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ABSTRACT
The accuracy of the Fourier transform (FT), advgedaus for the aperiodic lattice (AL)

design, is significantly improved for strongly deaing periodic lattices (PLs) and ALs. The
approach is to inversely obtain corrected pararadtem an accurate transfer matrix method
for the FT. We establish a corrected FT in ordamprove the spectral inaccuracy of strongly
scattering PLs by redefining wave numbers and ct¥le intensity. We further correct the FT
for strongly scattering ALs by implementing impravents applied to strongly scattering PLs
and then making detailed wave number adjustmertfseirmain band spectral region. Silicon
lattice simulations are presented.
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1. INTRODUCTION
The renormalization technique, widely used in igeescattering problems, is an interesting
issue when applied to photonic bandgap structurephotonic integrated circuits (PICs) and

dense wavelength-division-multiplexing (DWDM) sysig [1,2]. The nonlinear Riccati
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differential equation technique, from which the Reutransform (FT) formula can be derived,
is commonly used for reconstruction in scatteriagditions [3,4]. Therefore, the relationship
between the reflection spectrum and the refractivéex for a scattering medium is
established by implementing the fast FT or invér§dormula.

Recently, the aperiodic lattice (AL) was develomesda novel design for the control of light
localization and transport properties utilizing thek of translational symmetry [5,6]. The FT
algorithm is particularly useful for inversely calating an aperiodic grating design from a
target reflective spectrum. Some algorithms basethe FT algorithm, such as the Fourier (k-)
space design approach, have been investigatedifomptrpose [7]. Unfortunately, the FT
formula suffers from inaccuracy as the scatteringength increases due to
phase-accumulation error and predicts a narrowatopic bandgap. An improved FT
formula has been investigated for certain case8].[8his improved method uses the
Debye—Waller approximation in order to model Braggonant behavior of the refractive
index and coupling coefficient. However, exampldsimproved FT algorithms in the
literature may overly simplify the resonant refraetindex, particularly when Bragg resonant
behavior occurs in an aperiodic lattice. Other iomements involve combining the Riccati
differential equation with optimization algorithmNevertheless, slow iterative schemes for
optimization hinder the fast and effective featof&T calculations [10,11].

As it is widely used in periodic lattice design dmg and is particularly useful in aperiodic
lattice design [12,13], the accuracy of the FT gt under strong scattering conditions is
the focus of this paper. We propose an inverseectan approach for the inaccurate FT
algorithm in strongly scattering lattices. The pepd scheme employs a conventional
Transfer Matrix (TM) method, an accurate algoritfanplotting a reflective spectrum from a
refractive index profile, to inversely obtain carted functions of the inaccurate FT formula.
Once a corrected FT formula is achieved, the irev&8 formula is also corrected. We first
investigate this corrected approach for the FT efiquic strongly scattering lattices.
Corrections to the FT for aperiodic lattices ardiewed using our improved approach for
periodic lattices, but by making further correcgan the main band spectral region. Several

simulations of silicon periodic and aperiodic le¢ls are presented.
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2. TRANSFER MATRIX METHOD FOR MODELING MULTILAYER FILTERS

The transfer matrix method (TMM) for modeling thrartsmission and reflection spectra of
multilayer filters was established assuming layeardary conditions [14,15]. Fig. 1 shows
forward and backward traveling fields in severgkls.

L -ikqz -jkoz -jk3z i
— e —_— e

i +jkoz +jkaz i
Be+jk1Z Dej 2 Fej 3 He+jk4Z
- - - -

z=0 Z=a z=b Z=c

Fig.1. The forward and backward traveling fields in a titeyer filter

The field amplitudes and their derivatives are cadus when the field passes through each

layer boundary. DefineM , z( )to be

M, (2) =[_ eCl) - ewi) } ®
jk,expt-jk,2)  jk,exp(jk,2)
Therefore, at the first boundary (z=a),
A C o Al _|C
Ml(a){B} = Mz(a){D} = M, (a)Ml(a){B} _{D} 2
Similarly, at the second boundary (z=b)
C E 4 C| _|E
Mz(b){D}—Mg(b){F} = M, (b)Mz(b){D}{F] 3)
which results in
-1 -1 A _ E
M (0)M,(b)M, (a)Ml(a)[B}{F] (4)

For a structure composed of N layers, we definendZ to be field amplitudes in the last

layer, equation (4) can then be written as
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1)

whereT is the product of all the individual matrices. Theundary condition is z=0 since
there is no wave reflected back in the last las&xssuming the amplitude of the incident field

is 1, equation (5) becomes

43

Where t and r are the transmission and reflectioefficient, respectively. Thus, we can
derive equations at a particular wavelength:
r=-T,/T,, t=T,+T,r. (7)

Transmission and reflection spectra are then obdainy performing calculations under

different wavelength conditions.

3. ACCURATE FT IN WEAKLY SCATTERING PERIODIC LATTICES

The Riccati equation derived by Jaggard and Kincg8j be expressed as

HES) - i nlk@D - 2k (9 iz, ®

K, z<0

kn(2), 220 ®)

where k(z) :{

k(z) is the local wave number, ank}, is its free-space value. From the Riccati equatios
complex reflection coefficientr(k, )at all wave numbers, is found from the knowledge

of the refractive index. Dividing Eq. (8) by a fact[1-r?(zk,)] yields the equation

i-r2(zk)] dz 24z - r(z ko)

Defining a new variablet(zk,) =tanh™*[r(zk,)] = r(zk,)[L-r*(zk,)]™" and inserting it
into Eq. (10) yields

di(zk,) _1d = .
. 20|2{|n[ n(2)]} -2k, (2 1(zk,) - (11)

Eqg. (11) becomes a linear equation in the new blidz k, ), with solution
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F(k,) =—= IE{In[ K(Z)[} exp 2ik j r(z)dzjdz". (12)
Therefore, restoringr(k, )from f(k,) =tanh[r(k,)] to yield the equation
r(ko):tan%—l]ga{ln[ k(Z")]} exp 2ik j r(z)dzjdz"‘. (13)
Rewriting Eq. (13) by replacingn = NP get

_ 17 1 de(x) -
r(k,) = tan}‘i 200 ax exp 2ik, { r(z)dzjd>+ (14)

An acceptable approximation under weakly scatteatigce conditions is to take x (outside

of the integral ag”. Accordingly,

_ de(x)
r(k,) = tan —4_2j =& 2|kjr(z)dzj . (15)
Amplitude®erm PhaseTerm

This equation is the Fourier transform implementedugh the following sections, and Eq.
(15) is accurate in weakly scattering photonicidat but inaccurate under strong scattering

conditions.

4. CORRECTION OF FOURIER TRANSFORM FOR PERIODIC LATTICES WITH

A HIGH-CONTRAST REFRACTIVE INDEX

4.1. Principlefor periodic lattices

Figure 2 shows a typical inaccurate reflective spee of a FT for strongly scattering lattices,
calculated by equation (15). Compared with the TMiMs inaccurate FT shows a narrower
bandwidth, wider sub-bandwidths on both sides, ameeaker reflectivity in some cases. We
propose to improve the FT using Eq. (15) by using@urate TMM as the target spectrum to

inversely adjust the amplitude term by addingMeightfactorand redefining the wave

numberk ¢ ) in the phase term. Accordingly, we first define fi4,... and F1, F2,... in order

to express the minimum points of the left and rigidies of the original FT profile. We also
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define t1, t2,... and T1, T2,... on the left and rigkies for the TMM profile (see Figure 2).
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Fig.2. A typical inaccurate spectrum from the original fl6fmula

After identifying the minimum points, we establish

A_shift. R=T1-F1,

A_shift_ L=f1-t1, (16)
ADJ_R(A) =[F(n) - F(n-D)}/[T(n) -T(n-1)],

ADJI_L(A) =[f(n) - f (n+D]/[t(n) ~ t(n+D)]. (17)

Egs. (16) and (17) indicate how the wave numberarhespectral point should be adjusted.

The purpose ofAd_shift_ R and A_shift_L is to expand the bandwidthADJ R and
ADJ L determine the degree of width adjustment of thie-ls|andwidths on both sides.

Here,k(z) =2/mn/ A is one of the target parameters to adjust in the F

Hence, the original FT is rewritten as

For A>(A_shift_ R+ A

Bragg )l

r()IR)ztan}‘i—‘l—;zT dz(xx) XWelghtfacd)rxexp{ ( ]j r(z)dz] { (18)

0

FOr (Agragy = A _Shift_L) £ A < Ay + A _shift_R),

r(A) = r.(/1Bragg) ; 619
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For A < (Agage = A _shift_L),

1 tde(x) . [ 2m)¢
r(A,) =tanh- xWeightfacor xexp 2i| — dz (dx. 20
(A) rfmz{ o XWeig ‘HA?]!“H (20)
Here, A,.,, IS the Bragg wavelength, and

A= (A = Ay )X ADI_R(A) + A2,
A= —(A.,—A)xADI_L(A). (21)
Eq. (21) reveals the adjusted magnitude of the veangth (wave number) in each spectral

point. The initial values ofA,_, and Az, are (A_shift_R+ A, ) The initial values of

Bragg
Ay and A%, are (g, —A_shift_L). In addition, (4, - A.,) and (A, -A,) indicate
the resolution distance of the wavelengths. Waekghtfactomparameter adjusts the reflectivity.

Here,A _shift_ L , A_shift R, Weightfactor ADJ_R and ADJ L are obtained

according to the accurate spectrum of the TMM.

4.2. Simulation results

We verify our corrected FT using examples of siicperiodic gratings under strongly
scattering conditions for DWDM systems. We used WATLAB environment for all
calculations. The first example is shown in Fig.)3{de total length of the periodic grating is
11.428um with 49 period numbers and 233.22 nm for thequkei pitch width. Within each
period, the grating is composed of two types ofawfve index: 1.86 corresponding to a
width of 29.9nm and 3.47 corresponding to a widtB@8.32 nm. The difference between the
two refractive indiceAnis 1.61. The central Bragg wavelength of this fileef543 nm. After
calculating through the TMM and the original FTarder to inversely establish the corrected

FT, the reflection profile of the spectrum is swsfally adjusted by increasingfeightfactor

to 1.4475 and setting 24.384 nm and 70.715 nmAfoshift_L and A_shift_R,

respectively. ADJ R and ADJ L are also provided to readjust new wave numbers. |

the profile of the corrected FT, the maximum poisitshe bandwidth and sub-bandwidths on
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both sides meet the maximum points of that in thedile of the TMM, showing that the

designated wavelengths for filtering are correptigsented after correction.
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Fig.3. A comparison of the corrected FT with the TMM ahd original FT. (a) Periodic

grating with 49 periods. (b) Periodic grating wit8 periods

In the second example, a periodic grating with g#8qals and a 235.6 nm period width is

presented. The total length of this grating is 48&4®. Each period consists of two refractive

indices: 3.47 and 2.2. For each period, the rafradhdex of 3.47 corresponds to a width of

197.6 nm and 2.2 corresponds to a width of 38 nereHAN is then 1.27. The central Bragg

wavelength is located at 1554 nm. By calculating TMN the original FT, the corrected

parameters are found as 1.4715 Mfeightfactoy 15.367 inA_shift_L , 42.485 in

A _shift_ R, and the database oADJ_R and ADJ L are found to generate the

corrected FT. This second example shows that thi@lgofoom the corrected FT coincides

with that from the TMM, as shown in Fig. 3(b). Theotwimulation results preliminarily
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demonstrate the accuracy of the proposed correttidhe FT formula, which presents the

desired wavelength correctly from a periodic grtin

5. CORRECTION OF THE FOURIER TRANSFORM FOR APERIODIC LATTICES
WITH AHIGH -CONTRAST REFRACTIVE INDEX

When considering an aperiodic grating design, thesRhe principal and rapid algorithm for
generating aperiodic sequences of lattices frorarget spectrum. The simulated annealing
(SA) optimization algorithm is one of the desigedhes developed based on the FT [7]. Fig.

4(a) shows an aperiodic structure designed by agphn SA algorithm. Each vertical line in
the structure corresponds to a narrow, low refvactndex slot. A is the minimum slot

separation. All parameters of this aperiodic latt{&\L) are the same as that in Fig. 3(a)
except that certain periodic sequences are brolesefects in order to obtain aperiodicity.
The spectrum of this AL is displayed in Fig. 4(bhexe we observe two separate profiles:
TMM (blue line) and FT (red dotted line). The separaprofiles of the blue and red dotted

lines reveal the inaccuracy of the original FTdtmongly scattering aperiodic gratings.
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The rough spectral correction in the black dotted torresponds to the spectrum of the

aperiodic grating, plotted using the corrected Fpayiodic gratings

In this section, we further improve on the FT iderto accommodate aperiodic lattices (AL)
under strong scattering conditions. First, the psagl rectified FT algorithms for correction
of the periodic lattice in Fig. 3(a) is appliedttee aperiodic grating, and the corresponding
result is illustrated in black dotted line showrFiig. 4(b). According to the spectral result, the
wavelengths of the sub-bandwidths on both sidesi@agly adjusted to the right wavelengths
when comparing with the profile of the original FModeling reveals a significant
improvement of the sub-bandwidths on both sidethen spectral correction. For identical
parameters other than aperiodic defects, usingcéineected FT of this periodic grating to
implement corrections to aperiodic gratings witleragpdic defects results in sub-bandwidths
on both sides nearly identical to that of the aataiTMM, in particular regarding the location

of the wavelength of each peak. In the next secti@investigate the corrections to the main
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bandwidth, where the corrected FT for periodic iggd is clearly inapplicable for aperiodic
gratings.

5.1. Principle of correction for aperiodic lattices

In order to establish a corrected FT for aperidditices, we first define the parameters as

shown in Fig. 4. The left and right minimum extrepwents on the TMM profile in the main

band region are defined aBLTMM _L and ALTMM _R. The definition of ALFT _L
andALFT _R are the left and right minimum extreme pointshaf original FT profile in the
main band region. Thus, we obtain the proportiowafelength adjustmenimain_ad;j :
main_adj=(ALFT_R-ALFT_L)/(ALTMM _R-ALTMM _L). (22)

Eq. (22) provides the required adjusted wavelengigmtude at each spectral point. We then
add an additional formula towards the main bandoredpr the improved FT for aperiodic

lattices:

For ALTMM_L<A<ALTMM_R,

0 main

Cod 1 Fde() y (2 )t
r()lmam)—tan% = | ¥ Weightfacor eX[{ZI(/]a ]{ I(z)dzjdx{, (23)

Where A?nain = A;ain—l + (Amain - Amain—l)x main_ adJ(A (24)

main) .

and A2

main-1

The initial values of A are ALTMM _L , and(4 Avaina ) IS the

main-1 main
wavelength resolution distance.

The improved FT for strongly scattering aperiodiatongs is summarized as follows:

Find the periodic grating (PG) having an equivaletdl! length to the target aperiodic grating,
and such that both periodic and aperiodic grativeyse the same unit pitch length.

Calculate the corrected FT of the PG using Eqs-(286).

Implement the corrected FT of the PG to the idytiaorrected calculation of the target
aperiodic grating.

(4) Calculate the corrected FT in the main bandoregsing Egs. (22)-(24) to establish the
corrected FT of the AG, and implement it in orderatjust the inaccurate spectrum of the

target aperiodic grating.
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5.2. Simulation results

Following the previous example of a periodic grgtim Fig. 3(a), we now break some
periodic sequences in order to create aperiodictsires, alter the total length, and perform
simulations to verify the proposed corrected FTapériodic gratings. The unit pitch width,
the two refractive indices with their occupied vaslt the difference between the two
refractive indices, and the central Bragg wavelerggatings remain the same as that in Fig.
3(a). The only variable is the period number thatiits in a certain total length.

The first example is an aperiodic grating with pittstribution shown in Fig. 5(a.1). The total
length of this aperiodic grating is 11.428m, the same as that in Fig. 4. The corresponding

spectrum of this aperiodic grating, plotted usihg torrected FT for aperiodic gratings, is
shown in Fig. 5(a.2). In comparison with the pmfitom the original, inaccurate FT, our
proposed correction for aperiodic gratings incredbe accuracy of the spectrum. The peaks
of the three modes located at accurate wavelengttiee main band region are the greatest
improvement of our corrected FT of aperiodic grggin

In the second example, we maintain the same tetajth as that in Fig. 5(a.1), but use
different pitch distributions shown in Fig. 5(b.Eig. 5(b.2) displays its spectrum. The profile
from the corrected FT for aperiodic gratings neanlgtches that of the accurate profile from
TMM, in particular for peaks of the four modes ire tmain band region located at accurate

wavelengths.
In the third example, we reduce the total lengtthefaperiodic grating to 8.163m. The

pitch distribution is shown in Fig. 5(c.1). The spam of this short aperiodic grating is
illustrated in Fig. 5(c.2), where the two profilesm TMM and the corrected FT of aperiodic
gratings almost match, successfully correctingiRidor aperiodic gratings. In the final

example, we further reduce the length of the apérigrating shown in Fig. 5(d.1) to be
4.664 1 m. A more accurate correction of the spectrumiimseof the corrected FT for

aperiodic gratings is presented in Fig. 5(d.2).
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Fig.5. Several corrected outcomes using the aperiodicHspeorrected FT for strongly
scattering aperiodic gratings with different lergytBlue lines represent the accurate TMM as
target profiles. Purple dash lines show the prsefitem the corrected FT for aperiodic

gratings. Green dotted lines are the profiles efdhginal, inaccurate FT

According to the four simulation examples, the ifest FT for aperiodic gratings greatly
improves the original FT for high contrast refraetindex grating conditions. Although the
effect of the phase-accumulated error more or &s®mpanies an increase in total length,
leading to a little incomplete correction of thentdavidth in the main band region as the total
grating length increases, the proposed FT for agerigratings still significantly reduces the
phase-accumulated error and improves the spectcgoracy of the original FT. In addition,

modes in the main band region peak at accuratelarayths. Furthermore, when applying a
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strongly scattering aperiodic grating in a resonafiplication, such as lasing, only extremely
narrow bands survive inside the cavity, reducing tmportance of bandwidth accuracy.
Through our simulations, we demonstrated the aliitgorrect the FT of aperiodic gratings,

particularly for short aperiodic gratings undepasty scattering conditions.

6. CONCLUSIONS

We have developed a corrected Fourier transform (#@finula for strongly scattering
periodic and aperiodic lattices. The original FTnied from the nonlinear Riccati differential
equation, suffers from an inaccurate spectrum usttengly scattering conditions. We used
an accurate reflective spectrum calculated usiegttAnsfer matrix method (TMM) as the
target spectral profile in order to inversely obtabrrected parameters for the original FT
formula. In this way, the original FT formula igdely corrected, as is the inverse FT formula.
In contrast to assuming photon resonant behaviorttie refractive index and coupling
coefficient through models such as the Debye—Walpgroximation, our approach involves
inversely obtaining corrected wave numbers andattjasted reflection intensityweighting
factor” from the accurate TMM for our corrected FT. In tiviay, we avoid directly assuming
Bragg resonant behavior which may be more unpraolet and complicated than
Debye—Waller approximation model in terms of apdidogratings. Simulations reveal that
the phase-accumulation errors are hugely minimized, the peak of each main mode is
adjusted to the correct wavelength location. Fnalie believe that the proposed correction to
the FT of strongly scattering lattices is helpfoit &lgorithm development of aperiodic lattice
design under high-contrast refractive index condgiso as to create a fast Fourier transform
relationship between the aperiodic pitch distribatiand the corresponding reflective

spectrum.
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