
INFLUENCE OF BROKEN ROTOR BARS LOCATION IN THE SQUIRREL

CAGE INDUCTION MOTOR USING FINITE ELEMENT METHOD

N. Halem*, S. E. Zouzou, K. Srairi, S. Guedidi

Université de Biskra, département de génie électrique, BP 145, 07000, Algérie.

Received: 18 Avril 2013 / Accepted: 26 June 2013 / Published online: 30 June 2013

ABSTRACT

It is well known that the number of broken bars and varying load affect on the amplitudes of

specific harmonic components  1 2 sks f in the process analysis of induction motors under

broken rotor bars. The location of broken bars is an important factor which affects the

diagnosis of the broken bars defect. In this paper the simulation is determinate for different

cases for distribution of broken bars under induction motor pole in order to show the impact

of broken bars location upon the amplitude of harmonic fault. The simulation results are

obtained by using time stepping finite elements (TSFE) method. The geometrical

characteristics of motor, the effects of slotting and the magnetic saturation of lamination core

are included in induction motor model.
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1. INTRODUCTION

Rotor faults of induction machines yield asymmetrical operation of this one, causing

unbalanced currents, torque pulsation, increased losses and decreased average torque. The

need for detection of rotor faults at an earlier stage, so that maintenance can be scheduled, has

pushed the development of monitoring methods with increasing sensitivity and noise

protection.
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For that, a model closer to reality considering faults conditions must be established. An

analytical analysis method based on the rotating field theory and coupled circuit was used [1].

In works, where the machine inductances are calculated and the machine performance is

studied under faulty conditions, the Winding Function Approach (WFA), is used, where

several assumptions and approximations of the actual machine layout are made, like the

effects of stator teeth and slots, which are omitted in the calculations [2].

The modeling with finite element method represents a high fidelity electromagnetic behaviour

which leads to more precise results than other models, as the actual geometry and winding

layout of the machine are used. The consideration of the behaviour of the local

electromagnetic induction machine provides a more accurate modeling. The numerical

solution of Maxwell's equations governing the behaviour of electromagnetic fields and the

consideration of the equations representing the electrical supply circuit of the machine

reduces the simplifications made in the classical models. In analysis of induction motors, the

input current, not the voltage, is usually used. The voltage source is more suitable than current

source. The external circuit that represents the electrical sources and circuit components are

coupled to the FEM. Only the terminal voltages applied to the motor are required as known

input quantities, and the total terminal currents are the unknowns to be evaluated.

The use of time-stepping finite elements is the most precise way, up to date, for modeling the

coupled field-circuits and motion of induction motors, accounting for both saturation, time

and space harmonics. Indeed, the modeling of rotor mechanical motion and stator field source

variation simultaneously allows coupling the instantaneous fields of stator and rotor [3]-[4].

This paper presents the transient state modeling of cage induction motors using the coupled

electric circuit with 2D finite element electromagnetic field analysis.

The flux 2D magnetic analysis software is used for calculating the magnetic field of an

induction motor for the healthy rotor, and broken bars. In aim to show the influence of the

broken bars location upon the amplitudes of harmonics due to the fault, seven for different

positions are simulated at rated load.

2. TSFE ANALYSIS OF INDUCTION MOTOR BASED CIRCUIT-COUPLED

METHOD

Generally the induction motor is excited by an external voltage source, from many models

based on finite elements method, only the Circuit-Coupled Finite Element Method (Circuit-

Coupled FEM) can close this reality, here the external electric circuit which contains the three
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voltage sources is coupled to the finite element domain which contains the magnetic circuit of

the electric machine [5]-[6]-[7]. In table 1, specifications of the studied induction motor.

Table 1. Specifications of studied induction motor

Number of poles

Number of phases

Rated power (kW)

Rated voltage (V)

Frequency (Hz)

Rated speed (rpm)

Number of stator slots

Number of rotor slots

4

3

1.1

230

50

1425

36

28

For Preston [8] the transient magnetic field in terms of magnetic vector potential A ,  the

reluctivity, conductivity  , and current density J can be expressed as:

A A A
J

x x y y t
  

                   

The last term represents current induced in conducting material when flux changes with time.

For Salon [9] and Lombard [10] the full transient performance can be obtained by accounting

for the mechanical equation of the motor and the transient motional induced eddy current in the

rotor bars can't be neglected as in equation (1), the complete system is based on the differential

equation in compact form:

   A
A E V A

t
   

          

Where V is the speed of the moving parts, E is the electrical scalar potential applied by the

external circuit. So the problem is considered as transient alike. When the motor is loaded the

voltage time step must be accompanied by rotor motion corresponding to the slip. The time

step must be sufficiently small to ensure that the effects of slotting and static air gap

eccentricity are accurately modeled, also to obtain a suitable frequency resolution for the

application of Fast Fourier Transform (FFT) [11].

3. SIMULATION RESULTS

(2)

(1)
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In this paper, the induction motor is simulated under rated conditions. An induction machine

rotor asymmetry introduced by broken bars produces spectrum lines of stator current at

frequencies:

 1 1 2bb sf ks f 

Where sf is the electrical supply frequency, s is the slip, k=1, 2, 3, ...

Figure 1a, b shows the stator current spectrum of healthy and faulty rotor. According to fig. 1a

it can be clearly shown that the stator current spectrum for healthy state is very rich by the

expectation harmonic components [12] such; principal slot harmonics at 616.2Hz and

716.2Hz, saturation harmonics (150Hz, 250Hz, 350Hz, ...) and saturation related harmonics

(516.2Hz, 816.2Hz, 916.2Hz, ...), the appearing of those harmonic components signifies that

the finite element model used in this paper closers the reality of the induction motor.

Fig. 1. Stator current spectrum at steady state: a healthy rotor; b one broken bar
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In case of broken rotor bar as presented in fig. 1b, the rotor is electrically asymmetric and the

backward rotating field is created. The current spectrum reveals sidebands expected around

the supply frequency given by (3) [13]-[14].

Figures 2a, b, c, d and 3e, f, g, h, show the stator current spectrums in steady state according

with the corresponding magnetic flux distribution for healthy and faulty rotor at the transient

state. When the slip is large, the eddy current shows a large value. This high value of slip is

necessary to illustrate the effects of the broken bars on the field. The concentration of

magnetic flux is observed around the broken bars and creates asymmetric magnetic flux

distribution [15]-[14].

As shown in the fig. 2a, for healthy rotor; there are no index signatures of broken bar fault

around fundamental harmonic. As expected in the fig. 2b, the fault signatures of one broken

bar are appeared very clearly around fundamental harmonic. However when one bar breaks,

its adjacent bars expose more to the fault due to the larger stress on the bars. Following the

breakage of the first bar, the adjacent bars may break after a short period [13].

Figure 2c chows the stator current spectrum for two adjacent broken bars under one pole,

while the fig. 2d presents one broken bar on one pole and one broken bar on adjacent pole, the

amplitude of harmonic component  1 2 ss f is increased from -34.99dB to -29.80dB, also

the amplitude of harmonic component  1 2 ss f is increased from -31.33dB to -28.90dB,

Comparison of fig. 2b and 2c indicates that the amplitudes of harmonic components

 1 2 ss f are increased when the number of broken bar increased. Moreover comparison of

fig. 2c and 2d indicates that the higher increasing of the amplitudes of harmonic components

 1 2 ss f occurs when the two adjacent broken bars located at the same pole.

Figure 3e presents the stator current spectrum when the first and the eight bars are broken; one

broken bar on one pole and one broken bar on adjacent pole, the amplitudes of harmonic

components  1 2 ss f are -31.56dB and -29.94dB.

Figure 3f presents the stator current spectrum when the first and the fifteenth bars are broken;

one broken bar on one pole and one broken bar on opposite pole, the amplitudes of harmonic

components  1 2 ss f are -32.46dB and -29.99dB, it is clearly shown that the amplitudes of

harmonic components  1 2 ss f have no so much difference with the previous case, only

amplitude of harmonic component  1 2 ss f decreases from -31.56dB to -32.46dB.
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Fig. 2. Stator current spectrum at steady state and flux distribution at transient state for different

cases for distribution of broken bars under poles: a healthy rotor; b one broken bar; c two adjacent

broken bars on one pole; d two non adjacent broken bars, one broken bar on one pole and one

broken bar on adjacent pole
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Fig. 3. Stator current spectrum at steady state and flux distribution at transient state for different

cases for distribution of broken bars under poles: e two non adjacent broken bars, one broken bar

on one pole and one broken bar on adjacent pole; f two non adjacent broken bars, one broken bar
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on one pole and one broken bar on opposite pole; g three broken bars, two broken bars on one

pole and one broken bar on adjacent pole; h three adjacent broken bars under one pole

Figure 3g shows the stator current spectrum when the first, the second and the eight bars are

broken; it mean two broken bars on one pole and one broken bar on adjacent pole, the

amplitudes of harmonic components  1 2 ss f are -26.64dB and -26.28dB. Comparison of

fig. 3e, f and 3g indicates an important increasing in the amplitudes of harmonic

components  1 2 ss f , this increasing is caused by the added broken bar.

It is necessary to note that some research works witch based on analytic method to modeling

the faulty induction motor, affirmed that when two broken bars spaced electrically of / 2 ,

the amplitudes of harmonic components  1 2 ss f are very low [17]-[18]. In this paper, the

simulation results obtained from faulty induction motor model using TSFE method (fig. 3e, f,

and g) prove the contrary, the amplitudes of harmonic components  1 2 ss f in all cases are

very important.

As shown in fig. 3h which presents the stator current spectrum of faulty induction motor with

three adjacent broken bars, the successive breakage of three bars leads to more asymmetrical

flux distribution, and higher local saturation, more variations of the flux density and larger

harmonic components of the stator current are realized.

4. CONCLUSION

This paper presents the circuit coupled finite element method used to modeling the Three-

Phase Squirrel Cage Induction Motor. For this purpose, the time-stepping finite element

method (TSFE) was proposed. The broken rotor bar fault is simulated for different positions

under poles. It was investigated that the broken bar location affects upon the amplitude of

harmonic fault. It was shown that the amplitudes of harmonics due to broken bars located on

one pole are larger than the case in which the broken bars are distributed on different poles.

Also, the amplitudes of harmonics due to broken bars are larger when broken bars are

adjacent.
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