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ABSTRACT 

The accuracy of the Fourier transform (FT), advantageous for the aperiodic lattice (AL) 

design, is significantly improved for strongly scattering periodic lattices (PLs) and ALs. The 

approach is to inversely obtain corrected parameters from an accurate transfer matrix method 

for the FT. We establish a corrected FT in order to improve the spectral inaccuracy of strongly 

scattering PLs by redefining wave numbers and reflective intensity. We further correct the FT 

for strongly scattering ALs by implementing improvements applied to strongly scattering PLs 

and then making detailed wave number adjustments in the main band spectral region. Silicon 

lattice simulations are presented. 

Keywords: Fourier transform algorithm; aperiodic lattice; strong scattering; Bragg resonant 

behavior; transfer matrix method; Riccati differential equation. 
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1. INTRODUCTION 

The renormalization technique, widely used in inverse scattering problems, is an interesting 

issue when applied to photonic bandgap structures for photonic integrated circuits (PICs) and 

dense wavelength-division-multiplexing (DWDM) systems [1,2]. The nonlinear Riccati 
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differential equation technique, from which the Fourier transform (FT) formula can be derived, 

is commonly used for reconstruction in scattering conditions [3,4]. Therefore, the relationship 

between the reflection spectrum and the refractive index for a scattering medium is 

established by implementing the fast FT or inverse FT formula. 

Recently, the aperiodic lattice (AL) was developed as a novel design for the control of light 

localization and transport properties utilizing the lack of translational symmetry [5,6]. The FT 

algorithm is particularly useful for inversely calculating an aperiodic grating design from a 

target reflective spectrum. Some algorithms based on the FT algorithm, such as the Fourier (k-) 

space design approach, have been investigated for this purpose [7]. Unfortunately, the FT 

formula suffers from inaccuracy as the scattering strength increases due to 

phase-accumulation error and predicts a narrower photonic bandgap. An improved FT 

formula has been investigated for certain cases [8,9]. This improved method uses the 

Debye–Waller approximation in order to model Bragg resonant behavior of the refractive 

index and coupling coefficient. However, examples of improved FT algorithms in the 

literature may overly simplify the resonant refractive index, particularly when Bragg resonant 

behavior occurs in an aperiodic lattice. Other improvements involve combining the Riccati 

differential equation with optimization algorithms. Nevertheless, slow iterative schemes for 

optimization hinder the fast and effective feature of FT calculations [10,11]. 

As it is widely used in periodic lattice design theory and is particularly useful in aperiodic 

lattice design [12,13], the accuracy of the FT algorithm under strong scattering conditions is 

the focus of this paper. We propose an inverse correction approach for the inaccurate FT 

algorithm in strongly scattering lattices. The proposed scheme employs a conventional 

Transfer Matrix (TM) method, an accurate algorithm for plotting a reflective spectrum from a 

refractive index profile, to inversely obtain corrected functions of the inaccurate FT formula. 

Once a corrected FT formula is achieved, the inverse FT formula is also corrected. We first 

investigate this corrected approach for the FT of periodic strongly scattering lattices. 

Corrections to the FT for aperiodic lattices are achieved using our improved approach for 

periodic lattices, but by making further corrections in the main band spectral region. Several 

simulations of silicon periodic and aperiodic lattices are presented. 
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2. TRANSFER MATRIX METHOD FOR MODELING MULTILAYER FILTERS 

The transfer matrix method (TMM) for modeling the transmission and reflection spectra of 

multilayer filters was established assuming layer boundary conditions [14,15]. Fig. 1 shows 

forward and backward traveling fields in several layers. 

 

Fig.1. The forward and backward traveling fields in a multilayer filter 

 

The field amplitudes and their derivatives are continuous when the field passes through each 
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Similarly, at the second boundary (z=b) 
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which results in 
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For a structure composed of N layers, we define Y and Z to be field amplitudes in the last 

layer, equation (4) can then be written as 
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where T is the product of all the individual matrices. The boundary condition is z=0 since 

there is no wave reflected back in the last layer. Assuming the amplitude of the incident field 

is 1, equation (5) becomes 
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Where t and r are the transmission and reflection coefficient, respectively. Thus, we can 

derive equations at a particular wavelength: 

2221 /TTr −= , rTTt 1211 += .                                        (7) 

Transmission and reflection spectra are then obtained by performing calculations under 

different wavelength conditions. 

 

3. ACCURATE FT IN WEAKLY SCATTERING PERIODIC LATTICES 

The Riccati equation derived by Jaggard and Kim [3] can be expressed as 
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)(zk  is the local wave number, and 0k  is its free-space value. From the Riccati equation, the 

complex reflection coefficient )( 0kr  at all wave numbers 0k  is found from the knowledge 

of the refractive index. Dividing Eq. (8) by a factor )],(1[ 0
2 kzr−  yields the equation 
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Defining a new variable 1
0
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1
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into Eq. (10) yields 
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Eq. (11) becomes a linear equation in the new variable ),(ˆ 0kzr , with solution 
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Therefore, restoring )( 0kr  from )]([tanh)(ˆ 0
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Rewriting Eq. (13) by replacing ε=n , we get 
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An acceptable approximation under weakly scattering lattice conditions is to take )(xε outside 

of the integral as2n . Accordingly, 
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This equation is the Fourier transform implemented through the following sections, and Eq. 

(15) is accurate in weakly scattering photonic lattices but inaccurate under strong scattering 

conditions. 

 

4. CORRECTION OF FOURIER TRANSFORM FOR PERIODIC LATTICES WITH 

A HIGH-CONTRAST REFRACTIVE INDEX 

4.1. Principle for periodic lattices 

Figure 2 shows a typical inaccurate reflective spectrum of a FT for strongly scattering lattices, 

calculated by equation (15). Compared with the TMM, this inaccurate FT shows a narrower 

bandwidth, wider sub-bandwidths on both sides, and a weaker reflectivity in some cases. We 

propose to improve the FT using Eq. (15) by using an accurate TMM as the target spectrum to 

inversely adjust the amplitude term by adding a Weightfactor and redefining the wave 

number )(zk  in the phase term. Accordingly, we first define f1, f2,… and F1, F2,… in order 

to express the minimum points of the left and right sides of the original FT profile. We also 
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define t1, t2,… and T1, T2,… on the left and right sides for the TMM profile (see Figure 2). 

 

Fig.2. A typical inaccurate spectrum from the original FT formula 

 

After identifying the minimum points, we establish 
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11__ tfLshift −=λ ,                                            (16) 
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Eqs. (16) and (17) indicate how the wave number in each spectral point should be adjusted. 

The purpose of Rshift__λ  and Lshift__λ  is to expand the bandwidth; RADJ _  and 

LADJ _  determine the degree of width adjustment of the sub-bandwidths on both sides. 

Here, λπ /2)( nzk =  is one of the target parameters to adjust in the FT. 

Hence, the original FT is rewritten as 
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Here, Braggλ  is the Bragg wavelength, and 
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Eq. (21) reveals the adjusted magnitude of the wavelength (wave number) in each spectral 

point. The initial values of 1−Rλ  and a
R 1−λ  are )__( BraggRshift λλ + . The initial values of 

1+Lλ  and a
L 1+λ  are ( )LshiftBragg __λλ − . In addition, )( 1−− RR λλ  and )( 1 LL λλ −+  indicate 

the resolution distance of the wavelengths. The Weightfactor parameter adjusts the reflectivity. 

Here, Lshift__λ , Rshift__λ , Weightfactor, RADJ _  and LADJ _  are obtained 

according to the accurate spectrum of the TMM. 

 

4.2. Simulation results 

We verify our corrected FT using examples of silicon periodic gratings under strongly 

scattering conditions for DWDM systems. We used the MATLAB environment for all 

calculations. The first example is shown in Fig. 3(a). The total length of the periodic grating is 

11.428 µm with 49 period numbers and 233.22 nm for the periodic pitch width. Within each 

period, the grating is composed of two types of refractive index: 1.86 corresponding to a 

width of 29.9nm and 3.47 corresponding to a width of 203.32 nm. The difference between the 

two refractive indicesn∆ is 1.61. The central Bragg wavelength of this filter is 1543 nm. After 

calculating through the TMM and the original FT in order to inversely establish the corrected 

FT, the reflection profile of the spectrum is successfully adjusted by increasing Weightfactor 

to 1.4475 and setting 24.384 nm and 70.715 nm for Lshift__λ  and Rshift__λ , 

respectively. RADJ _  and LADJ _  are also provided to readjust new wave numbers. In 

the profile of the corrected FT, the maximum points of the bandwidth and sub-bandwidths on 
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both sides meet the maximum points of that in the profile of the TMM, showing that the 

designated wavelengths for filtering are correctly presented after correction. 

 
Fig.3. A comparison of the corrected FT with the TMM and the original FT. (a) Periodic 

grating with 49 periods. (b) Periodic grating with 18 periods 

 

In the second example, a periodic grating with 18 periods and a 235.6 nm period width is 

presented. The total length of this grating is 4.2408 µm. Each period consists of two refractive 

indices: 3.47 and 2.2. For each period, the refractive index of 3.47 corresponds to a width of 

197.6 nm and 2.2 corresponds to a width of 38 nm. Here, n∆  is then 1.27. The central Bragg 

wavelength is located at 1554 nm. By calculating TMM and the original FT, the corrected 

parameters are found as 1.4715 for Weightfactor, 15.367 in Lshift__λ , 42.485 in 

Rshift__λ , and the database of RADJ _  and LADJ _  are found to generate the 

corrected FT. This second example shows that the profile from the corrected FT coincides 

with that from the TMM, as shown in Fig. 3(b). The two simulation results preliminarily 
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demonstrate the accuracy of the proposed correction to the FT formula, which presents the 

desired wavelength correctly from a periodic grating. 

 

5. CORRECTION OF THE FOURIER TRANSFORM FOR APERIODIC LATTICES 

WITH A HIGH -CONTRAST REFRACTIVE INDEX 

When considering an aperiodic grating design, the FT is the principal and rapid algorithm for 

generating aperiodic sequences of lattices from a target spectrum. The simulated annealing 

(SA) optimization algorithm is one of the design theories developed based on the FT [7]. Fig. 

4(a) shows an aperiodic structure designed by applying an SA algorithm. Each vertical line in 

the structure corresponds to a narrow, low refractive index slot. Λ is the minimum slot 

separation. All parameters of this aperiodic lattice (AL) are the same as that in Fig. 3(a) 

except that certain periodic sequences are broken by defects in order to obtain aperiodicity. 

The spectrum of this AL is displayed in Fig. 4(b), where we observe two separate profiles: 

TMM (blue line) and FT (red dotted line). The separation profiles of the blue and red dotted 

lines reveal the inaccuracy of the original FT for strongly scattering aperiodic gratings. 
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Fig.4. (a) An aperiodic design. Vertical lines represent narrow, low refractive index slots. (b) 

The rough spectral correction in the black dotted line corresponds to the spectrum of the 

aperiodic grating, plotted using the corrected FT of periodic gratings 

 

In this section, we further improve on the FT in order to accommodate aperiodic lattices (AL) 

under strong scattering conditions. First, the proposed rectified FT algorithms for correction 

of the periodic lattice in Fig. 3(a) is applied to the aperiodic grating, and the corresponding 

result is illustrated in black dotted line shown in Fig. 4(b). According to the spectral result, the 

wavelengths of the sub-bandwidths on both sides are nearly adjusted to the right wavelengths 

when comparing with the profile of the original FT. Modeling reveals a significant 

improvement of the sub-bandwidths on both sides in the spectral correction. For identical 

parameters other than aperiodic defects, using the corrected FT of this periodic grating to 

implement corrections to aperiodic gratings with aperiodic defects results in sub-bandwidths 

on both sides nearly identical to that of the accurate TMM, in particular regarding the location 

of the wavelength of each peak. In the next section, we investigate the corrections to the main 
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bandwidth, where the corrected FT for periodic gratings is clearly inapplicable for aperiodic 

gratings. 

5.1. Principle of correction for aperiodic lattices 

In order to establish a corrected FT for aperiodic lattices, we first define the parameters as 

shown in Fig. 4. The left and right minimum extreme points on the TMM profile in the main 

band region are defined as LALTMM _  and RALTMM _ . The definition of LALFT _  

and RALFT _  are the left and right minimum extreme points of the original FT profile in the 

main band region. Thus, we obtain the proportion of wavelength adjustment adjmain_ : 

)__/()__(_ LALTMMRALTMMLALFTRALFTadjmain −−= .         (22) 

Eq. (22) provides the required adjusted wavelength magnitude at each spectral point. We then 

add an additional formula towards the main band region for the improved FT for aperiodic 

lattices: 

For RALTMMLALTMM __ ≤≤ λ , 
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where ( ) )(_11 mainmainmain
a
main

a
main adjmain λλλλλ ×−+= −− .                  (24) 

The initial values of 1−mainλ  and a
main 1−λ  are LALTMM _ , and )( 1−− mainmain λλ  is the 

wavelength resolution distance. 

The improved FT for strongly scattering aperiodic gratings is summarized as follows: 

Find the periodic grating (PG) having an equivalent total length to the target aperiodic grating, 

and such that both periodic and aperiodic gratings have the same unit pitch length. 

Calculate the corrected FT of the PG using Eqs. (16)-(21). 

Implement the corrected FT of the PG to the initially corrected calculation of the target 

aperiodic grating. 

(4) Calculate the corrected FT in the main band region using Eqs. (22)-(24) to establish the 

corrected FT of the AG, and implement it in order to adjust the inaccurate spectrum of the 

target aperiodic grating. 
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5.2. Simulation results 

Following the previous example of a periodic grating in Fig. 3(a), we now break some 

periodic sequences in order to create aperiodic structures, alter the total length, and perform 

simulations to verify the proposed corrected FT of aperiodic gratings. The unit pitch width, 

the two refractive indices with their occupied widths, the difference between the two 

refractive indices, and the central Bragg wavelength gratings remain the same as that in Fig. 

3(a). The only variable is the period number that results in a certain total length. 

The first example is an aperiodic grating with pitch distribution shown in Fig. 5(a.1). The total 

length of this aperiodic grating is 11.428 μm, the same as that in Fig. 4. The corresponding 

spectrum of this aperiodic grating, plotted using the corrected FT for aperiodic gratings, is 

shown in Fig. 5(a.2). In comparison with the profile from the original, inaccurate FT, our 

proposed correction for aperiodic gratings increases the accuracy of the spectrum. The peaks 

of the three modes located at accurate wavelengths in the main band region are the greatest 

improvement of our corrected FT of aperiodic gratings. 

In the second example, we maintain the same total length as that in Fig. 5(a.1), but use 

different pitch distributions shown in Fig. 5(b.1). Fig. 5(b.2) displays its spectrum. The profile 

from the corrected FT for aperiodic gratings nearly matches that of the accurate profile from 

TMM, in particular for peaks of the four modes in the main band region located at accurate 

wavelengths. 

In the third example, we reduce the total length of the aperiodic grating to 8.163μm. The 

pitch distribution is shown in Fig. 5(c.1). The spectrum of this short aperiodic grating is 

illustrated in Fig. 5(c.2), where the two profiles from TMM and the corrected FT of aperiodic 

gratings almost match, successfully correcting the FT for aperiodic gratings. In the final 

example, we further reduce the length of the aperiodic grating shown in Fig. 5(d.1) to be 

4.664 μm. A more accurate correction of the spectrum in terms of the corrected FT for 

aperiodic gratings is presented in Fig. 5(d.2). 
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Fig.5. Several corrected outcomes using the aperiodic-specific corrected FT for strongly 

scattering aperiodic gratings with different lengths. Blue lines represent the accurate TMM as 

target profiles. Purple dash lines show the profiles from the corrected FT for aperiodic 

gratings. Green dotted lines are the profiles of the original, inaccurate FT 

 

According to the four simulation examples, the rectified FT for aperiodic gratings greatly 

improves the original FT for high contrast refractive index grating conditions. Although the 

effect of the phase-accumulated error more or less accompanies an increase in total length, 

leading to a little incomplete correction of the bandwidth in the main band region as the total 

grating length increases, the proposed FT for aperiodic gratings still significantly reduces the 

phase-accumulated error and improves the spectrum accuracy of the original FT. In addition, 

modes in the main band region peak at accurate wavelengths. Furthermore, when applying a 
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strongly scattering aperiodic grating in a resonator application, such as lasing, only extremely 

narrow bands survive inside the cavity, reducing the importance of bandwidth accuracy. 

Through our simulations, we demonstrated the ability to correct the FT of aperiodic gratings, 

particularly for short aperiodic gratings under strong scattering conditions. 

 

6. CONCLUSIONS 

We have developed a corrected Fourier transform (FT) formula for strongly scattering 

periodic and aperiodic lattices. The original FT, formed from the nonlinear Riccati differential 

equation, suffers from an inaccurate spectrum under strongly scattering conditions. We used 

an accurate reflective spectrum calculated using the transfer matrix method (TMM) as the 

target spectral profile in order to inversely obtain corrected parameters for the original FT 

formula. In this way, the original FT formula is largely corrected, as is the inverse FT formula. 

In contrast to assuming photon resonant behavior for the refractive index and coupling 

coefficient through models such as the Debye–Waller approximation, our approach involves 

inversely obtaining corrected wave numbers and the adjusted reflection intensity “weighting 

factor”  from the accurate TMM for our corrected FT. In this way, we avoid directly assuming 

Bragg resonant behavior which may be more unpredictable and complicated than 

Debye–Waller approximation model in terms of aperiodic gratings. Simulations reveal that 

the phase-accumulation errors are hugely minimized, and the peak of each main mode is 

adjusted to the correct wavelength location. Finally, we believe that the proposed correction to 

the FT of strongly scattering lattices is helpful for algorithm development of aperiodic lattice 

design under high-contrast refractive index conditions so as to create a fast Fourier transform 

relationship between the aperiodic pitch distribution and the corresponding reflective 

spectrum. 
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