
ASPECT ORIENTED IMPLEMENTATION OF DESIGN PATTERNS USING

METADATA

G. Alipour*1, A. B. Sangar2, M. H. Mogaddam3

1Department of Computer Engineering, Hashtrood Branch, Islamic Azad University, Hashtrood,

Iran
2Department of Computer Engineering, Urmia Branch, Islamic Azad University, Urmia, Iran

3Department of Computer Engineering, Hashtrood Branch, Islamic Azad University, Hashtrood,

Iran

Published online: 18 June 2016

ABSTRACT

Computer programming paradigms aim to provide better separation of concerns. Aspect oriented

programming extends object oriented programming by managing crosscutting concerns using

aspects. Two of the most important critics of aspect oriented programming are the “tyranny of the

dominant signature” and lack of visibility of program's flow. Metadata, in form of Java

annotations, is a solution to both problems. Design patterns are assumed as the general solutions

for Object-Oriented matters. They assist in software complexity management and serve as a

bridge among software designers as well. These properties have led the patterns to be introduced

as a choice in order to prove new technologies. Successful implementations share a generic

solution: the usage of annotation to configure and mark the participants, while the pattern's code

is encapsulated in aspects. This loses the coupling between aspects and type signatures and

between the code base and a specific AOP framework. Also, it increases the developer's

awareness of the program's flow.

Author Correspondence, e-mail: gh.alipour@iaut.ac.ir

doi: http://dx.doi.org/10.4314/jfas.v8i2s.133

Journal of Fundamental and Applied Sciences

ISSN 1112-9867

Available online at http://www.jfas.info

Research Article

Journal of Fundamental and Applied Sciences is licensed under a Creative Commons Attribution-NonCommercial 4.0
International License. Libraries Resource Directory. We are listed under Research Associations category.



G. Alipour et al. J Fundam Appl Sci. 2016, 8(2S), 816-825 817

In the present article, aspect oriented programming and design patterns are introduced and also

taking the benefit of annotation equipment in java language is proposed as a solution to reduce

tight coupling and increase program flow observation rate for aspect oriented programming.

Keywords: aspect oriented programming, design patterns, object oriented programming,

metadata.

1. INTRODUCTION

Software system development raised as an engineering matter in 1968. Since then, numerous

works have been devoted to solve the problems it is going to face. The activities have mainly

been focused on the better separating of software systems as well as component its sections into

independent and straightforward units such as classes and objects so that there is the least

overlapping and interference amongst the units. This programming approach operates properly in

program logic analysis. However, it turned out in practical researches that it does not work to

take the benefit of object oriented software development in quantizing some concerns. These

concerns, which are called crosscutting concerns, include aspects of a program that overshadow

other concerns. These concerns are often unable to be clearly separated from other parts of

system either in design or application which leads to departure and complexity problems. In fact,

preparing some solutions for crosscutting concerns problems, aspect oriented programming

completes object oriented one and is not assumed as an alternative for it. Design pattern is a

reusable solution for the problems rising in the software design domain. First the patterns were

utilized as an architecture concept in C++ language and then the book GOF was published in

1997.Patterns provided connection among software designers through introducing novel

solutions. In this article we are about to have a review on aspect oriented programming. Then,

after assessing some well-known patterns, a solution is proposed to connect the patterns and

aspect oriented programming.

Aspect oriented programming

The emergence of the Aspect Oriented Programming (AOP) paradigm is driven by the need for

better ways of describing and encapsulating concerns in a software application. Object Oriented

Programming (OOP) provides a good way for this by using objects that encapsulate state and

actions; however this is limited to the problem domain of an application. The so-called

crosscutting concerns could not be fitted. Among the usual crosscutting concerns are logging,



G. Alipour et al. J Fundam Appl Sci. 2016, 8(2S), 816-825 818

authentication and transaction management. These aspects are not related with the problem

domain of the application but rather they "cut through" it. The current crosscutting concerns

management is to interleave them with the core logic code. Unfortunately this breaks the

modularization of the system. To solve this situation, research explored how crosscutting

concerns can be isolated from the business logic and be applied in a non-intrusive manner. AOP

was coined by G. Kiczales and his team at Xerox PARC in the early 1990's. Also, they developed

one of the first and most popular AOP languages, AspectJ, as an extension to Java. AOP gained

notoriety among software developers and architects, as systems have become more complex and

old paradigms have been unable to keep pace. AOP does not replace OOP but extends it by

providing further separation of concerns.

Concerns separation

Including a specific set of necessary behaviors of a plan, concern is a demand of a system which

is a priority for benefit takers[2]. And it can influence on different software units. Concern may

include responsibility or irresponsibility demands such as events documentary, efficiency, etc.

besides, concern can be raised in either high or low levels like security issue or hidden memory.

Parameter-based development is a widely used method to generate complex systems. In fact,

demands are devoted to parameters belong to the type of class, object and service. Although there

are some necessities that are not able to concentrate on a single parameter and might influence on

numerous parameters. This type of cut across necessities is called crosscutting concerns. In

computer sciences crosscutting concerns refer to the aspects of plan which overshadow other

concerns of plan [3]. These concerns are often hard to be clearly separated from other parts of the

system either in design or applying and lead to dispersion and complication.

Introduction of aspect oriented programming

A software system insists of sorts of concerns. Crosscutting concerns separation tries to decline

the existing dependencies among these concerns and separate them in order to gain the quantizing

goal in system. This act of separation is applicable by many planning languages such as object

oriented programming. However, the existing planning languages cannot separate crosscutting

concerns. In order to support crosscutting concerns separation aspect oriented programming was

introduced. So aspect oriented programming is a paradigm for separating concerns and quantizing

crosscutting concerns inside existing the so called aspects, well-defined concerns.



G. Alipour et al. J Fundam Appl Sci. 2016, 8(2S), 816-825 819

Providing some solutions for crosscutting concerns, aspect oriented programming completes

object oriented one. Connection point, cut point, suggestion code and aspect are concepts defined

by means of a new layer introduced by this method. It facilitates the ability to cohere crosscutting

concerns into aspects and prevents the corresponding code to get scattered. Aspect oriented

programming gathers all the data, methods and classes related to concern and provides the ability

to put the system into separate unites in the best way.

Aspect oriented programming was defined as a project in PARC in mid-1990. It roots in works

aimed at code quantizing and facilitating reuse and preservation [4]. In 1997 Mr. grigure kikzals

and colleagues in PARC company managed to define aspect concept and introduced it in

OOPSIA conference [5]. The group efforts not only led to introducing an aspect oriented

programming, but also an applying of a language called AspectJ with the purpose of introducing

an aspect oriented programming methodology available for a large number of developers. Olauph

spinch [6] introduced AspectC++ 3aspect oriented programming language that was based on C++

language. Adding an annexed8 on the C++ 3 language he created Aspect C++ planning language.

The concept of aspect

Aspect is a planning unit designed to perform an application which shortcuts practical plan. It is

originally a unit preventing dispersion of crosscutting operation code and is often explained as a

crosscutting structure. Practical plans which are made of classes and aspects by using aspect

oriented programming language. Through the presence of classes and aspects in the plan it is

illustrated that quantizing of a plan occur in to aspects: (1) basic operations performed by means

of classes. (2) Crosscutting concerns operation performed by means of aspects. Therefore, in a

practical plan, since aspect performs a crosscutting concern it differs from class.



G. Alipour et al. J Fundam Appl Sci. 2016, 8(2S), 816-825 820

Fig.1. The structure of aspect oriented programming

In aspect oriented programming language aspects are codding separately, and then are weaved by

other system members’ codes so that the intended system is made (see fig.1). Structurally, an

aspect is composed of two parts: advice code and cutpoint. The advice includes a code piece

related to a concern that must be applied. A joint point is a position in the plan where an aspect

can be added. A set of joint points in the plan is called cut point. In fact, the cut point determines

the points where the advice point must be applied.

There are two significant points about aspect; first, an aspect does not directly apply a

crosscutting operation, but instead uses an exclusive API. Second, like object, aspect is an

abstract concept that is capable of being used in various planning languages.

Design Patterns

There is a common misconception about design patterns, spread among people newly introduced

to them, namely that they are fundamental building blocks of software systems. Design patterns

are the embodiment of OOP design principles applied to recurrent software design problems. A

system is not a sum of patterns but rather patterns provide help in solving problems in system’s

design. There is a big mistake in trying to take into consideration all changes the system has to

accommodate. To allow the evolution of the system, one has to create such a design that would

facilitate changes. This is accomplished by encapsulating the variance and separating it from the

aspects that do not vary. Variance will only cause limited damage when it happens.



G. Alipour et al. J Fundam Appl Sci. 2016, 8(2S), 816-825 821

Singleton pattern

The Singleton class is an implementation of the Singleton pattern. Usually, a Singleton has only

one instance, but it is not mandatory. It contains a static member of type Singleton Class, named

unique Instance, referencing the single instance. The global access point is the static method

Instance. The method checks whether an instance has been created, creates one if not, and returns

a reference to the instance.

Fig.2. Singleton pattern

Observer pattern

Observer describes a one to many publish/subscribe relationship between objects, one object

notifying the others when its state changes. Observer is the interface implemented by all the

objects that subscribe for notifications. It contains an update method, called by the publisher

when it changes its state. Subject is the interface implemented by the publishers. It contains

methods for attaching and detaching subscribers.

When notifying its observers, Concrete Subject, a Subject implementation, sends itself as a

parameter to the update method. Hence Concrete Observer, an Observer implementation, uses the

Subject parameter of its update method to synchronize its state with the new state of the Subject.



G. Alipour et al. J Fundam Appl Sci. 2016, 8(2S), 816-825 822

Fig.3. Observer pattern

State pattern

State shows how an object can change its behavior when its state changes. Context is the object

changing its behavior. This is achieved by encapsulating the behavior in several objects, each

defining a state of the Context and only one being active at a time. The Context delegates to the

current state object all the received requests. The State interface exposes a set of operations

common to all states and is implemented by concrete state objects.

Fig.4. State pattern

Proxy pattern

The Proxy pattern shows how an object can be hidden behind a placeholder or surrogate that

exhibits the same interface as the original object. The proxy pattern is used to accomplish

different goals, though it has more or less the same structure. As the Iterator, this pattern becomes

ubiquitous in almost all modern development platforms, in the form of a dynamic proxy. Proxy



G. Alipour et al. J Fundam Appl Sci. 2016, 8(2S), 816-825 823

pattern implementations are heavily used in the development of run time weaving AOP

frameworks. All the objects to be advised are hidden behind proxies, in which the advices’ code

resides. Dynamic proxies are general solutions for creating proxies for any class type. This

flexibility comes with the price of complexity, decreased speed and verbosity; hence developers

need sometimes to write their own proxy pattern implementations.

Fig.5. proxy pattern

Aspect oriented programming, metadata, and design patterns

There are two issues to be remarked in AOP’s criticism: lack of visibility of program flow and

difficult debugging; and tight coupling of aspects to the names of language constructs composing

the point cuts, known as "tyranny of the dominant signature"[7]. A common solution, as shown in

[7], to both issues is to use the metadata facility of the Java platform introduced in version 1.5,

namely annotations, to mark language constructs to be advised. Annotations are a way to

decorate Java language constructs with the purpose of providing information in a declarative

manner. AspectJ, starting with version 1.5, offers the possibility of using annotations in the point

cuts. This approach increases the visibility of the program flow and frees the developer from the

burden of the "tyranny of dominant signature". A library of aspects can come with its own set of

annotations to be applied on the language constructs to be advised.

The Java language, starting with version 1.5, accepts annotations on several language constructs,

like classes, methods, method arguments, class attributes and variables. The limitation is that

annotations on local variables are not accessible in the source, class file or runtime. Hence,

AspectJ cannot intercept annotated local variables.



G. Alipour et al. J Fundam Appl Sci. 2016, 8(2S), 816-825 824

2. CONCLUSION

AOP is a programming paradigm which comes as an extension to OOP to allow the

encapsulation of crosscutting concerns. As OOP brought the concepts of class, method and

attribute, AOP comes with its own set of concepts: pointcut, advice, introduction, aspect. Due to

the fact that AOP comes not as a programming language, but as frameworks, in order to apply

aspects a compiler-like entity is needed. This entity bears the name aspect weaver and the process

is called weaving. The weaver is just one component of an AOP framework. The other one is the

specific language used to express AOP specific constructs. Hence, in order to classify AOP

frameworks, those two components have to be analyzed. Depending on when the weaving occurs,

there are compile time, load time and run time frameworks. As for the specific language, there is

a plethora of solutions, ranging from XML files to language extensions. AspectJ is the most

successful AOP framework to date. It offers the possibility of compile time or load time weaving.

Its specific language is an extension to the Java programming language.

Design patterns are generic solutions to recurrent problems in object oriented design. The "Gof"

patterns have the status of classics due to their generality and iniquitousness. One of the most

important achievements of these patterns is the creation of a common vocabulary between

software engineers. These facts concur to make the "Gof" patterns a choice for proving new

technologies. AOP aims to extend OOP making this choice even more evident. AspectJ was

chosen to provide the aspect oriented implementation of the 5 "Gof" patterns.

The goal of this article is to use design patterns, AspectJ and metadata, in form of Java

annotations, as proof for a solution to overcome two of the most important critics of AOP,

namely the "tyranny of the dominant signature" and flow hiding. The tyranny of the dominant

signature is the tight coupling of method or type signature to the weaving of aspects. Flow hiding

is the lack of information for the developer on where and how aspects are woven. Annotations are

used to mark join points to be advised by aspects incorporating the pattern's logic. The results

yield the following conclusion: in order to have a beneficial AOP implementation, pattern related

code should crosscut the code performing the logic of the participants in the pattern. A significant

number of the "Gof" pattern are either generic solutions (Facade, Interpreter) or pure object

oriented solutions. The following four patterns offer the most beneficial implementations using

AspectJ and annotations: Singleton, Observer, State and Proxy. There is a recurring theme in the

design of these patterns: annotations are used to mark and configure the participants, while the



G. Alipour et al. J Fundam Appl Sci. 2016, 8(2S), 816-825 825

aspects hold the patterns' logic. By using annotations, the types involved in the pattern are loose

coupled with the aspects. Also, plugging/unplugging the pattern resumes to marking/not marking

types with annotations. All pattern related code is separated from the participants and has a

higher degree of generality. Another important achievement is the lack of coupling to a specific

AOP framework.

3. REFERENCES

[1] S. Vijay, and A. Shetty, "A Study on Different Approaches Towards Aspect-oriented

Requirements Engineering," Indian Journal of Computer Science and Engineering, 2011,

2(4), 407- 419.

[2] Sampaio, N. Loughran, A. Rashid, and P. Rayson, "Mining Aspects in Requirements," Proc,

IEEE Int'l Workshop on Aspect-oriented Requirements Engineering and Architecture Design,

2005, 62-66.

[3] Schauerhuber, W. Schwinger, E. Kapsammer, W. Retschitzegger, M. Wimmer, and G.

Kappel, A Survey on Aspect-oriented Modeling Approaches, Technical Report, Vienna

University of Technology, Wien, Austria, 2007.

[4] Lionel Seinturier Renaud Pawlak, "Foundations of AOP for J2EE Development," Springer-

Verlag New York, no. ISBN: 1-59059-507-6, 2005.

[5] Olaf Spinczyk, Daniel Lohmann, and Matthias Urban, "Advances in AOP with AspectC++,"

in Software Methodologies Tools and Techniques (SoMeT '05), Tokyo, Japan, 2005, 33-53.

[6] J.L., Sanchez, F., Toro,M Herrero, "Fault tolerance as an aspect using JReplica," in

Proceedings of the Eighth IEEE Workshop on Future trends of Distributed Computing

Systems, Los Alamitos, 2001, pp. 201–207.

[7] Hannemann J., Kiczales G, "Design Pattern Implementation in Java and AspectJ, "

Proceedings of the 17th Annual ACM conference on Object-Oriented Programming, Systems,

Languages, and Applications (OOPSLA), pages 161-173, 2002.

[8] Laddad R.: “AOP and metadata: A perfect match”, pt 2,

(http://www.ibm.com/developerworks/java/library/j-aopwork4/index.html).

How to cite this article:
Alipour G, Sangar AB, Mogaddam MH. Aspect oriented implementation of design patterns using
metadata. J. Fundam. Appl. Sci., 2016, 8(2S), 816-825.


