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ABSTRACT  

In this paper, we consider a photovoltaic silicon solar cell in which the charge carriers are 

moved solitary. To evaluate the number of charge carriers in the solar cell, the proposed 

nonlinear reaction-diffusion equation describing the phenomena of carriers transport in solar 

cell under the effect of band-trap impact ionization has been solved. The results from this 

equation are solitary solutions. The maximum efficiency of the proposed model has been 

evaluated for various photo-generation coefficients. The range of the external applied electric 

field Eo to be avoided has been carried out. The interest of the obtained results is firstly 

economical since it could be useful in avoiding strong and undesirable external applied electric 

field on solar cells. The second interest is that they permit to identify the approximate 

maximum efficiency value of solar cell band-trap impact ionization. 

Keywords: Photovoltaic; silicon solar cell; band-trap impact ionization; efficiency; solitary. 

                                                        

Author Correspondence, e-mail: rubenzieba@yahoo.fr     

doi: http://dx.doi.org/10.4314/jfas.v7i3.6 

 

Journal of Fundamental and Applied Sciences 

ISSN 1112-9867 

Available online at       http://www.jfas.info    



Zieba Falama et al.            J Fundam Appl Sci. 2015, 7(3), 375-393          376 
 

 

1. INTRODUCTION 

1.1. Brief description of the impact ionization phenomenon 

Concepts for improving the efficiency of solar cells are the preoccupation of many scientists. 

Both in research laboratories and in manufacturing, improvement of efficiency is a high 

priority. The solutions of this improvement could provide on reducing losses such as those by 

thermalization and the non-absorption of low energy photons [1]. Peter Würfel [1] showed 

that, the theoretical upper limit of maximum solar cell efficiency is approximately 0.86. 

Various methods have been proposed in order to improve the efficiency of solar cell, such as 

the solar thermal conversion method [1-3], the method of Tandem cells [1,2,4], the method of 

concentrator cell [1,2,5], the method of two step excitation in three levels system [1,2], and 

the method of impact ionization [1,2,6,7] on which the current study focuses.  

Nomenclature 

e : Charge of electron  (1.6×10-19 C) 

V : Voltage (V) 

k : Boltzmann’s constant :(1.38×10-23 J/K)  

T : Cell’s temperature (K) 

ni : Intrinsic concentration of electrons and holes 

  ħωabs : Photon energy absorbed (eV) 

εG : Gap energy (eV) 

   τn, τp : Recombination life time of electrons and holes respectively (S) 

jE,ab : Energy current density absorbed (W/m²) 

jE,in : Energy current density incident (W/m²) 

 

 

Impact ionization is a process in which a charge carrier with high kinetic energy collides with 

a second charge carrier, transferring its kinetic energy to the latter which is hereby lifted to a 

higher energy level. The result of the process is carrier multiplication which may induce 

electrical instabilities at sufficiently high external electric fields [8]. With impact ionization, 

the absorbed energy remains in the electron-hole system, but is more uniformly distributed 
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over a larger number of electrons and holes than were originally generated by the absorption 

of the photons. Impact ionization, therefore, looks very promising for solar energy conversion 

because some of the energy removed from the electrons and holes during thermalization is 

used to generate additional electron-hole pairs [1, 9].  

To understand the function of solar cells, a precise understanding of the processes within a p-n 

junction is crucial. Carriers, free electrons in a semiconductor conduction band and the free 

holes in a semiconductor valence band, are what are needed to make a solar cell work. While 

recombination is the annihilation of a free electron and of a free hole, free carriers are also 

subject to trapping. The term  trapping, strictly speaking, is used in two ways [10]: (1) to 

mean capture by a gap state as part of a series of processes in localized state assisted 

recombination or (2) to mean the act of an electron or hole getting stuck at a localized state. 

When used in the latter sense, trapping is the stringing together of one or more energy-loss 

processes with the net result that an electron from the conduction band or a hole from the 

valence band finds itself in a dead-end in a gap state.  

Semiconductors, in some ways are complex nonlinear dynamic systems which give rise to a 

variety of current instabilities when they are driven by strong electric field [8, 11, 12]. Many 

of these current instabilities often lead to chaotic current oscillations and current filamentation 

[13-20]. It is worthwhile mentioned that the common feature of all these instabilities is a 

self-organizing process; the generation-recombination (g-r) process of impact ionized carriers 

[11, 12]. There are many impact ionization models: the one carrier models which usually 

involve the one level and two levels of trapped impurities models; also there are the two 

carrier models which are often classified as band-band and band-trap impact ionization [6].  

Solar cells are often considered as working in static regime, the nonlinear transport equations 

are analyzed for stationary, but space-dependent solutions. In this work we introduce a 

dynamic regime working of the solar cell. The solutions of the nonlinear transport equations 

which are electrons and holes densities are dependent of space and time. The total charge 

current density which depends of the number of charge carriers in the solar cell could then be a 

function of space and time. The electrons and holes densities are determinate through the 

factorization method which is more appropriate for handling nonlinear reaction-diffusion 
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equations. 

This work aims to evaluate the maximum efficiency of solar cell band-trap impact ionization 

working in dynamical regime. The condition of this achievement will be studied. Another aim 

of this work is to demonstrate that the solitary behavior of the charge carriers could permit to 

increase the efficiency of the solar cell. 

1.2. Presentation of the model  

Illumination of the solar cell creates free charge carriers, which allow current to flow through 

a connected load. Other charge carriers are generated through the impact ionization process 

which is induced by an external electric field. The number of free charge carriers created is 

proportional to the incident radiation intensity and to the external applied electric field, so that 

the current internally generated in the solar cell is also proportional to the radiation intensity 

and to the external applied electric field. The proposed electrical model of the solar cell 

consists of the diode created by the p-n junction, which is depending of the external applied 

electric field and, a current source depending both of the incident radiation intensity and the 

external applied electric field. The simplified electric model of the solar cell band-trap impact 

ionization is presented in fig.1. 

 

Fig.1. The simplified model of the solar cell 

Considering the transverse direction only and neglecting for simplicity the transverse electric  

field, the electrons and holes densities in conduction and valence bands are described by the 

nonlinear reaction-diffusion equation below [1,3,6,7,11]: 

      
2

2
( , )n n

n n
D f n p

t x

 
 

 
                                                       (1a)                                                                    
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2

2
( , )p p

p p
D f n p

t x

 
 

 
                                                                (1b)                                                                     

The parameters n, p, x and t, stand for electrons and holes densities, the transverse coordinate 

and the time respectively. The constants Dn and Dp stand for the electric diffusion coefficient 

and the hole diffusion coefficient, respectively, they are obtained through the Einstein relation 

and the ratio of mobilities n

p




.  

The functions fn and fp describe the g-r process in semiconductor band-trap impact ionization as 

represented by the diagram of fig. 2. The simplest model includes B, X1 and X2 only [6, 11]. In 

this study we add the variable Y as follow:  

  *
1 1 1( , )n Df n p Y X N X n B X p n                                                     (2a) 

  2 2 2( , )P Df n p Y X P X p B X n p                                                    (2b)                

With *
D t DP N N   . The variables X1 and X2 are band –trap impact ionization coefficients. 

The variables Y and B are the band-band generation coefficient and the band-band 

recombination coefficient, respectively. The variable Y is the photo-generation parameter due 

to the illumination of the solar cell. The constants *
DN  and tN  are the effective donor density 

and the trap density, respectively.  

 

Fig.2. The generation-recombination process of the band-trap impact ionization. The dashed 

processes are not necessary for phase transition [6] 
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For a α-si which is operating at room temperature, all the above coefficients are numerically 

given in the Table 1. To solve the nonlinear reaction-diffusion equation the factorization 

method is the more appropriate method [21-23]. 

Table 1. Typical materials parameters corresponding to α-si near room temperature for the g-r 

process of band-trap impact ionization [1, 6, 24]. 

Parameters                                               Value 

X1                                               3×10-5exp(-2×104/Eo) Cm3.S-1
 

X2                                            3×10-5exp(-2.25×104/Eo) Cm3.S-1
 

B                                                             10×10-10 Cm3.S-1 

ND
*                                                           2×1015 Cm-3 

Nt                                                             3×1015 Cm-3
 

μn/ μp                                                                1 

τp
                                                                  10-6 S 

τp
                                                                  10-6 S 

μn
                                                                 2Cm2/Vs 

The factorization method is based on the factorization technique of systems of differential 

equations. Let us consider the following set of differential equations, 

''
1 1( , ) ( , ) 0,u g u v u f u v                                                                  (3a)                                                                

''
2 2( , ) ( , ) 0v g u v v f u v   ,                                                              (3b)                                                 

Where the prime symbol ( ) represents D
z





 and the functions ( , ), ( , ), ( 1,2)i ig u v f u v i   

are polynomials in u and v; it can be rewritten as follows: 

2 1
1

( , )
( , ) 0

f u v
D g u v D u

u

 
   

 
,                                                         (4a)                                                        

2 2
2

( , )
( , ) 0

f u v
D g u v D v

v

 
   

 
,                                                        (4b)                                                        

When 1 1( , ) ( , )f u v uh u v  and 2 2( , ) ( , )f u v vh u v , eq.(4) can be factorized as: 
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  12 11( , ) ( , ) 0D u v D u v u    ,                                                      (5a)                                                                        

   21 22( , ) ( , ) 0D u v D u v v    ,                                                      (5b)                                                

The eq.(5) can be developed and leads to: 

'' 11
11 12 12 11 0u u u u

n


   

 
     

 
,                                                 (6a)                                

'' 22
22 21 21 22 0v v v v

p


   

 
     

 
,                                                 (6b) 

By identifying each member of eq.(3) to those of eq. (6) one obtains: 

11
1 11 12( , )g u v u

n


 

 
    

 
,                                                         (7a)                                                   

22
2 22 21( , )g u v v

p


 

 
    

 
,                                                        (7b)                                                 

1 12 11( , )f u v u  ,                                                                        (8a)                                                            

2 21 22( , )f u v v  ,                                                                       (8b)                                                                               

The functions 1g  and 2g  must have the same order as 12 11 21, ,    and 22  for 1f  and 2f   

polynomials. The development of eq.(5) yields to four systems of first order differential 

equations: 

'
11( , ) 0u u v u  ,                   '

22 ( , ) 0v u v v  ,                                 (9a)                        

'
12 ( , ) 0u u v u  ,                    '

22 ( , ) 0v u v v  ,                                (9b)                       

'
12 ( , ) 0u u v u  ,                    '

21( , ) 0v u v v  ,                                 (9c)                                 

'
11( , ) 0u u v u  ,                    '

21( , ) 0v u v v  .                                (9d)                  

A particular solution of eq.(3) can be obtained through an appropriate choice of 11  and 22 . 

For traveling waves, one sets, z x ct   with c the propagation speed. Then eq. (1) can turn to: 

2

2
0,n

n n

fn c n

z D z D

 
  

 
                                                            (10a)                                                                          
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2

2
0.

p

p p

fp c p

z D z D

 
  

 
                                                                 (10b)                                                                 

For n≠0 and p≠0 we factorize eq. (10) as follows: 

  12 11( , ) ( , ) 0D n p D n p n    ,                                                    (11a)                           

   21 22( , ) ( , ) 0D n p D n p p    ,                                                   (11b)  

The eq.(11) can be developed and leads to, 

'' '11
11 12 12 11 0n n n n

n


   

 
     

 
,                                                (12a)                   

'' '22
22 21 21 22 0p p p p

p


   

 
     

 
.                                             (12b) 

By identifying each member of eq. (10) to those of eq. (12) we obtain: 

11
11 12

n

c
n

D n


 

 
    

 
,                  12 11

n

n

f
n

D
  ,                           (13a)                                     

22
22 21

p

c
p

D p


 

 
    

 
,                21 22

p

p

f
p

D
  ,                           (13b)                                       

Considering the relations 12 11
n

n

f
n

D
   and 21 22

p

p

f
p

D
  , let us choose ij  such as: 

*
11 1 1 1D

Y
K X N X n

n


 
   

 
,             

 1
12

*1
1 1

1
1

n
D

B X p

YK D X N X n
n



 
 

  
  
 

,            (14a)                

22 2 2 2D

Y
K X P X p

p


 
   

 
,            

 2
21

2
2 2

1
1

p
D

B X n

YK D X P X p
p



 
 
  
   
 

.           (14b)                

To determine the constants K1 let us consider the relation 11
11 12

n

c
n

D n


 

 
    

 
. This 

relation can be developed and leads to, 
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 12 * 2
1 1 1 1

*
1 1

1
2 0D

n n
n D

B X pc
K X N K X n

YD D
D X N X n

n


    

 
  

 

                               (15) 

The eq. (15) admits solution if: 

 

2 *
1 1

12
1 1

*
1 1

1
0    or

2 0

D

n n

n D

c
K X N

D D

B X p
K X n

Y
D X N X n

n

  


  

 
  

 

                                               (16) 

With the first condition of eq. (16), we obtain, 

1

1 *
12

n

D

c

D
K

X N

  

 ,    

2
*

1
1 4 D

n n

X Nc

D D

 
   

 
                                            (17a) 

By proceeding as same to determine K1, the constant K2 is obtained as follows: 

 

2

2

22

p

D

c

D
K

X P

  

 ,  

2

2
2 4 D

p p

X Pc

D D

 
    

 
                                            (17b)                

According to [23], the compatible first order system of differential equations is: 

'
11 0n n                                                                              (18a)                                      

'
22 0p p                                                                            (18b)                

Replacing 11  and 22  into eq. (18) gives: 

' *
1 1 1 0D

Y
n K X N X n n

n

 
    

 
,                                                        (19a)                    

'
2 2 2 0D

Y
p K X P X p p

p

 
    

 
.                                                       (19b)                                     

The solutions of eq. (19) are: 

2 2* * *

1 1

1 1

( ) tanh
2 4 4

D D DN N NY Y
n z K X z

X X

 
    
 
 

,                                      (20a)                              

2 2

2 2

2 2

( ) tanh
2 4 4
D D DP P PY Y

p z K X z
X X

 
    

 
 

.                                       (20b)                                 
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The above obtained solutions are solitary wave’s solutions [21].     

Solar cell is typically a pn-junction. For the charge current through a pn-junction one 

distinguishes between the forward direction, in which the electrons of the n-region and the 

holes of the p-region flow towards the pn-junction, and the reverse direction, in which electrons 

and holes flow away from the pn-junction. 

In the forward direction which is considered in this study, shown in figure 3, both the electrons 

coming from the n-region and the holes coming from the p-region move as minority carriers 

into the oppositely doped region, where they recombine after an average path length of one 

diffusion length. More than a diffusion length away from the pn-junction, the minority carrier 

concentration is much smaller than the majority carrier concentration, both in the dark and with 

illumination (weak excitation), so that the charge current is carried only by the majority carriers, 

in the n-region by electrons and in p-region by holes. Outside an electron diffusion length Ln to 

the right or a hole diffusion length Lp to the left of the pn-junction, the charge current is a pure 

electron current in the n-region and a pure hole current in the p-region. The charge current is 

then given by integrating over the contributions to the hole current (alternatively, the 

contributions to the electron current). If the forward current charge is arbitrarily counted as 

positive (electrons and holes flow towards the pn-junction), the charge current density is [1]: 

n

p

Z

Q p

Z

j e divj dz


   ,                                                                       (21)                                    

Where n nz L ct   and p pz L ct  . The constants Ln and Lp are obtained through the 

relations  n n nL D   and p p pL D  . 

From the continuity equation 
1

( , )p p

p
divj f n p

t e


 


,  

we get: 

 2 2 2p D

p
divj e Y X P X p B X n p

t

 
          

                                        (22) 

By replacing eq. (22) into (21), the integration of eq. (21) gives the charge current density as 

follows: 
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           
2 2 2

2 2 2 2
2 2 2 2 2 2 2

2 2 2

1
1 tan( ) tan( ) 1 exp

4 4 2 4
D D D

Q n p n p n p i n p

P P PY Y Y eV
j e Y cK X z z X cK z z X cK z z n B X z z

X X X kT

         
                                   

 (23)                             

The short-circuit current; the reverse saturation current and the open circuit voltage are the 

essential elements of the current-voltage characteristic of a pn-junction. 

An external short-circuit (V=0) defines the short-circuit current jsc as: 

             
2 2 2

2 2 2 2
2 2 2 2 2 2 2

2 2 2

1
1 tan( ) tan( ) 1

4 4 2 4
D D D

sc n p n p n p i n p

P P PY Y Y
j e Y cK X z z X cK z z X cK z z n B X z z

X X X

       
                       

        

   (24)                                           

The eq. (23) can turned to: 

   2 2
2 exp 1Q sc i n p

eV
j j e n B X Z Z

kT

   
        

   
                                   (25)                                 

In the dark, jsc=0 and for large negative voltages exp 1
eV

kT

  
  
  

  we find the reverse 

saturation current s Qj j  , as: 

  2 2
2s i n pj e n B X z z                                                                 (26)                   

From    

exp 1oc
Q sc s

eV
j j j

kT

  
    

  
,                                                            (27)                          

we obtain the open circuit voltage as: 

ln 1 sc
oc

s

jkT
V

e j

 
  

 
                                                                  (28)                  
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Fig.3. Electron and hole currents in a pn-junction for a positive polarity of the n-region with 

respect to the p-region [1] 

The overall efficiency of a solar cell is the product of absorption efficiency, thermalization 

efficiency, thermodynamic efficiency and the fill Factor [1]. 

The absorption of the incident energy current is the first process in the conversion of photons to 

electricity through the photovoltaic solar cells. The absorption efficiency is [1]: 

,

,

E abs

abs

E inc

j

j
                                                                               (29)                                     

The electron-hole pairs are produced initially with the mean energy abs  which by 

thermalization is reduced to 3G kT  . The thermalization efficiency is [1]: 

3G
thermalization

abs

kT








                                                                (30)                                        

The thermodynamic efficiency of a solar cell is obtained through [1] 

thermodynamic
3
oc

G

eV

kT






                                                               (31)                

The approximate fill factor is given by [1] 

    

ln 1

1

oc oc

oc

eV eV

kT kT
FF

eV

kT

 
  

 



                                                            (32)                    

The overall efficiency of a solar cell is defined as 

 thermalization thermodynamicabs FF                                                          (33) 
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For silicon, and particular for 20 μm thick cell exposure to AM1.5 spectrum, the following 

values are given [1]: 

0.74abs  ,  1.80abs eV  ,  3 1.2G kT eV   . 

 

2. RESULTS AND DISCUSSION   

The new proposed model of the reaction-diffusion equation which describes the phenomena of 

carriers transport in semiconductors band-trap impact ionization, by taking into account the 

parameter Y, permits to study the real process of the solar cell conversion. Using the 

factorization method the number of charge carriers has been determinate as solitary waves and 

dynamics variables.  

The impact ionization in the photovoltaic solar cell is induced by the external applied electric 

field Eo.This external applied electric field which can be considered in this study as a control 

parameter of the solar cell has a great impact on the charge carriers. By that, the solar cell 

energy is dependent of this parameter. It is true that the increase of Eo induced the increase of 

the charge carriers, but it has also been demonstrated that for a certain value of this parameter 

there are current instabilities in the solar cell. These current instabilities which are characterized 

by current oscillations have negative effects on the solar cell energy conversion.  

The diagrams of fig.4 and fig.5 have been plotted for 00 4000 V/CmE  and 

16 3 14 10 .Y Cm S   . For the range of 040 1800 V/CmE  , one could observe in these 

figures a significant increase of the maximum efficiency which falls down for 

0 1800 V/CmE  . In this last range of the control parameter the oscillations of the maximum 

efficiency is observed, certainly due to current instabilities in the solar cell [11-20]. These 

oscillations induce an instable decrease of the maximum efficiency showing that the current 

instabilities on the solar cell reduce its efficiency. 

The peak of the maximum efficiency is reached for 0 1800 V/CmE   corresponding for the 

given conditions to a value of 43.05 %. The minimum value of the maximum efficiency which 

is 30.07 % is obtained for 0 40 V/CmE   corresponding to a fill factor equals to 0.8654. The 
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interesting range of the control parameter Eo to be applied on the solar cell could then be in the 

order of 040 1800 V/CmE  .  

The band-band generation coefficient given by the parameter Y is due to the absorption of 

photons. The solar cell energy conversion is also dependent to this parameter. The simplest 

model of the band-trap impact ionization phenomenon doesn’t take into account this parameter. 

Taking it into account in this study permits us to evaluate the effectiveness real approximate 

value of the maximum efficiency for solar cell band-trap impact ionization. The diagram of 

fig.6 shows that the maximum efficiency increases with the increase of the parameter Y. This 

result permits us to validate the proposed model of the maximum efficiency evaluation. As one 

could see in the diagram of fig.7, the maximum efficiency of solar cell band-trap impact 

ionization can reach the value of 50.65 % for Y= 4×1022 Cm-3.S-1.  
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Fig.4. Maximum efficiency for 0 ≤ E0 ≤ 4000 V/Cm and Y = 4×1016 Cm-3.S-1 
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Fig.5. Diagram plotting maximum efficiency against Eo and t 
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Fig.6. Maximum efficiency against Y for 0 ≤ Y ≤ 4×1022 Cm-3.S-1 and E0 = 1800 V/Cm 
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Fig.7. Maximum efficiency for 0 ≤ E0 ≤ 4000 V/Cm and Y = 4×1022 Cm-3.S-1 

Table 2 presents the peak of the maximum efficiency for different values of Y. The time 

parameter has an effect on increasing of the maximum efficiency because the number of free 

charge carriers increase with time. The diagram of fig.8 shows a fast increase of the maximum 

efficiency for t ≤ 1000 s. For t ˃ 1000 s, the maximum efficiency increases slowly and tends 

verse a constant value, this means that there could has a upper limit of the photovoltaic solar 

cell’s maximum efficiency that could not vary with time during his working. 

Table 2. Peak of the maximum efficiency configuration 

Eo (V/Cm)       Y (Cm-3.S-1)     Time (S)             Maximum efficiency η (%)               

1800               4×1016          0.225                          43.05 

1800               4×1018          0.225                          43.19 

1800               4×1020               0.225                          45.9 

1800               4×1022          0.225                          50.65 
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Fig.8. Diagram plotting Maximum efficiency against t for Y = 4×1016 Cm-3.S-1 and E0 = 1800 

V/Cm 

 

3. CONCLUSION 

This work consisted to propose a new model of photovoltaic solar cell working in dynamical 

regime. Silicon solar cell band-trap impact ionization has been chosen in this effect. The results 

showed that electrons and holes densities from which depends the total charge current density 

have a solitary wave behavior. The maximum efficiency of the new solar cell has been 

evaluated. For a determinate range of the applied electric field Eo and for different values of the 

photo-generation coefficient, the peak of the maximum efficiency has been obtained for 

Eo=1800 V/cm. The impact of the photo-generation coefficient Y on the efficiency of the solar 

cell has been studied. For strong electric field, there are currents instabilities in the solar cell 

which reduce his efficiency. The obtained results prove that the band-trap impact ionization 

phenomenon can improve the efficiency of the solar cell.The obtained results could also permit 

to avoid the undesirable range of the external applied electric field on solar cell band-trap 
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impact ionization. The prospect of this work is to reflect on how to generate the external electric 

field in order to minimize the cost of the solar energy. 
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