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ABSTRACT
Using the fixed point method, we prove the generalized Hyers-Ulam stability of the following
generalized sextic functional equation
Df (x, y):= f (mx+ y) +f (Mx—y) +f(x+ my) +f(x— my)

= (m*+ ) [f(cr y+(x— y)] —2(m’— =+ 1) [f() + ()]
in matrix fuzzy normed spaces. Furthermore, using the fixed point method, we aso prove the
Hyers-Ulam stability of the above functional equation in matrix random normed spaces.
Keywords. Hyers-Ulam stability; fixed point method; matrix fuzzy normed space; matrix

random normed spaces; sextic functional equation.
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1. INTRODUCTION

The stability problem of functional equations originated from a question of Ulam [13] in1940,
concerning the stability of group homeomorphisms. In the next year, Hyers [7] gave the first
affirmative partial answer to the question of Ulam for Banach spaces. Hyers’ result was the
generalized by Aoki [1] for additive mappings and by Rassias [11] for linear mappings. A

generalization of the Rassias’s theorem was obtained by Gavruta [6] who replaced € (7 x# P
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+/yr P) the by a general control function @(x, y). Since then, the stability of severa
functiona equations has been extensively investigated by several mathematicians.
Furthermore some stability results of functional equations and inequalities were investigated
in matrix normed spaces, matrix paranormed spaces and matrix fuzzy normed spaces.
In this paper, we consider the following sextic functional equation
f(mxt y) +f (mx—y) +(x+ my) +f(x— my)

= (m*+ mP) [f(x + y) + f (x=y)] + 2(m® — m* — n? + 1) [f(x) + f(y)] (1.1)
The main purpose of this paper is to apply the fixed point method to investigate the Hyers-
Ulam stability of functional equation (1.1) in matrix fuzzy spaces and matrix random normed
spaces.
Definition 1.1 ([3]) Let X beaset. A function d: X x X—[0, ] is called ageneralized metric
on X if d satisfies
(D) dx,y)=0if onlyif x=1y;
(2) dix, y)= d(y, x), X,y €X;
(3) d(x, 2= d(x, y)+ d(y, 2, VX, y,ze X
Theorem 1.2 ([3]) Let (X, d) be acomplete generalized metric space and J: X X be astrictly

contractive mapping with Lipschitz constant L< 1.Then, for al xe X, eitherd (J"x, J™*

X)= o0
for al nonnegative integers n or there exists a positive integer ny such that

(@) d (I "%, J™X)< o for al n=ng;

(b) The sequence J "x converges to afixed point y* of J;

(c) y* isthe unique fixed point of Jin the set Y= {ye X: d(J " x, y)< oo}:

(d) d (y, y*)= d(y, Jy) for dl yeY.

Katsaras [8] defined a fuzzy norm on a vector space to construct a fuzzy vector topological
structure on the space. Some mathematicians have defined fuzzy norms on a vector space
from various points of view in particular, Bag and Samanta [2], following Cheng and
Mordeson [5], investigated some properties of fuzzy normed spaces. We use the definition of

fuzzy normed spaces given in to investigate a fuzzy version of the generalized Hyers-Ulam

stability for the functional equation (1.1) in the fuzzy normed vector space setting.
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Definition 1.3 ([2]) Let X be areal vector space. A function N: Xx R — [0, 1] iscdled a
fuzzy normon X if for all x, ye Xand dl s, teR

(N1) N(x, t) = Ofor t< 0;

(N2) x= 0if and only if N(x, t) = 1 for al t> O;

(N3) N (cx, t) = N(x, |::—|) if c#0;

(N4) N(x+ vy, s+ t) = min {N(x, s), N(y, t)};

(N5) N(x, -) isanon— decreasing function of R and lim,_ . N(X, t) = 1;

(NG) for £ 0, N(x, *) is continuousonR .

The pair (X, N) is caled afuzzy normed vector space (briefly, FNS).

Definition 1.4 ([2]) Let (X, N) be a FNS. A sequence {x,} in X is said to converge or be
convergent if there exists an xeX such that lim,_ . N (x, — %, t) = 1 for al t > 0. In this case, x
is called the limit of the sequence {x,} in X and we denote it by N —lim_ « X, = X.

Definition 1.5 ([2]) Let (X, N) be a FNS. A sequence {x,} in X is called Cauchy if for each ¢ >
0 and each t>0 there exists an nge N such that for all n=ngand all p> 0, we have N (Xh+p— X,
t) > 1—e.

It iswell known that every convergent sequence in a FNS is Cauchy. If each Cauchy sequence
is convergent, then the fuzzy norm is said to be complete and the fuzzy normed vector space
is called afuzzy Banach space.

We say that a mapping f : X - Y between FNS X and Y is continuous at a point xe X if for
each sequence {X,} converging to XpeX, then the sequence {f(x,)} convergesto f(xp). If f: XY
is continuous at each xeX, then f: X - Y issaid to be continuous on X.

We will aso use the following notations:

g=0(,..,010,..,0);

Eij isthat (i, j)-component is 1 and the other components are zero;

Eij @ xisthat (i, j)-component is x and the other components are zero; for xe My(X), yeMy(X),

cov- (5 3)

Let (X, /- /) be anormed space. Note that (X, {/ - /i}) is amatrix normed space if and only if
(Mn(X), /1) is a normed space for each positive integer n and JAXB/k < /AJIB/IIX/, holds
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holds for A € Miin X = (Xij) € Mn(X) and B € My and that (X, {/ - /h}) isamatrix Banach space
if and only if X isaBanach space and (X, {/ - /h}) isamatrix normed space.
Let E, F be vector spaces. For a given mapping h: E -~ F and a given positive integer n,
define hy: My(E) —» My(F) by

hn ([ 1) =[h(x; )]
fordl [xj] €Mn(E).
Definition 1.6 ([9]) Let (X, N) be afuzzy normed space.
(1) (X, Np) is caled amatrix fuzzy normed space if for each positive integer n, (Mn(X), Ny) is
afuzzy normed space and N (AXB, t) = Nn(X, t JA/ - /B/) for al t > 0, A € My n(R), B € M «
(R) and x = [xij; € Mn(X) with JA/./B/ =0.
(2) (X, {Nn}) is called a matrix fuzzy Banach space if (X, N) is a fuzzy Banach space and (X,

{Np}) isamatrix fuzzy normed space.

2. HYERS-ULAM STABILITY OF SEXTIC FUNCTIONAL EQUATION IN MATRIX
FUZZY NORMED SPACES

Throughout this section, let (X, {Nn}) be a matrix fuzzy normed space, (Y, {N,}) be a matrix
fuzzy Banach space and let n be a fixed positive integer. Using thefixed point method, we
prove the Hyers-Ulam stability of the sextic functional equation (1.1) in matrix fuzzy normed
spaces. We need the following Lemma:

Lemma 2.1 ([10]) Let (X, {Nn}) be amatrix fuzzy normed space. Then

(1) Nn (BEw 9%, t) =N(x, t) foral t> 0and x € X;

(2) For dl [x;] €My(X) andt =Zn:tij :

i,j=1
N(Xy, 1) 2N ([x; ], )= min{N(x; ,t;):i,j=1,2,...,n},
N(x,, 1) = N ([x; I, ) = min{N(x; ,#): L,j=1,2,..,n},
() limp-aXn=xifandonly if im0 X i = xjjforxa=[x; 1,x=[xj] €M(X) for a

mapping f: X - Y, defineDf : X? = Yand Df, : Ma(X?) — Mn(Y) by [12]
Df(a, b) := f(ma + b) + f(ma—b) + f(a + mb) + f(a—mb) — (m* + m)[f(a + b) + f(a—b)]
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-2 (mP— m* = m?+ D)[f(a) + f(b)]
Dfa([xi 1, [¥ii 1) := fa(mDx T+ Tyi 1) + fu(mix; 1 = [yii 1) + a0 ] + mly; 1) + fa[xi ] —mly;])
= ()T, ) + [y 1) + 60T = Dy DI =200 = i =+ D] + 6y 1)
forall a,b eXand allx=[x;],y=1[Yij] €Mn(X).
Theorem 2.2 Let ¢ X* - [0, o0) be afunction such that there exists # < 1 with

0 (a,b) < %(p(ma, mb) 2.1)

foral a, b eX. Letf: X - Y beamapping satisfying
t
Na(Dfa([%; 1, [ij 1), ) 2 ; (2.2)
t+ ZJ (Xij 7yij)

i,j=1

foral x=[x;],y=[yij] EMa(X). ThenC (8) =N — lim,_ mf (%)existsforeachaex

Kk —o0
and defines a sextic mapping C: X - Y such that

N, (F, (0, D-C, ([, ]) D2 Y ani-a) 23
hE2mi@-a) +nfa > j (x;,0)

i,j=1

for all x=[x;] €Mqn(X).
Proof Let n= 11in(2.2). Then (2.2) isequivaent to

t
N(Of @) 02— (2.4)

foralt>0anda, b eX Lettingb=0in(2.4), we get
N (f (ma) — nff (a), L) >— L (2.5)

2’14} @0)
in (2.5), we get
N (f (a) — mPf (), 1) 2 1ta > at (2.6)
t+3 (2,0 t+-24 @0
2 'm 2m

forallt>0anda e X.

Consider theset S = {g: X - Y} and introduce the generalized metricon S

d(g, h)= inf{n € R.:N(g@) - h@), nt)2 — L vaeX, vt> 0}
t+j (@0)
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where, asusual, inf @ = +co. It is easy to show that (S, d) is complete ([8], Lemma 2.1). Now
we consider the linear mapping J: S — Ssuch that Jg (a) = m’g (%), forall a e X. Let g, he
Sbe given such that d (g, h) = €. Then

t

N(g (a) - h(a)’ &) Zm.

foral aeX, foralt>0. Then

N (g (@) - Jh (@), a @) =N (g (=)~ m'h (=), a a)
m m

at at
m® m® t

>
—at . at

a a, a
=N@(=)-h(=), —a= 2 =—
a a .
m m- m Ao 2i2i@o t+j (a0)
m m m> m

forall a eXandt> 0. So, d (g, h) = ¢ impliesthat d (Jg, Jh) < ae. This means that d (Jg, Jh)

a
2m®

<ad (g, h), for al g, h €S It follows from (2.6) that d (g, Jg) < By Theorem 1.2, there

existsamapping C: X - Y satisfying the following:

(1) Cisafixed point of J, i.e.
a 1
C(=)=—=C(@®
m” m
for al a € X. The mapping C isaunique fixed point of Jintheset M ={g €S d (f, g) < }.
(2) d(J¥,C) » 0ask — . Thisimplies the equality

N— limi._. wmﬁkf(%)z C(a),

fordla e X.
3 d(f,C) < —1a d(f, Jf), which implies the inequality
a
By (2.4),
ke, Ma+b 6ke, Ma—b 6ke, A+ MD 6ke, A—Mb 6k, 4 a+b
N (——— )+ P F(——— )+ m*F(—— )+ m*F(=—— ) —m* ™+ ) [f (=)
m m m m m
+f (""‘kb )] -2m™ (mf — i — P+ 1)[f(ik)+f(ik)] P t .
m m m t+] (rr?k’mk)
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N(mekf( matb )+ mskf( ma;b)+ mekf(a+rknb )+ kf(a mb 6k a+b
m m m
L
P (nf = =+ 2) [+ () e — I
7+Wj (ab)
t
fordla beXandt> 0. Sincelimy . » m" =1,forala,beXandt> 0.

k

et @b)
N(C(ma+ b)+C(ma— b)+C(a+ mb)+ C(a— mb) — (m*+ m?)[C(a+ b)+C(a— b)]
—2(mM-m-mP+1)[C@)+CDb)], t)=1
foral a,b eXandt> 0.Thus
C(ma+ b)+C(ma— b)+C(a+ mb)+ C(a— mb) — (m*+ mA)[C(a+ b)+C(a— b)]
-2 —m'—nm?+1)[C(a)+ C(b)] =

So, the mapping C: X - Yissextic. By Lemma(2.1) and (2.7),
No(fo([%i]) —Cn([xi]), )=min { N (F ([xj]) — C ([xq]), :—z): I j=12,..,n}

2m®(1-a)t
2m°(1-a)t +nZ%j (x;,0)

2m°(1- a)t
2me(1- a)t+naZJ (X;

i,j=1

=>min {

i,j=1,2,...,n} >

0)

Ij’

foral x=[xj] €Mn(X). ThusC: X- Yisaunique sextic mapping satisfying (2.3), as desired.
Corollary 2.3 Let r, # be positive real numbers with r< 6. Let f: X— Y be a mapping
satisfying

t

Nn(Dfa([xi], [il ), t) 2 - : : (2.8)
te 2l |+

foral t> 0andx=[x;],y=[yi] €Ma(X). Then C (@) = N — limy _ »m®f (%)existsfor
each a € X and defines a sextic mapping C: X - Y such that

2m°(1l-m' )t

N, (F, 0%, D=C, ([%, ) D2 Y
L 2me(L-m" )t +n’m'” GZqu”H

forall t> 0and x= [x;1,y = [yy] €M(X).
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Proof The proof follows from Theorem 2.2 by taking ¢ (a, b) =6 (fa/" + /o/") foral a,b €
X and a = m~°. We get the desired result.
Theorem 2.4 Let ¢: X? - [0, o) be afunction such that there exists a < 1 with

v (a,b) < mfag (2, 2 (29)

m m
foral a, b € X Letf: X — Y beamapping satisfying (2.2) for al x = [xj], y = [Yij] € Ma(X).
ThenC (@) =N —Ilimy _ wm_lekf (m* a) existsfor each a € X and defines a sextic mapping C:
X - Ysuch that
n 2mé(l-a)t
No (o 1) = CalDg 1), 9= S d-a) (2.10)
hiE2mi@-a)x +n® ) j (x;,0)

ij=1

foral x=[x;] €Mn(X).
Proof Let (S d) be the generalized metric space defined in the proof of Theorem 2.2. Now we
consider the linear mapping J: S - Ssuch that

Jg (@) = iﬁg(ma).
m

for all a €X. It follows from (2.5) that d (f, J) <=~ . SoD (f, C)< —
2m 2m°(1-a)

Therest of the proof is similar to the proof of Theorem 2.2.
Corollary 2.5 Let r, 6 be positive real numbers with r > 6. Let f: X — Y be a mapping

satisfying (2.8) for all t > 0 and x = [x], ¥ = [Vi] € Mn(X). Then C (&) = N-lim g .
1

m6k

f (m* &) exists for each a € X and defines a sextic mapping C: X — Y such that

N, (F, (0 D-C, ([x]) D)= y 2m (m’ -2t r (2.12)
i'j=12m6(mr_6—l)t+n2mr_6'2quxij

=1

forall t>0andx=[xj],y=[Yyj] €Mn(X).
Proof The proof follows from Theorem 2.4 by taking ¢ (a, b) =8 (/a/" + /") for al abe X
and a = m°™". We get the desired result.
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3. STABILITY OF FUNCTIONAL EQUATION (1.1) IN MATRIX RANDOM
NORMED SPACES: A FIXED POINT APPROACH

In the sequel, we adopt the usual terminology, notions and conventions of the theory of
random normed spaces as in [4]. Throughout this paper, let A* denote the set of all probability
distribution functions F: R U {oo, +c0o} - [0, 1] such that F is left-continuous and
non-decreasing onR , F (0) =0 and F (+c0) = 1. Itisclear that theset D" = {F €A": | “F (+0)
= 1}, where | "f(x) denotes the left limit of the function f at the point x, that is, I f(X) = lim_ f
(t). The space A" is partially ordered by the usual point-wise ordering of functions, i.e.,, F< G
if and only if F (t) < G (t) for al t €R. The maxima element for A™ in this order is the

distribution function €y given by

Definition 3.1 A function T: [0, 1]% - [0, 1] is a continuous triangular norm (briefly, a
continuous t-norm) if T satisfies the following conditions:

(@ T is commutative and associative;

(b) T is continuous;

(©T(al=afordlace[0,1];

(d) T (a, b) <T(c, d) whenevera <candb <dforal a, b,c,d [0, 1].

Definition 3.2 A random normed space (briefly, RN-space) is atriple (X, y, T), where X isa
vector space, T is a continuous t-norm and u: X — D" is a mapping such such that the
following conditions hold:

@ ux () =¢ (Hfordl x eXandt> 0if andonly if x=0;

(B) e () = 221 ( é—‘) jorall a € R with a #0,x eXandt>0;

(C) txiy (t+9) 2T (u, (1), ,(s)) foral x,y eXandt, s=0.

Every normed space (X, / - /) defines arandom normed space (X, y, T) where

t
t+ ]

Ux (1) =

foral t > 0, and T is the minimum t-norm defined by T(a, b) = min{a, b}. This spaceis called
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the induced random normed space.

Definition 3.3 Let (X, Y, T) be an RN-space.

(1) A sequence {x,} in X is said to be convergent to a point x € X for every ¢ > 0 and A > 0,
there exists apositive integer N such that lim,_.. (€) > 1 — A whenever n> N.

(2) A sequence {xn} in X is called a Cauchy sequence if, for every € > 0 and A > O, there exists

apositiveinteger N such that lim,_.. m__, ~ (€) > 1 — Awhenevern=2m= N.

(3) A RN-space (X, y, T) is said to be complete if and only if every Cauchy sequence in X is
convergent to apoint in X.

We note that if (X, g, T) is an RN-space and {x} is a sequence such that x, — x then lim,_«
m, (t) = px (t) aimost everywhere (see [30]).

We introduce the concept of matrix random normed space.
Definition 3.4 Let (X, y, T) be arandom normed space. Then
Q) (X, {u™}, T) is called a matrix random normed space if for each positive integer n, (Mn(X),

K
1™, T) isarandom normed space and nf\)s (t) = ”fn)(m )foralt>0, A €Min(R),

x = [%;] €Mn(X) and B € Myk(R) With JA/ - 1B/ 0.
) (X, {u™}, T) is caled a matrix random Banach space if (X, p, T) is a complete random

normed space and (X, {u ™}, T) is amatrix random normed space.

For amatrix normed space (X, {/ - /i}) let u® , (t):= foral t> 0and x=[x;] €

t+{1 X l,

Mn(X). Then

v () t S t

Yo U trllAB L, t+]A]lx], B8]

t
A8l

™y (—t

=y )
IAl-(B]

e [[X
E
foral t> 0, A € Mkn(R), X = [%;] €Mn(X) and B € Mnk(R) with JA/ - /B/=0.1f T (a, b) =

min {a, b}, then (X, {p ™}, T) is amatrix random normed space.
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Lemma 3.5 Let (X, {u ™}, T) be a matrix random normed space. Let y® = p. For all [x;] €
Mn(X), we have

M, ©= M5O 2mn{m ()ij=12 .n.
; .

Proof Since Eq®@ x = & xe and /& /= /a/=1, m’,, (t) =y (t) holds. Since e(Eu & x)a”

(n)
=xand ", (1) < pt) we get i, (1) = (D). For all [xj] €M) andt= D t;, m. ()

i,j=1

— n) t _ n)
=M, 02 e - Y (@) holds. Thus

n) _ ncf“)
ITEXU] (t)_ Zn: Ejj ®X;;

ij=1

=min{ m(” tp:i,j=1,2,...,n}

® = min{ nﬁ;gx” t):1,j=12, o}

(n)
wheret= > t; S0 M)y (> min{m, (L )ij=12 .0}

ij=1 ! on
Throughout this section, let X be a normed space and (Y, u™, T) a matrix random Banach
space.

Theorem 3.6 Let ¢: X* — [0, o) be afunction such that there exists o < 1 with
¢ (2 b) <j (ma, mb)

foradl a, b eX. Letf: X - Y be amapping satisfying
n) t
fn([xij]v[yij ]) (t) = n_. (31)
t+ ZJ (Xij’ yij)

i,j=1

for all x = [%;],y = [yj ] €Ma(X). Then C (a) = limc_.m™f (—=) exists for each a € X and
m
defines a sextic mapping C: X — Y such that

2mé(l-a)t
M, i Dca s ©)= 2m°(1-a)t +n’ax",  j (x

5 (3.2)

ij?

for all t> 0and x=[x;] €Mn(X).
Proof Let n=1. Then (3.1) isequivalent to
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t
M eyt (macbyarmbysi(amb)(m* +m @by (aby]-2(m0 - +Df@+(b)] t)= t+j (a,b) (33)
foralt>0anda, b € X
Lettingb=01in (3.3), we get
t t
6 —)z——— 34
m (ma)-m>f (a)(z) t+] (a,O) ( )
a .
Letaza in (3.4), we get
t t
rq() ef(a)(t)z 1 a > 3 (3.5
RS t+5j (—,0) t+ i (a,0
= (m ) o) (a,0)

foralt>0anda € X.

Consider theset S = {g: X - Y} and introduce the generalized metricon S

. t
d(g, h)=inf{n € R:: #o)-n@, N2 —— ,VaeX, vt> 0
(9, h)=inf{ H g(@-n@), N'1) (4 @0 }

where, as usual, inf @ = +co. It is easy to show that (S d) is complete (see the proof of [18],

Lemma2.l).

Now we consider the linear mapping J: S — Ssuch that Jg (a) = m°g (i), foral a e X Let
m

g, h € Sbe given such that d(g, h) = €. Then
m (et)> _t
@-h@ “t+j (a,0)

forala e X, foralt> 0. Then

a
aet)=m aet)=m — €t
My @)-n (@) (@€L) meg(%),meh(%)( ) g(%)—h(%)(m6 )
at at
m° > m° t
- at a

at .  a - . e
Lo 4lj@e tH1@0
m m m m

6

foralaeXandt> 0. So, d (g, h) = ¢ impliesthat d (Jg, Jh) < ae. This means that d (Jg, Jh)
a

2m®’

By Theorem 1.2, there existsamapping C: X - Y satisfying the following:

<ad (g, h), for all g, h €S It follows from (3.5) that d (f, Jf) <
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(1) Cisafixed point of J, i.e.
c(2)=—c 36)
for al a € X. Themapping Cisauniquefixed pointof Jinthesst M ={g € S d (f, g) <o}
(2) d(@J%, C) - 0ask — . Thisimplies the equality
lim.. m kf( -)=C(@)

foral a e X.

d((f,C)< I 1a d(f, Jf), which implies the inequality

a
D(f,O)g ———M. 3.7
(f, C) 2m°(-a) (3.7)
By (3.3),
m (m6kt)
mbky (math, 6kg AEmb, 6k (4, p,2)q20 ) 2m8K (mb_m4_m? +1){f( )+f (—)}
= ; b
t+] (o0
m“’'m
m (t)
mBK¢ (Laib)+m6kf (@pmm‘ (m4+m2)f(£:)72m6k (m6m4m2+1){f (ik)+f (Lk)}
m m m m m
t
> m"
- ak . ’
L+ 20 @b)
t
k
forala b eXandt> 0. Sincelim .. m =1,foralabeXandt> 0.

a .
+w] (ab)

n?: (matb)+C (axmb)—(m*+m?)C(atb)—2(m°®-m*-m?+1)[C (a)+C(b)] (t ) =1
C(ma+b)+C(atmb)—(m" +m’)Catb)-2m -m' —m’ +DIC(a) + )] = 0

So, the mapping C: X - Yissextic.
By Lemma (3.5) and (3.6),
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m(n) o (x5 D-Ca (x4 (t)>mln{m(x )-C (x; )( ) V] =L2,...,n}

zmin{ omé(1-a)t =12 } 2me(1— a)
2m°(l-a)t +n%aj (x;, ) 2me(1- a)t+naZJ (x,

i,j=1

IJ’

for al x = [x;] € My(X). Thus C: X — Y is a unique sextic mapping satisfying (3.2), as
desired.

Corollary 3.7 Let r, 6 be positive real numbers withr > 6. Let f: X — Y be a mapping
satisfying

m(men([X” 1) t)> - (3.8)

ij ij

foralt>0andx=[x;],y=[Yj] €Mu(X). ThenC (a) = Ilmkﬂwmskl‘( —) exists for each a

€ X and defines a sextic mapping C: X - Y such that

2m®(m" % -1t

m([ Dcay (t)—

6 r-6 2 —
2m°(m"™ =t + n“m ) i

forall t> 0and x=[xj] €Mn(X).
Proof The proof follows from Theorem 3.6 by taking ¢ (a, b) =0 (fa/" + /by ") forall a, b €

X. Then we can choose = m° ™" and we get the desired result.
Theorem 3.8 Let ¢: X* - [0, «) beafunction such that there exists a < 1 with
j @b)<miaj (=2 (39)
m m
foral a, b € X. Supposethat f: X — Yisan mapping satisfying (3.1) for al x =[x; ],y =[V;]
EMn(X). Then C (a) = Iimkqmm—lekf (m*a) exists for each a € X and defines a sextic mapping
C: X - Ysuch that

2m°(l-a)t

M ey 2
(xi heayi D = om(1- a)t+n221 (X

i,j=1
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foralt>0andx=[x;] €Mn(X).
Proof Let (S, d) be the generalized metric space defined in the proof of Theorem 3.6. Now we
consider the linear mapping J: S - Ssuch that

Jg (a) = mbg (),
m

foral a e X.
It follows from (3.4) that d (f, ) < —— . So
m
1
df,Q)c —~
(. 2m°(l-a)

Therest of the proof is similar to the proof of Theorem 3.6.

Corollary 3.9 Let r, 6 be positive real numbers with r < 6. Let f: X - Y be a mapping
satisfying (3.7) for al t > 0 and x = [X;] , Y = [Vij] €Mn(X). ThenC (a) = Iimkm%f (m*“a)
existsfor each a € X and defines a sextic mapping C: X - Y such that

2m°(l-m" )t

2m°(1-m"*)t +n’m"° Zn: q qu
ihj=1

mn (xi Doy D (t)=

r

for all t> 0and x= [x;] €Mn(X).
Proof The proof follows from Theorem 3.8 by taking ¢ (a, b) =0 (fa/" + /b/") forall a, b €

X. Then we can choose = m ~® and we get the desired result.
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