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ABSTRACT

The main problem in developing a groundwater model is to determine model parameters,

particularly hydrogeologic coefficients, in a precise way. In this research, Deterministic

Ensemble Kalman Filter (DEnKF) is described as a modern sequential method for data

assimilation and a localization scheme within the framework of DEnKF is applied. Najafabad

aquifer (in Iran) with area of 1150 km2, is modeled in the time window of Oct. 2000 to Sept.

2007 to obtain water table level data when its values of hydrogeologic coefficients calibrated

and verified. DEnKF assimilated 45 observations of true run into the model with 2, 5, and 10

times of calibrated values of hydraulic conductivity and specific yield. This filter has been run

both with and without use of localization. Results show easily-implemented localized DEnKF

is favorably robust in groundwater flow modeling.
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1. INTRODUCTION

Groundwater Resources Management and Data Assimilation

Appropriate management of groundwater resources, especially during droughts, leads to better

and more effective use of them [1]. An important quantity in this issue is water table depth in

pheratic aquifers or piezometric level in confined aquifers [21]. In the past decades, these types

of data have been obtained by modeling the aquifer system, but uncertainty in input variables

and model parameters has caused the results to be inaccurate [5]. On the other hand, responsible
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organizations in water resources management usually have observation wells in aquifers which

their water levels are measured regularly. So, using both types of data –observed and model

results- to reduce the uncertainty would be a wise approach.

Data assimilation methods are made to combine the observed data of any kind– here, water

level data from observation wells- with predictions of the implemented model- here

groundwater flow model. In fact, these methods try to find the best combination of observed

and model predictions based on the uncertainty involved in each method as the solution [15].

Kalman Filter (KF) is the most common sequential data assimilation method that assimilates a

state-space expression of a prediction model with noisy observations to give an estimation of

the system state with the least square error [11]. KF is developed based on the state and

observation equations that are respectively stochastic representation of model and observations.

System state is a set of variables within the system that contain all past information affecting

the future behavior of the system [20].

Ensemble Kalman Filter (EnKF) is a large-scale filter based on the representation of probability

density of state estimate by finite numbers of system states (N) that are generated randomly [7].

These states, each one called a realization, form the ensemble used in the algorithm of filter. In

fact, the only difference between this filter and classical KF is that EnKF uses an ensemble of

predictions for the calculation of covariance of prediction error. This makes it a Monte Carlo

implementation of the classical KF [4].

2. BACKGROUND

In order to gain observational information in modeling procedure more efficiently, Evensen

(1994) introduced the implementational principles of EnKF [3]. It was the first alternative for

classical KF in large scale systems like aquifers that comes with feasible computational

difficulty.

Sakov and Oke (2008) presented a simple and efficient linear approximation of EnKF which is

called Deterministic Ensemble Kalman Filter (DEnKF), because of its deterministic

characteristic and its similarity to the Kalman filter algorithm [18].

For Hydrogeologic application of EnKF, Sun et al. (2009) compared four types of EnKF to

estimate hydraulic conductivity of an unreal example and found that DEnKF outperforms and

is more robust than others, even in small ensemble sizes [19].

In this study, groundwater flow is modeled in Najafabad aquifer (Isfahan province, centeral

Iran). The aquifer is divided into five zones (based on general hydrogeologic characteristics)
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and identified with different hydrodynamic coefficients. Then, the model results are saved in

some points at each time-step. A part of this information, as the observational data, was

assimilated into the model with inexact parameters within the DEnKF algorithm to evaluate

filter robustness. The results of this data assimilation, with different length-scale localization

parameters and without localization, are analyzed.

3. MATERIALS AND METHODS

Groundwater Flow Equation

Groundwater flow equation in a phreatic, isotropic aquifer which is used in this research can be

written as follows
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where k is the hydraulic conductivity value (Lt-1) , h is the potentiometric head (L), N is

recharge (volumetric flux per unit volume, t-1), q is discharge (volumetric flux per unit volume,

t-1), SS is specific yield, and t is time (t) [10].

KALMAN FILTER AND ITS APPLICATION

System and Observational Equations

The groundwater flow model, derived by finite differences, considered as a linear state equation

which is defined as follows

kk1-kk WBuAXX  (2)

where X (system state vector) includes groundwater levels at every mesh points in the aquifer,

A is the transition matrix, B is the coefficients matrix and u is the external variable, while k is

time index. System noise (W ) is defined as the difference between model and actual state [20].

It is assumed that initial system state vector is a random process with mathematical expectancy

equal to 0X and covariance matrix equal to aP0 .

Observational equation of the filter is

kkk VMXZ  (3)

where Z is defined as the vector containing observed (measured) data-observation well records-

and V, which is known as observation noise, is a Gaussian process vector with covariance equal

to R. Observation matrix (M) which relates system state to observation, contains elements

between zero and one, depending on location of the observation wells [20].
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The Kalman filter is most often conceptualized as two distinct phases: "Prediction" and

"Analysis". The prediction phase uses the state estimate from the previous time step to produce

a predicted estimate of the state and its covariance at the current time step ( p
kX , p

kP ). In the

analysis phase, the current prediction is combined with current observation information to

refine the state estimate. This improved estimate is termed the analyzed state estimate ( a
kX , a

kP

) [16].

Recursive equations to obtain filtered state and its covariance matrix are summarized as (4)

Time updating (prediction):

k
a

1-k
p

k BuAXX  (4)

Measurement updating (analysis):

  kk
f

kk
a

k ZKXMK-IX  (5)

where Kalman gain matrix ( K ) which is the weighting matrix for observations versus model

results, is

  1-
k

Tp
k

1--1
k

Tp
kk RMPMRMPIK  (6)

ENSEMBLE KALMAN FILTER

Prediction and Analysis in EnKF

Prediction equation of EnKF is similar to time update equation in KF. The only difference is

that each ensemble member i.e. each column of the ensemble matrix is operated on individually.

By putting members together again, the predicted ensemble matrix ( pX ) is made [4].

In all types of EnKF, it has been tried to derive analysis ensemble matrix -from predicted

ensemble matrix- with analysis covariance which is consistent with its value of the KF. The

point is how to make an ensemble and this results in different versions of EnKF.

Deterministic Ensemble Kalman Filter (DEnKF)

We consider scaled ensemble anomalies matrix,  x-x,,x-x,x-x
1-N

1
X N21  , where xi is the

ith ensemble member for i=1 ,…, N and x is the ensemble mean. Error covariance matrix can

also be derived by squaring it.

With this notation, Sakov and Oke (2008) derived a new EnKF formulated as

ppa XKM
2

1
-X=X  (7)
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where K and M are Kalman gain and Observation matrix, respectively. Ensemble mean

separately updates to analysed one using equation [5].

Because of its deterministic characteristic and similarity to the KF, this simple and

computationally efficient filter is called DEnKF [18]. Because of the presence of prediction

error covariance ( pP ) in the filter scheme, it is easy to implement schur localization for it.

Problems Concerning Small Ensembles

Using small ensembles for calculating error covariance matrix can introduce sampling errors as

false correlations between distant locations or between points that should be uncorrelated. With

false updates corresponding to these false correlations, the ensemble variance has an inevitable

reduction which causes significant underestimation of actual variance, as time goes on. This

situation is called inbreeding and may results in filter failure [14; 2].

A feasible method to attenuate negative ramifications of small ensemble is multiplying the

covariance matrix by a semi-positive definite correlation matrix element-wise. Every zero

element of the correlation matrix causes the corresponding element of the product matrix to be

zero. This can be as effective as increasing the ensemble size, when the ensemble is small [12;

13]. Using such a method often causes a dramatic rise of zero elements of the covariance matrix,

while it needs less computational effort than local analysis. Thus, the problem is to find such a

matrix that its elements in far enough distance away from each other are zero1.

The most widely used correlation function is compactly supported 5th order piecewise rational

function. The function is [6]
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where r is the distance (positive) between points and c is half of the length-scale parameter,

based on prior information or by try and error [4]. If the length-scale is larger than the optimum

value it cannot set spurious correlations to zero for relatively far distances (in error covariance

matrix). When the selected length-scale is smaller, the filter is not effective enough to adjust

1 semi-positive definiteness of both matrices to be multiplied guarantees semi-positive
definiteness of the product matrix [8].
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the model due to artificially setting some real dependencies to zero artificially. The function is

used to determine the elements of the correlation matrix.

Houtekamer and Mitchell (2001) multiplied the correlation matrix to both replications of pP

in the Kalman gain matrix equation [9]. In this study, the same method of Houtekamer and

Mitchell (2001) is used.

Application Example

Characteristics of the Studied Region

The studied region is Najafabad sub-basin (Fig. 1). It is located between

50̊ 57˝ to 51˚ 44' 26˝ east longitude and 32˚ 20' 13˝ to 32˚ 49 '21˝ north latitude. The area is

approximately 1720.23 km2 and its aquifer is about 1142.67 km2. Mean annual

evapotranspiration is about 1500 mm while mean annual precipitation is only 158 mm, which

nearly all falls in winter months.

Fig. 1. Zayandehrud River (blue) passes through Najafabad sub-basin (brown) and

neighboring sub-basins in Zayandehrud River basin

Najafabad aquifer (Fig. 2) is a phreatic aquifer, which mainly consists of sediments related to

the fourth geologic period. Important sources of recharge for the aquifer are Zayandehrud

River, deep percolation from irrigation practices and precipitation, in order of
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importance. Water withdrawals from the aquifer are only for agricultural uses2. Groundwater

withdrawal takes place by 2168 deep wells, 8452 semi-deep wells, 73 qanats and one spring.

Fig. 2. Najafabad aquifer divided into five zones for calibration and its particular wells

Modeling Details

The model is a Mesh-centered finite difference with fixed cell size of 500×500 m, monthly

stress periods, and time span from October 2000 to September 2007.

The aquifer was divided into five zones for modeling, based on geological characteristics and

previous modeling studies [17]. Constant hydrogeologic coefficients for each zone were

considered (Fig. 2).

The hydrogeological coefficients of these five zones were derived through calibration with the

index of sum of squared differences between monthly data of 32 observation wells (out of 49

observation wells) from October 2000 to March 2005. The results are summarized in Table 1.

Increasing or decreasing of hydrogeologic parameters within a wide neighborhood of the

calibrated values showed that the model is much more sensitive to values of specific yield in

comparison with hydraulic conductivity values.

The aquifer was modeled with these calibrated parameters from April 2005 to September 2007.

Modeling results were compared with remaining 17 observation wells’ data. The results of the

2 Obtained from Zayandehrud River Basin Report by Isfahan Regional Water Authority,
Isfahan, (2008).
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model showed a good performance. For example, the modeled and observed values of two

observation wells in northwest and southeast of the aquifer, which have different recharge and

discharge rates, are shown in Fig. 3 for a 30-month period. As we want to evaluate the filter

performance in groundwater problem exclusively, the calibrated model results assumed as true

data, therefore the calibration is not effective in evaluation of the filter performance explicitly.

Table 1. Calibrated values for hydrogeological coefficients

Zone number Hydraulic conductivity (m/day) Specific yield (%)

1

2

3

4

5

0.88

0.73

0.61

1

1

0.25

0.44

0.49

0.31

0.31

Fig. 3. Two examples of model validation results; A: Azizabad well (west well in Fig. 2) and

B: Cham-va-Ardal well (east well in Fig. 2)

Filtering Details

Simulation results for all grid nodes within the aquifer for 84 months are recorded. The results

are treated as actual data in assessment of the filter performance.
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Records of 45 selected cells in the simulation are treated as observation data to be used in the

filtering process. Observational error is assumed as a Gaussian stochastic process with zero

mathematical expectancy (white noise) and variance of 0.01 m2 and is artificially added to the

observed values. This variance is recommended by the local water authority experts and based

on the precision of measuring instruments for the observation wells. It is tried to select these 45

cells so that they contain all types of discharge and recharge regimes existing in the

region. Positions of all observation wells and points selected as the observation wells in the

filtering procedure are shown in Fig. 2.

Hydraulic conductivity and specific yield values of the aquifer for all five zones are modified

by 2, 5 and 10, respectively, in six different simulations, while a set of observations from the

simulation with the calibrated values of the coefficients are available. The results of the

simulation with inaccurate parameters are considerd as state variables and assimilated within

the DEnKF with 100 ensemble members with and without localization. Localization is

implemented with three length-scale parameters3 (5×500, 7×500 and 10×500 m). The results of

each run are compared with the simulated results for all cells in the flow domain.

Initial sampling

Adding an appropriate random matrix to the initial condition of the system can lead to an

applicable initial state for the ensemble filter. The random matrix has N columns (equal to the

members of the desired ensemble) and n rows (equal to the dimension of the system). It has

zero mean for each column and the covariances with other elements of the same column are

based on the derived variogram.

To obtain such a matrix, the state field defined by the variogram is transferred to Fourier space.

Sampling is done randomly and finally the random sample from Fourier space is returned to the

real space by reverse transformation (For more detailed procedure see [4]).

Filter Performance Evaluation

To evaluate the performance of the filter, a feasible criteria would be the square root of mean

squared differences (RMSE) between the filter results and true model. However, because of the

absence of true results, the variance of the analysis ensemble is considered in majority of

literature.

RMSE is defined as

3 Values for length-scale parameter are selected based on an intuitive knowledge came from the
variogram obtained from average of monthly records of all 49 observation wells.
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where ix̂ is the ith element of vector of filter results X̂ , i

t
x is the ith

element of vector of true model results
t
X and n is the size of both vectors, which is equal

to the system dimension.

4. RESULTS

Filter Performance Without Localization

In case of inexact hydraulic conductivity values, RMSE values for the filter without

localization are small and reasonable. The RMSE values for these three non-localized filters

show severe reduction in the first few steps and then they show smooth curves and no significant

drop is observed.

Poor filter performance in the case of inexact specific yields can be justified due to higher

sensitivity of the model to specific yield. For runs with inexact specific yield values, after a

severe drop of RMSE in the first few time steps, the criteria began to increase. The increase of

RMSE is a sign of filter failure. Fig. 4 and Fig.5 show the mentioned points. In these figures, c

equalls to half of the length scale as defined for equation [8]. In case of no localization, it is

‘inf’ and in other cases, c is in kilometers unit.

Fig. 4. RMSE values for filter; a: with 2×Kexact, b: with 5×Kexact and c: with 10×K exact
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Fig. 5. RMSE values for filter; a: with 2×Sexact, b: with 5×Sexact and c: with 10×S exact

Filter Performance With Localization

As it is shown in Fig. 4 and Fig. 5, localization with all the three length-scales improved the

filter performance in all cases. However, in the case of 2 or 5 times of the true hydraulic

conductivity, this improvement was maximized at length scale of 5000 m, and among all other

cases, 3500 m length scale was the best. However, in the case of 5 or 10 times of the exact

specific yield, localization is not helpful for filter divergence.

After all, localization caused better results (compared to lack of localization) in all cases, e.g.

in the case that specific yield is twice the true value, localization with length scale of 2500 and

3500 m prevents the filter from divergence.

5. DISCUSSIONS

In this study, Najafabad aquifer was modeled to obtain water table level data and its values of

hydrogeologic coefficients calibrated and verified. Deterministic Ensemble Kalman Filter

(DEnKF) assimilated 45 observations of true run (the calibrated model) into the model with 2,

5, and 10 times of calibrated values of hydraulic conductivity and specific yield. This filter has

been run both with and without use of localization.

The use of DEnKF for inexact groundwater flow modeling shows remarkable

improvement. The filter improves the results of the inexact model in each time step based on

the information of observed data. Usually, this improvement is shown mainly after the first few
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time steps which indicates efficiency of the filter. In the case of non-localized filters, less values

of RMSE for inexact hydraulic conductivity values can be justified under the lesser sensitivity

of the model to this parameter.

Using this filter without localization, shows a rising trend in most cases after significant

reduction of error in the first few steps. This rising trend is related to spurious correlations in

the predicted error covariance matrix ( pP ) which are generated during updating process of the

filter. The model as a transient one is initialized by the values of the previous time step.

Therefore, error in previous steps due to false correlations can be treated as an ancillary source

for of the huge RMSE values of final steps. Localization eliminates these false correlations and

as a result, the filter will experience less error, especially in final time steps.

pP is not presented directly in the equations of most ensemble filters; when Its square root

or other forms exist, applying the localization is not directly possible. Therefore, localization

often leads to computational difficulties. Unlikely, localization is easily possible due to the

presence of pP in the equations of DEnKF. On the other hand, as it was mentioned before,

localization results in better filter results in all cases. Therefore, localization (with this tapering

function) is always recommended.

6. CONCLUSIONS

We applied a new deterministic modification of the traditional EnKF, which is called DEnKF,

with the use of traditional localization to a realistic groundwater flow model in central Iran.

Such a localization can be easily implemented within the framework of the DEnKF. The filter

was run with inexact specific yield and hydraulic conductivity. The model was more sensitive

to specific yield than hydraulic conductivity. Our experiments indicated that DEnKF can be

used as a robust filter in groundwater flow modeling. Furthermore, the localized DEnKF is less

susceptible to filter divergence than non-localized one. Overall, we concluded that the DEnKF

combines the feasible performance with simplicity of the implemented localization in its

framework and therefore represents an interesting alternative to ensemble-based Kalman filters

in groundwater modeling.
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