ,n m n mC C C   for , ,n m  and 

(iv) ( ) ( ) ( ).A B C A B A C        

Proposition 9 [1] 

Let G  and H  be groups such that there is an epimorphism : .G H   Then there exists an 

epimorphism  

: G G H H     

defined by ( ) ( ) ( ).g h g h       
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2. RESULTS AND DISCUSSION   

In this section, the central subgroup of the nonabelian tensor square of 3(3)S , will be 

generalized up to n  dimension. The generalization of polycyclic presentation of 3(3)S  of 

dimension n, 3( )S n  is constructed first.  

 

Lemma 1 

The polycyclic presentation of 3( ),S n  

0

0 0 0

0 1 1 1

1
1 1

2 1 2 1 1
0 1 1 3 1

1
1 1 2 2 3 3

3 0 1 1 1
1 2 3 31

1 1

2

, , ,

, , ,
( ) , , , ,

, , , ,

, ,i

a

a a a

n a a a a
k k

a ll
j jk k j j

a l a l a a l

l l l l l l
S n a a l l

l l l l l l l l

l l l l l l


  





  

  


   

  

 (8) 

is consistent for 1 i j n    and 4 .k n    

Proof.  By Proposition 2, 3 3 3( ) (3) ab
nS n S F    for 3n   where 3(3)S  has the consistent 

polycyclic presentation as in (1) and 3
ab

nF   is a free abelian group of rank 3n   which is 

generated by 
4 5
, , .

n
l l l  Then, kl  commutes with all elements in 3(3),S  which gives 

0 1 1 2, , ,a a l l
k k k k k k k kl l l l l l l l     and 3l

k kl l  for all 4 .k n   Therefore, 3( )S n  has a 

polycyclic presentation as in (8). 

The polycyclic presentation of 3(3)S  in (1) has been shown to be consistent in Abdul Ladi et 

al. (2016). Then, by Definition 2, and since 0 1, , 1,2,3,ia a l
k k k k k kl l l l l l i      the 

remaining consistency relations  3 0kl l a  3 0
,kl l a
    3 1 3 1,k kl l a l l a  are also hold since 

0 1,a a   commutes with 3l  and  .kl  Then, it is showed that  3 1kl l l   3 1
,kl l l
 

 3 2kl l l   3 2
,kl l l
  2 1kl l l  2 1,kl l l  since 1 2 3, ,l l l  and .kl   are commute with each other 

based on relation in (8).  Since 0a commutes with 1l  and 1a  commutes with 2 ,l  then 

1 0 1 0( ) ( ) ,k kl l a l l a
 

and 2 1 2 1( ) ( ) .k kl l a l l a  Next,    1 1
2 0 0 2 20k k kl l a l a l a l l  

 
and
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   2 0 0 0 02 2 2
1 ,k k k kl l a l l a l a l a l l  

    1 1
1 1 1 1 11k k kl l a l a l a l l    and

    1 1 11k kl l a l l a 
 

1 11 1
1 ,k kl a l a l l

   1 0kl a a  1 0,kl a a     2 11
10 1k k kl a l l l l    and

 
   0 00 0k kl a a a l a 

   

1
0 0 1

,
k k

a a l l l
    2 11

31 3k k kl a l l l l 
 

and
 

   1 11 1k kl a a a l a  1
1 1 3

,
k k

a a l l l
 

 1
3 3,k kl l l l

  1
2 2k kl l l l

 
and  1

1 1.k kl l l l   Thus, the  polycyclic presentation of 

3( )S n  is consistent.                      

Next, the generalization of the derived subgroup and the abelianization of the group 3(3)S  of 

dimension n  is given as in the following lemma. 

Lemma 2 

The derived subgroup of 3( ),S n 2 2
1 23( ) ' ,S n l l  and the abelianization of 3( ),S n  

3 1 3 2 3 3 3 3( ) ( ) ', ( ) ', ( ) ', ( ) 'ab
kS n l S n l S n l S n l S n  

                           2 2
2 0

nC C    

 for 4 .k n   

Proof. From relation (8), since 0a  commutes with 1 3, , kl l l  and 1a commutes with   

2 3, , kl l l  for all 4 ,k n   then 0 1 1[ , ] ,a a l  2
0 2 1 2 2[ , ] [ , ]a l a l l   and 2

1 1 1[ , ] .a l l   

However, 2 2
1 1( ) .l l   Thus, 2 2

1 23( ) ' , .S n l l   

By Definition 3, the abelianization of group 3( )S n , 3( )abS n  is generated by 0 3( ) ',a S n  

1 3( ) ',a S n  1 3( ) ',l S n  2 3( ) ',l S n  3 3( ) 'l S n  and 3( ) 'kl S n for 4 .k n  By Proposition 3, the 

independent generators of 3( )abS n are 1 3(3) ',l S   2 3(3) 'l S  and 3 3(3) '.l S By using similar 

arguments, we showed that  1 3( ) ',l S n  2 3( ) ',l S n  3 3( ) 'l S n  and 3( ) 'kl S n are also the 

independent generators of 3( ) .abS n  Hence, by Definition 3,     

3 1 3 2 3 3 3 3( ) ( ) ', ( ) ', ( ) ', ( ) 'ab
kS n l S n l S n l S n l S n  

for 4 .k n    

By Proposition 3, it is shown that the generators in 3( )abS n  such as 1 3(3) 'l S  has order 2, 
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2 3(3) 'l S  has order 2 and 3 3(3) 'l S  has infinite order. Next, the orders of cosets  1 3( ) ',l S n  

2 3( ) ',l S n  3 3( ) 'l S n  and 3( ) 'kl S n  are determined. By relations in (8), since 2 1
0 1 ,a l   then 

4 2
0 1 .a l   Hence, it is shown that 1 3( ) 'l S n has order 2 since 2

1 3( ) 'l S n . Since 2
2l
   

3( ) ',S n  then 2
2 3( ) '.l S n  It follows that 2 3( ) 'l S n  has order 2.   

Suppose that the order of 3( ) 'kl S n  is finite, then there must be 3 3
( ) '.rl S n  However, this is 

not true since there is no 3
rl  in 3( ) '.S n  Therefore, 3 3( ) 'l S n  has infinite order.  By using 

similar arguments, 3( ) 'kl S n  is shown to have an infinite order, since there is no 3
rl  in 

3( ) 'S n  for any integer .r  Since 4 ,k n   then there are 3n   cosets in term of 3( ) '.kl S n  

Therefore, 

3 1 3 2 3 3 3 3( ) ( ) ', ( ) ', ( ) ', ( ) 'ab
kS n l S n l S n l S n l S n  

               3
2 2 0 0

nC C C C       

                    2 1 3
2 0

nC C     

                    2 2
2 0 .nC C                               

Next, the generalization of 3( (3))S  of dimension n is given in the following theorem.  

Theorem 2  

The subgroup of 3( ( ))S n  is given as in the following : 

 

1 1 2 2 3 33 1 2 2 1( ( )) [ , ],[ , ],[ , ],[ , ],[ , ][ , ],k kS n l l l l l l l l l l l l      1 3 3 1 1 1[ , ][ , ],[ , ][ , ],k kl l l l l l l l      

          2 2 3 32 3 3 2[ , ][ , ],[ , ][ , ],[ , ][ , ],[ , ][ , ]k k k k i j j il l l l l l l l l l l l l l l l                     

  
( 1)( 2)

3 2 2
2 4 0

n n
nC C C

 
     

for 4,5, ,k n   and 4 .i j n     

 

Proof. By Lemma 2, 3( )abS n  is generated by the cosets 1 3( ) ',l S n  2 3( ) ',l S n  3 3( ) 'l S n  and 
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3( ) '.kl S n  Then, by Proposition 1, 1 1 2 2 3 33( ( )) [ , ],[ , ],[ , ],[ , ],k kS n l l l l l l l l      

1 2 2 1[ , ][ , ],l l l l 
1 3 3 1[ , ][ , ],l l l l 

1 1[ , ][ , ],k kl l l l 
2 3 3 2[ , ][ , ],l l l l 

2 2
[ , ][ , ],

k k
l l l l 

3 3
[ , ][ , ],

k k
l l l l   

[ , ][ , ]i j j il l l l    for 4,5, ,k n   and 4 .i j n     

By Proposition 4, both 
1 1

[ , ]l l   and 
2 2

[ , ]l l   have order 4, 

1 2 2 1[ , ][ , ],l l l l 
1 3 3 1[ , ][ , ],l l l l 

2 3 3 2[ , ][ , ]l l l l   have order 2 and 
3 3

[ , ]l l  has infinite order 

which are the same generators as 3( ( )).S n  Next, the order of the remaining generators will 

be determined. By Proposition 5(i) and Proposition 6(ii), then 

2 2 2
1 1 1 1([ , ][ , ]) [ , ][ , ]k k k kl l l l l l l l     2 2 1

1 1[ , ][ , ] 1.k kl l l l     It is showed that 1 1[ , ][ , ]k kl l l l   

has order 2. By using similar arguments, 
2 2

[ , ][ , ]
k k

l l l l   has order 2.  

Next, we want to show that 
3 3

[ , ][ , ]
k k

l l l l  has infinite order. Suppose that the order of 

3 3
[ , ][ , ]

k k
l l l l  is finite. Then, for any integer ,r s , it is shown that 3 3[ , ][ , ]r s s r

k kl l l l  = 

3 3([ , ][ , ]) 1.rs
k kl l l l    Thus, 1

3 3[ , ] [ , ] .s r r s
k kl l l l    However, by the relations of 3( ),S n  

neither 3
rl  or s

kl is in 3( ) '.S n  Hence this is not true that the order of 
3 3

[ , ][ , ]
k k

l l l l   is 

finite. Therefore 
3 3

[ , ][ , ]
k k

l l l l  has infinite order. By using similar arguments, it is shown 

that [ , ]k kl l  and [ , ][ , ]
i j j i

l l l l   also has infinite order.  

Since 4,5,k n   and 4 ,i j n    then there is 3n   generators in terms of 

[ , ],k kl l   1 1[ , ][ , ],k kl l l l   
2 2

[ , ][ , ],
k k

l l l l   
3 3

[ , ][ , ]
k k

l l l l   and 
( 3)( 4)

2

n n 
 generators in 

terms of [ , ][ , ].
i j j i

l l l l   Therefore,  

( 3)( 4)
3 3 3 3 2

3 4 4 0 0 2 2 2 2 2 0 0( ( ))
n n

n n n nS n C C C C C C C C C C C
 

                

            
( 3)( 4)1 ( 3) ( 3)3 ( 3) ( 3) 2 2

2 4 0

n nn nn nC C C
             

       
( 1)( 2)

2 3 2 2
2 4 0 .

n n
nC C C

 
                  
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3. CONCLUSION  

In this paper, the generalization of the central subgroup of the nonabelian tensor square of the 

Bieberbach group 3( )S n with point group 2 2C C  is constructed up after the generalizations 

of the polycyclic presentation and the abelianization are determined. These results can further 

be used to find other useful properties of 3( )S n  such as the nonabelian tensor square of the 

group.    
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