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ABSTRACT 

Cloud computing has become an important alternative for solving large scale resource- 

intensive problems in science, engineering, and analytics. Resource management play an 

important role in improving the quality of service (QoS). This paper is concerned with the 

investigation of scheduling strategies for divisible loads with deadlines constraints upon 

heterogeneous processors in a cloud computing environment. The workload allocation 

approach presents in this paper is using Divisible Load Theory (DLT). It is based on the fact 

that the computation can be partitioned into some arbitrary sizes and each partition can be 

processed independently of each other. Through series of simulation against the baseline 

strategies, it can be found that the worker selection order in the service pool and the amount 

of fraction load assigned to each of them have significant effects on the total computation 

cost. 
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1. INTRODUCTION 

Cloud computing has recently emerged as a compelling paradigm for solving large- scale 

data-intensive computing. Amongst the areas that are likely to benefit greatly from it are 

the real-time applications such as in bioinformatics, signal processing and astronomy.  
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Since these applications often demand massive computation requirements and due to the 

highly elastic environment in cloud computing, providers must be able to dynamically 

manage the available resources so that they can be optimized. 

In divisible load theory (DLT) paradigm in the case of clouds environment, an arbitrarily 

independent divisible load can be processed in parallel on multiple computing nodes. Kang 

et al. [1] have studied the case of a global surveillance system where a large number of 

geographically distributed sensors involve in system monitoring.  In their paper, they 

adopt DLT for minimizing the total execution time but the cost factor was not considered. 

There are some significant works of scheduling divisible loads in cloud computing 

discussed about cost [2-5].  However, none of these works deals with deadline constraint 

workloads and considers the heterogeneity of computing nodes. 

Thus, in this research, the Real-time Divisible Load Theory (RT-DLT) proposed in [6, 7] 

is extended to heterogeneous processors in the cloud computing platform.  This paper also 

puts forward the idea of including worker selection strategy in the scheduling framework 

for improving the computation cost. The aim is to design optimal workload allocation 

strategies that meet the deadline while minimizing the cost. This in return will help cloud 

provider to gain maximize benefit while guaranteeing their QoS with the users? 

The rest of this paper is structured as follows.  Section  2  introduces an  overview of  the 

RT-DLT concepts and the scheduling  framework;  proposed  RTDLT-cost  model  used 

in this paper is discussed in  Section 3. Section 4 described simulation setup and result 

analysis. Finally, this paper ends with the findings and conclusions in Section 5. 

 

2. RT-DLT FOUNDATIONS 

Job and system models of RT-DLT used in this research are described in this section. 

Job Model The job model in RT-DLT allows for the parallel execution of a job upon 

multiple processors. Each  divisible job  Ji consists of a  single invocation characterized    

by ordered pair (σ, D), where σ > 0 is  the total load size of the job and D >  0  is its  

relative deadline, indicating that it must complete execution within  D  time  unit  of  

arrival. 

System Model Proposed architecture for scheduling divisible load on cloud environment 

is described in Figure 1 below. The centralized scheduler (CS) denoted as head node P0 is 

responsible for scheduling loads on computing nodes, has all the information about loads 

and capacities of computing nodes. The scheduler needs to assign loads to compute nodes 
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(CN) denoted P1, P2, P3… PN. The head node does not involve in the computation – its role 

is to accept or reject incoming jobs, execute the scheduling algorithm, divide the workload 

and distribute data chunks to the computing nodes. 

 

Fig.1. Scheduling framework 

 

Scheduling Framework Figure 1 above illustrates the scheduling framework upon 

heterogeneous resources in cloud computing.  Most authors in the literature consider three 

strategies, which is Scheduling Strategy, Node Assignment Strategy and Partitioning 

Strategy [2-4, 8, 9]. In this paper, the computing nodes that are heterogeneous in term of 

speed and cost characteristics is studied. Hence, another one strategy that is, Worker 

Selection Strategy is adopted to investigate the impact of worker order selection towards 

reducing computation cost. 

As shown in the diagram, each arrival jobs will be arranged  in  the  Queue.  The 

Scheduling Strategy to determine the job order; the Node Assignment Strategy to decide 

how many computing node are required for the  job execution. The third decision   is 

Partitioning Strategy to determine a strategy to partition and compute the chunk size  of 

load to be processed and transmit them to each compute nodes via a switch. Two different 

partitioning strategies are investigated: the Optimal  Partitioning  Rule  (OPR), and the 

Equal Partitioning Rule (EPR). The OPR is  a  superior  partitioning  strategy  based on 

divisible load theory (DLT) which has been introduced in [8, 10]. It  states that  the 

optimal execution time is obtained when all nodes allocated to a task complete their 

computation at the same time. For comparison, a baseline approach to  partition  a  
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workload N equal-sized subtasks is adopted. This approach is namely as the Equal 

Partitioning Rule (EPR). Each partitioning methods has  different  advantages,  

computation time and cost would be expected to be vary with different strategy. 

The last decision is Worker Selection Strategy to determine the worker sequence order. 

Selection of workers in cloud computing currently is done using a simple round- robin 

scheme and the importance of worker selection has been  highlighted  in  the  literature 

[11-13]. To observe the impact of  this  additional  strategy,  three  sequence  order of 

workers were examined. The sequence is most expensive to the cheapest worker, cheapest to 

the most expensive worker and random. These three sequence orders are using  OPR 

partitioning strategy and  compared against baseline approach EPR.  If  no schedule can  be 

found to satisfy job’s timing requirement although enough virtual machines have been added, 

the job will be rejected. The result of the simulation is thoroughly analyzed in Section  4. 

 

3. PROPOSED CARTDLT MODEL 

This section presents the proposed Cost-Aware Real-time Divisible Load Theory 

scheduling algorithm named CARTDLT  for  cloud  environments.  Here,  the  calculation 

to get the total computation cost is discussed. 

Fig.  2 below illustrates an example  of task execution time  diagram. For a given divisible 

workload j=(σ, D) and a given number of compute nodes N, let αi  denote the fraction of 

load 

assigned to the ith  machine,  0     1, ∑  1 , Cm is the cost to transmit a unit workload 

and Cpi is the cost to process a unit workload. 

 

 

Fig.2. Task execution time diagram 

 

N 

i=1 
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Let t  denote  the  time  instant  at  which  this  occurs,  Pi  receives  data  over  an  interval [ t, 

t  i Cm ], and processes this data over the interval [ t  iCm , t  iCm  iCpi ]. 

Since it must complete by the deadline D, we therefore have 

 

t  iCm  iCpi  D (1) 

 

By  the  optimality  principle,  Pi  and  Pi+1  complete  execution  at  the  same  time  

instant.  The fraction of load to be allocated to each compute node is: 

 D  t   
i   Cm   Cpi  (2) 

 

Total cost use is the energy cost Ci consumed by the CPU to process an entire load. Assuming  

a linear system, without loss of generality, this total cost is simply the sum of all individual  

link processor’s cost discussed above. 

 

The cost for executing j job for the ith machine: 

 

 i    C pi  C i 
(3) 

 

 

Thus, the total cost to execute jth job can be calculated by: 

 

   ∑i    Cpi   Ci   

(4) 
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The pseudo-code of the algorithm is as listed below in Fig. 3. 

 

 

Fig.3. CARTDLT scheduling algorithm 

 

4. EXPERIMENTAL RESULTS 

This section describes the simulation setup used in this research. 

4.1. Simulation Setup 

In the simulation, a cloud system with computing nodes N = 16 and 32 is considered. For all 

divisible loads arriving at P0, their loadsizes(σ) in the range [100,400] are uniformly 

generated,  Deadline(D) is 1000 and Cm =1. The detailed price for  each processing node is  

as in Table 1 below. MIPS stands for how many million machine instructions that a 

computer can execute in one second. 

 

Table 1. Prices and processing speeds 

 

Service Processing speed Cost Ci 

No Cpi (MIPS) ($/unit time) 

1 10 3 

2 20 6 

4 30 12 

5 40 24 

 

10: bal ←bal - αi 

11: t←t + σαi Cm 
12: i ←i + 1 
13: end while 

αi←min {bal,   D   t  } 

 C m  C p i 
9: 

Input: Job J 
Output: αi 

1:  Sort computing node according to strategy  /*worker selection strategy*/ 
2: bal ← 1 /*balance of load fraction to be allocated 
3: i ←1 /* determine of fraction load for i’th compute node*/ 
4: t←0 
5:  while bal > 0 do 
6: if (i > N) then 
7:  declare failure /*all workers have been use up before entire load been assigned*/ 
8: end if 
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4.2. Analysis of Results 

To observe the impact of worker selection strategy and chunk sizes assigned for each of 

the workers, three sequence order strategy were examined. The total cost for each job with 

the varying loadsizes for  the three workers’  sequence order strategy are measured    as 

below: 

4.2.1. Most expensive to cheapest worker 

The sequence of the worker is  indexed  in  non-increasing  order  from  fastest processors 

which having most expensive cost to slowest processors  which  having  cheapest cost. 

Without loss of generality, let us assume that the processors are indexed according to non- 

increasing so that Cpi is Cpi ≥ Cp(i+1) for all i, 1≤ i  ≤N.  The experimental result is in 

Figure 4 and Figure 5.  

 

Fig.4. N =16                                                         Fig.5. N =32 

 

4.2.2. Cheapest to most expensive worker 

The sequence of the worker is indexed in non-decreasing order from the worker with the 

lowest speed which is having cheaper cost, to the worker with the highest speed which is 

having most expensive cost so that Cpi is Cpi ≤ Cp(i+1) for all i, 1≤ i  ≤N The experimental 

result is in Figure 6 and Figure 7.  
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                             Fig.6. N =16                                     Fig.7. N =32 

 

4.2.3. Random 

The sequence of the worker is selected randomly. This is  to  study the  effect  if the 

worker selection strategy is not implemented. The experimental result is in  Figure 8 and 

Figure 9. 

 

Fig.8. N=16 Fig.9. N =32 

The work conducted in this research evaluated the merits of implementing worker 

selection strategy towards reducing total computation cost. It can be seen from the 

simulation results that sorting worker sequence in non-decreasing order,  from  lowest 

speed which is having cheapest cost to the worker with the  highest  speed  which  is  

having most expensive cost, has yield the lowest cost as compared with other strategies. 

The proposed CARTDLT scheduling algorithm allows a cloud provider to make  the 

optimal decision in the amount of fraction load assigned to each of the workers, so as to 
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maximize profit. 

 

5. CONCLUSIONS 

In this paper, the dual problem of  scheduling  to  meet  deadlines  while  minimizing cost 

using divisible load theory (DLT) for the provision of performance guarantees has been 

successfully addressed. The experimental results demonstrate the usefulness of the 

implementation of worker selection strategy towards reducing total computation cost. 
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