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ABSTRACT

A practical common weight Maximin approach with an improved discriminating power for

technology selection is introduced. The proposed Maximin approach enables the evaluation

of the relative efficiency of decision-making units (DMUs) with respect to multiple outputs

and a single exact input with common weights. Its robustness and discriminating power are

illustrated via a previously reported robot evaluation problem by comparing the ranking

obtained by the proposed Maximin approach framework with that obtained by the DEA

classic model (CCR model) and Minimax method (Karsak & Ahiska,2005). Because the

number of efficient DMUs is reduced so discriminating power of our approach is higher than

previous approaches and because Spearman’s rank correlation between the ranks obtained

from our approach and Minimax approach is high therefore robustness of new approach is

justified.
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1. INTRODUCTION

Rapid advances in computers and engineering science have resulted in a high range of

available advanced manufacturing technologies (AMTs) among which industrial robots,

computer numerical control (CNC) machines, flexible manufacturing systems, automated

material handling (AMH) systems can be listed. Despite the acquisition and the

implementation of AMTs being very costly, manufacturers that compete in global markets

seek to incorporate them into their manufacturing process due to their wide range of merits

including increased flexibility, improved product quality, labor saving, fast production and

delivery, etc. However, the large number of available AMTs and numerous AMT

performance attributes that should be considered in the decision process, make the evaluation

and selection of AMTs a very complex decision-making process, which requires the use of a

robust decision methodology capable of evaluating several AMT candidates based on a

number of attributes.

Many justification methodologies for AMT selection necessitate the decision-maker to assign

arbitrary importance weights to performance attributes. One problem with arbitrary weights is

that they add subjectivity to the methodology. On the other hand, assigning weights is

cumbersome since it is often quite difficult for the decision-maker to quantify their

preferences on performance attributes. Furthermore, the task of assigning weights becomes

more difficult as the number of performance attributes increases. Hence, a robust decision

tool that does not require precise information on the importance of performance attributes

from the decision-maker would facilitate the AMT evaluation process. The present paper

proposes a multi-objective decision tool for industrial robot selection, which does not require

subjective assessments of the decision-maker to prioritize performance attributes.

For quality, productivity and safety reasons, the use of robots in industry has gained

popularity in the past two decades. Robots can be programmed to keep a constant sped and a

predetermined quality when performing a task repetitively. They can manage to work under

conditions hazardous to human health such as excessive heat or noise, heavy load, toxic

gases, etc. Therefore, manufacturers prefer to use robots in many industrial applications

where repetitive, difficult or hazardous tasks need to be performed, such as assembly,

machine loading, materials handling, spray painting and welding. However, the large number

of existing robot options as well as the large number of attributes specifying robot

performance for which industry-wide standards have not yet been determined result in a

major impediment for potential robot users when deciding which robot to buy.
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Many studies report that most widely considered performance attributes for industrial robots

are load capacity, velocity, repeatability and accuracy. Repeatability and accuracy are the

most easily confused attributes. Repeatability is a measure of the ability of the robot to return

to the target point (the point where the robot is expected to go) and defined as the radius of

the circle sufficiently large to include al points to which the robot actually goes on repeated

trials. On the other hand, accuracy is a measure of closeness between the robot end effectors

and the target point, and is defined as the distance between the target point and the centre of

al points to which the robot goes on repeated trials. Manufacturers are more concerned with

repeatability than accuracy since poor repeatability is more difficult to correct.

A robot with the capability of affording heavy load at high speed and low repeatability and

accuracy will contribute positively to the productivity and flexibility of the manufacturing

process, which are of vital importance where rapid changes in customer needs require the

introduction of new products into the market very frequently. When product design changes

need to be made repeatedly, owning a high-performing robot will avoid replacement or

modification. Several works that address the development of a robust decision tool enabling

the potential robot user to select a high performing robot have been reported so far. A brief

survey on these previous works is given in section 2. This paper contributes to the AMT

selection literature by introducing a novel multi-objective decision methodology that can

integrate multiple outputs such as various technical characteristics with a single input such as

cost. The proposed methodology can be successfully applied, but is not limited to technology

selection problems such as the determination of the best industrial robot, CNC machine or

flexible manufacturing system from a feasible set of mutually exclusive alternatives.

The paper is organized as follows. Section 2 provides a concise literature review on the

existing decision tools for AMT evaluation. In section 3, a practical common weight MCDM

methodology (Karsak & Ahiska, 2005) is presented. Section 4 presents the proposed

Maximin methodology. The robustness and convenience of the proposed Maximin

methodology are illustrated through a comparison with the method of Karsak and Ahiska

(2005) for a technology selection problem in sections 5, 6. Finally, concluding remarks are

provided in section 7.

2. LITERATURE REVIEW

Over the past several decades, manufacturers who have been faced with intense competition

in the global marketplace, have invested in AMTs, such as group technology, flexible
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manufacturing systems, industrial robots, etc., which enable high quality and customization in

a cost-effective manner. The increased concern and importance attached to AMTs by the

manufacturers have consequently oriented the researchers to develop models and

methodologies for evaluation and selection of AMTs. Proctor and Canada (1992), Son (1992)

and, more recently, Raafat (2002) have provided comprehensive bibliographies on

justification of AMTs.

Meredith and Suresh (1986) have classified the justification methods for AMT evaluation into

three groups: economic analysis techniques, analytical methods and strategic approaches.

Miltenburg and Krinsky (1987) analyzed the application of traditional economic justification

techniques such as net present worth, annual worth, internal rate of return, payback period to

the evaluation of FMS alternatives. Statistical procedures, mathematical programming, multi-

attribute and multi-objective decision-making methods can be listed among analytical

methods. Analytical methods may be either deterministic or non-deterministic. Deterministic

analytical methods include scoring models, the analytic hierarchy process (AHP), outranking

methods, goal programming, data envelopment analysis (DEA), etc., whereas stochastic

methods, game theoretical methods, fuzzy MCDM methods and expert systems are examples

for non-deterministic analytical methods. Strategic approaches consider only corporate

objectives that are in general long-term intangible benefits. Therefore, their integrated use

with economic or analytical methods would be more appropriate.

A number of papers have focused on the use of MCDM techniques for AMT justification.

Huang and Ghandforoush (1984) evaluated industrial robot vendors, and identified the best

robot by assigning specific weights to those factors. Imany and Schlesinger (1989) ompared

linear goal programming and ordinary least-squares methods via a robot selection problem

where robots are evaluated based on cost and technical performance measures including load

capacity, velocity and repeatability. Stam and Kuula (1991) developed a two-phase decision

procedure that uses AHP and multi-objective mathematical programming for the problem of

flexible manufacturing system (FMS) selection. Agrawal et al. (1991) employed TOPSIS for

robot selection whereas Agrawal et al. (1992) applied TOPSIS for optimum gripper selection.

Shang and Sueyoshi (1995) evaluated FMS alternatives using a decision framework that can

integrate tangible and intangible benefits and financial factors. The proposed framework

involved first the integrated use of AHP, simulation and an accounting procedure to

determine the necessary outputs and inputs of FMS alternatives, and then, the application of

DEA with restricted weights and cross-efficiency analysis to select the most efficient FMS.

Khouja (1995) addressed the robot evaluation problem and proposed a two-phase
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methodology that consisted of first using DEA to identify the technically efficient robots

from a list of feasible robots, and then, using multi-attribute utility theory to further

discriminate among efficient robots and select the best alternative. Baker and Taluri (1997)

addressed some limitations of the simple radial efficiency scores used in Khouja (1995) and

suggested the use of cross-efficiency analysis for AMT selection. Sambasivarao and

Deshmukh (1997) presented a decision support system that employed economic analysis,

multi-attribute analysis including AHP, TOPSIS and linear additive utility model, and risk

analysis. Parkan and Wu (1999) studied the robot selection problem using OCRA, TOPSIS

and utility function model, and proposed to rank the robots based on the averages of the

rankings obtained by these there decision tools. Sarkis and Taluri (1999) evaluated FMS

alternatives based on pair-wise efficiency comparisons made through a decision model that

integrated the DEA model suggested by Cook et al. (1996) with cross-efficiency analysis.

Parkan and Wu (2000) applied OCRA, AHP and DEA separately to an advanced automatic

process evaluation problem and compared the results obtained by OCRA with those obtained

by the other two methods to find out their similarities and differences. Braglia and Gabbrieli

(2000) proposed the use of a known mathematical method based on dimensional analysis

theory for selection of the best robot when conflicting performance attributes are to be

considered.

In addition, several studies contribute to the non-deterministic MCDM literature on

evaluation, justification and selection of AMTs. Chang and Tsou (1993) formulated a chance-

constraints linear programming model for economic evaluation of FMSs. Liang and Wang

(1993) proposed a robot selection procedure using the concepts of fuzzy set theory. Perego

and Rangone (1998) analyzed and compared fuzzy set theory-based multi-attribute decision-

making techniques for AMT justification. Karsak (1998) proposed a two-phase robot

selection procedure that integrated DEA with a fuzzy robot selection algorithm, which

enabled the decision-maker to fully rank robot alternatives. Khouja and Kumar (1999)

proposed a methodology for robot selection, which integrated technical considerations with

real options theory. Karsak and Tolga (2001) presented a fuzzy multi-criteria decision-

making approach for evaluating AMT investments, which integrated both economic and

strategic selection criteria using a decision algorithm based on a fuzzy number ranking

method. Despite many fuzzy MCDM methods involve the use of a fuzzy number ranking

method to handle imprecision and vagueness existing in decision problems, fuzzy number

ranking methods is criticized for not producing consistent outcomes. Furthermore, there is no
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consensus on the best fuzzy number ranking method. Karsak (2002) has recently developed a

distance-based fuzzy MCDM approach for evaluating FMS alternatives that eliminates the

need for using a fuzzy number ranking method.

Recently, AMT justification problems that involve the consideration of a single input and

multiple outputs have been addressed by several authors. Braglia and Petroni (1999)

presented a robot evaluation problem that considered cost as the single input and engineering

attributes as the outputs, and they proposed the use of DEA with restricted multiplier weights

for identification of the optimal robot. They have also discussed the merits and drawbacks of

using weight restriction constraints compared with those of cross-efficiency analysis. Taluri

and Yoon (2000) proposed a cone-ratio DEA approach for AMT justification, which made

use of weight restriction constraints to incorporate a priori information on the priorities of

factors, and illustrated the proposed model via a robot selection problem. A similar decision

problem has recently been addressed by Sun (2002).

Akin to studies by Braglia and Petroni (1999) and Taluri and Yoon (2000), Sun (2002)

selected cost as the single input criterion and technical specifications as output criteria to

evaluate relative efficiency of CNC lathes.

The present paper proposes a robust practical common weight MOLP methodology for

evaluating AMTs based on a single input and multiple outputs. The proposed methodology

possesses two advantages compared with DEA-based approaches proposed in the literature

for the similar problem. First, the proposed approach evaluates al alternatives by common

weights for performance attributes overcoming the unrealistic weighting scheme common to

DEA resulting from the fact that each DMU selects its own factor weights to lie on the

efficient frontier. Second, it identifies the best AMT by requiring fewer computations

compared with DEA-based approaches. One other similarity between the proposed

methodology and DEA-based approaches is that they do not demand a priori importance

weights from the decision-maker for performance attributes under consideration, and thus,

they can be named as objective decision techniques.

3. Proposed MCDM model by Karsak and Ahiska

Data envelopment analysis is a mathematical programming-based decision-making technique,

which has been widely used to treat decision problems that necessitate the consideration of

multiple outputs and multiple inputs to evaluate the relative efficiency of DMUs. While

considering multiple inputs in efficiency analysis, DEA makes an implicit assumption that

any input can act as a substitute for any other because it uses weighted combination of all the
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inputs (Tofalis1997). This critical assumption does not hold for cases where the inputs are not

substitutes for each other. Tofalis (1997) states that considering one input at a time eliminates

the problem of extreme or unrealistic weights on the inputs since they are not weighted at all.

When multiple exact outputs and a single input are to be considered in the evaluation process,

the conventional DEA formulation takes the following form:
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Where 0E is the efficiency of the evaluated DMU, r is the weight assigned to output r, w is

the weight assigned to the single input, rj is the amount of output r produced by DMUj, jX

is the amount of the single input consumed by DMUj, and  is a small positive scalar.
Formulation (1) is non-linear; however, it is possible to convert it into a linear program

through a straightforward variable alternation. Replacing the term r

w


with ru , for r , yields

the following linear formulation:
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Formulation (2), being a special case of the DEA model, possesses the characteristics of DEA

and thus it suffers from al of its limitations. First, in order to determine the relative

efficiencies of al DMUs, formulation (2) has to be formulated and solved n times, where n is

the number of DMUs to be evaluated. Therefore, DMUs are not evaluated by common

performance attribute weights, which may not lead to desirable consequences, since company

management will typically wish to evaluate al units on a common weights basis. Second,

DEA assumes that DMUs That receive the efficiency scoreof1 are called ‘efficient’ and they

are said to lie on the efficient frontier while the DMUs that receive a score les than 1 are

called ‘inefficient’. In short, DMUs are classified in a dichotomous way as efficient ones and
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inefficient ones. Further, as al efficient DMUs receive the same efficiency score of 1,

formulation (2) does not enable further discrimination among them. Possessing poor

discriminating power, the DEA model represented by formulation (2) is not an appropriate

decision tool for the cases where the decision-maker has to determine the best DMU.

Moreover, for each DMU, formulation (2) provides the flexibility to choose the weights in its

own favor, i.e. in a way to maximize its own efficiency score. Allowing such weight

flexibility may result in identifying a DMU to be efficient by giving an extremely high weight

to criteria with respect to which it has shown an extremely good performance and an

extremely small weight to those with respect to which it has shown a bad performance. Such

an extreme weighting is unrealistic and causes the DEA model to have a poor discriminating

power. To avoid unrealistic weight distribution and overcome the poor discriminating power

of DEA, several approaches to restrict weights, which in general impose bounds or other

constraints on weights, have been proposed (also Dyson and Thanasoulis 1988, Alen et al.

1997). The just cited approaches modify the existing technical efficiency oriented DEA

models by including into the model weight restrictions that are formulated based on value

judgment, which reduce the degree of objectiveness of DEA.

Karsak and Ahiska introduced an approach that differs from those approaches in that it does

not necessitate a priori subjective assessments of the decision-maker on factor weights for

further prioritization of DMUs. The proposed approach employs efficiency measures that are

not specific to a particular DMU, but common to all DMUs. Using the proposed efficiency

measures, formulation (2) is transformed into a common weight MCDM model with an

improved discriminating power.

Proposed efficiency measures are a function of the deviation from efficiency. Let jd be

defined as the deviation of the efficiency of DMUj, jE , from the ideal efficiency of 1 (i.e.

1j jd E  ). As minimizing 0d , the deviation from efficiency for 0DMU , is  equivalent to

maximizing its efficiency, 0E , an equivalent of formulation (2) can be written as follows:
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The objective functions of formulations (2) and (3) are specific to a particular DMU.

Therefore, to determine the efficiencies of al n DMUs, we need to formulate n models, each

aiming to minimize the deviation from efficiency for a particular DMU. Furthermore, these
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models considering the technical efficiency measure give the evaluated DMU the maximum

possible freedom in choosing the performance attribute weights, which reduces the

discriminating power of the model.

Minimax efficiency measure can be briefly defined as the minimization of the maximum

deviation from efficiency among al DMUs. Further discrimination among DMUs can be

allowed by replacing the objective function of formulation (3) with the Minimax efficiency

measure, which yields the following MCDM model, namely the Minimax efficiency model.
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Where M is the maximum deviation from efficiency and jM d are the constraints that are

added to the model to assure that max j jM d .

Minimax efficiency measure has a higher discriminating power than the classical efficiency

measure, since it considers the favor of al DMUs simultaneously, which restricts the freedom

of a particular DMU to choose the factor weights in its own favor. Furthermore, as the

Minimax efficiency measure is an objective function not specific to a particular DMU but

common to all DMUs, it does not necessitate solving n formulations to determine efficiencies

of al DMUs. The efficiencies for al DMUs can be computed by a single formulation. When

formulation (4) is solved, the efficiencies for al DMUs is determined by calculating1 jd , for

j = 1, 2, ..., n. This one-step efficiency computation enables the evaluation of the relative

efficiency of all DMUs based on common performance attribute weights, which contrasts

with DEA models where each DMU is evaluated by different weights.

4. MAXIMIN APPROACH

Consider the following multi-objective problem.
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Where X is the region of solutions. For solving this MODM, we can use Maximin approach

that assumes the optimal solution of the following problem is efficient for the above MODM

problem.

 1 2
m ax m in ( ), ( ), ..., ( )

k
x x x

sub ject to
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By defining variable z, we have:
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In model (7) f
j

*
are used for normalizing objective functions.

5. PRACTICAL COMMON WEIGHT MAXIMIN APPROACH FOR

TECHNOLOGY SELECTION

Consider the following MOLP.
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We can solve the above formulation by using (7). That is
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Because all of
x

yu

j

s
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1 are of efficiency type, then there is no need to normalization. By

solving formulation (9),ur

*
are calculated that are a CSW and we can calculate efficiency of

all DMUs.
Theorem: If DMU j

is efficient at formulation (9) then necessarily would be efficient by

model CCR.
For complete ranking of DMUs, we have A as follow:
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6. EXAMPLE PROBLEM

In this section, the proposed Maximin methodology that may be applied to a wide range of

technology selection problems is used for robot selection, and its discriminating power is

illustrated through a previously reported industrial robot selection problem (Karsak & Ahiska,

2005). The robustness of the methodology proposed in this paper is tested via comparing the

ranking obtained by the proposed methodology with that obtained by Karsak and Ahiska.

The robot selection problem addressed in Karsak & ahiska (2005) involves the evaluation of

relative efficiency of 12 robots with respect to four engineering attributes including ‘handling

coefficient’, ‘load capacity’, ‘repeatability’ and ‘velocity’, which are considered as outputs,
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and ‘cost’, which is considered as the single input. Since lower values of repeatability

indicate better performance, the reciprocal values of repeatability are used in efficiency

computation of robots. Input and output data regarding the robots are given in table 1.

Formulations (3) and (4) for 00001.0 are used to calculate DEA efficiency scores and

Minimax efficiency scores and the new algorithm (Maximin approach) of robots, which are

given in the second, third and fourth columns of table 2, respectively. To test the robustness

of the proposed Maximin methodology, the scores obtained are compared with Minimax

efficiency scores in third column of table 2. To conclude whether there is a positive

relationship between the sets of rankings of the two approaches (Minimax and Maximin

efficiency scores), Spearman’s rank correlation test is conducted.

Table 1. Input and output data for 12 industrial robots

Robot
(j)

Cost(US$) Handling
coefficient

Load
capacity(kg)

1/Repeatability
(mm-1)

Velocity
(m/s)

1 100000 0.995 85 1.70 3.00
2 75000 0.933 45 2.50 3.60
3 56250 0.875 18 5.00 2.20
4 28125 0.409 16 1.70 1.50
5 46875 0.818 20 5.00 1.10
6 78125 0.664 60 2.50 1.35
7 87500 0.880 90 2.00 1.40
8 56250 0.633 10 8.00 2.50
9 56250 0.653 25 4.00 2.50
10 87500 0.747 100 2.00 2.50
11 68750 0.880 100 4.00 1.50
12 43750 0.633 70 5.00 3.00

Table 2. Efficiencies of robots for 00001.0
Robot(j) DEA

efficiency
scores

Minimax
efficiency
scores

Maximin
efficiency
scores

1 0.653(11) 0.653(9) 0.653(9)
2 0.821(7) 0.753(6) 0.754(6)
3 0.954(4) 0.883(4) 0.884(4)
4 0.950(5) 0.862(5) 0.863(5)
5 1.000(1) 1.000(1) 1.000(1)
6 0.563(12) 0.563(12) 0.564(12)
7 0.683(10) 0.683(8) 0.683(8)
8 1.000(1) 0.631(10) 0.632(10)
9 0.765(8) 0.687(7) 0.688(7)
10 0.714(9) 0.617(11) 0.617(11)
11 0.909(6) 0.890(3) 0.889(3)
12 1.000(1) 1.000(1) 0.999(2)

average 834.0 768.0  0.768

1 2 3 40.537476 ,  0.135941 ,  0.000010 ,  0.000010u u u u   
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We can also use correlation to obtain Spearman’s ρ (rank correlation coefficient). Like the

Pearson product moment correlation coefficient, Spearman’s ρ is a measure of the

relationship between two variables. However, Spearman’s ρ is calculated on ranked data.

For calculating spearman’s  we can use the below formulation that d i is the difference

between ranks for the same observation (DMU). And n is the number of DMUs.
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Spearman’s rank correlation is 0.98 and means that there is a positive relationship between

the sets of rankings of the two approaches (Minimax and Maximin efficiency scores).

Because the number of efficient DMUs on a common weight basis is reduced so

discriminating power of our approach is higher than previous approaches and because

Spearman’s rank correlation between the ranks obtained from our approach and Minimax

approach is high therefore robustness of our approach is justified.

7. CONCLUSIONS

This paper introduces a new efficiency measure with an improved discriminating power that

can be successfully applied for AMT evaluation based on multiple exact outputs and a single

exact input. The proposed efficiency measurement technique uses a multi-objective linear

programming method. Both the Minimax efficiency measure by Karsak & ahiska (2005) and

the proposed efficiency measure (Maximin appoach), being common to all DMUs, enable the

computation of efficiency scores of all DMUs on a common weight basis.

Using the proposed efficiency measure, a practical common weight MOLP methodology is

developed and illustrated through a robot selection problem. The convenience and robustness

of the proposed methodology are tested via a comparison with Minimax analysis, which is
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proposed by Karsak and Ahiska (2005). The comparison reveals that both analyses evaluate

the same robot as the best one. Furthermore, the rankings obtained by the proposed

methodology and Minimax analysis are shown to be positively correlated.

The merits of the proposed framework compared with DEA-based approaches that have

previously been used for technology selection can be listed as follows. First, this

methodology allows the computation of the efficiency scores of all DMUs by a single

formulation, i.e. all DMUs are evaluated by common performance attribute weights. Second,

it identifies the best alternative by using fewer formulations compared with DEA-based

approaches. Further, its practical formulation structure enables its results to be more easily

adopted by management who may not poses advanced mathematical programming skills. On

the other hand, one similarity between the proposed methodology and DEA-based approaches

is that they are both objective decision tools since they do not demand a priori importance

weights from the decision-maker for performance attributes.

In short, the proposed methodology can be considered as a sound as well as practical

alternative decision aid that can be used for justification and selection problems accounting

for multiple exact outputs and a single input that can be applied in a wide range of AMT’s

selection activities. For further study, useful extensions of the proposed methodology can be

developed, which enables the decision-maker to consider imprecise output data denoted by

fuzzy numbers.
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