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ABSTRACT

Well productivity is an important issue in the development of most low and medium-

permeability gas-condensate reservoirs. However, accurate forecasts of productivity can be

difficult because of the need to understand and account for the complex processes that occur in

the near-well region. When the well pressure falls below the dew-point, a region of high liquid

saturation builds up around the well, impairing the flow of gas and reducing the well

productivity. It is essential to take account of this condensate-blockage effect when calculating

well productivity. Most of the pressure drop in a gas condensate well occurs close to the well

walls. Because of the increase in pressure drop and the increase in flow rate, two additional

phenomena get involved in gas flow control: The effect of positive coupling (due to increased

capillary number) and the effect of inertia (due to non-Darcy flow). In many gas-condensate

wells, the final result of these two parameters is improving well productivity, reducing the

impairment caused by condensate blockage. Another phenomenon that can take place in high

temperature gas reservoir is water vaporization.
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Pressure drop near well wall causes molar content of water in gas-phase to increase, therefore

connate water starts to vaporize near the well walls. This change in connate water saturation

near the well wall can influence well productivity by changing saturation of fluids near well

walls. The effect of water vaporization on well productivity of gas and gas - condensate

reservoirs are investigated by considering a single well one dimensional radial model

simulation. The simulations show that water vaporization increases productivity of well by

increasing gas saturation and relative permeability near the well walls and improving the

mobility of gas; and this effect is stronger in rich gas condensate reservoir than the lean ones.

Keywords: Well, Gas, Pressure Drop, Vapor pressure of water

1. INTRODUCTION

The importance of gas condensate reservoirs has increased since the late 30s, when

explorations and deep excavations started to increase. Development and optimal production of

these reservoirs needs engineering and operational methods, which makes them different from

gas and oil reservoirs. By comparing the reservoirs of dry gas and gas condensate, important

parameters which can affect the performance of gas condensate reservoirs can be found.

Precise engineering calculations for gas-condensate systems (e.g. wells testing, assessment of

exploitable gas, wellhead equipment, etc.) depend on a deep understanding of the phase

behavior of the system and the relationship between gas and condensates.

Reduction of the productivity of well is crucial in the development of gas condensate fields,

when the pressure drops below the dew point pressure. When the pressure is below the dew

point, condensates go out of gas phase and create saturation of condensate near the walls. This,

in turn, decreases the rate of productivity of these reservoirs.

This phenomenon happens even in very lean condensate reservoirs. Numerous examples of

well productivity reduction can be found in the literature of gas condensate reservoirs.

Predicting the performance of condensate gas reservoirs requires modeling of two-phase

relative permeability near the well walls, which itself depends on a change in capillary

number). Improvement in the mobility of fluid due to high capillary number is the most

important seen in the area around the mouth of the well in condensate gas reservoirs. However,
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non-Darcy flows which are mainly created by high velocity in reservoirs tend to decrease

fluid mobility. Another important phenomenon which occurs in high- temperature gas

condensate reservoirs is water vaporization near well walls. The occurrence of this

phenomenon adds to the complexity of simulation in gas condensate reservoirs. This

phenomenon which occurs I high temperatures improves productivity too.

this phenomenon also affects the behavior of other fluids near well mouth, although this

phenomenon has not been modeled in many simulations done.

Gas condensate reservoirs, flow behavior, and reservoir performance. Flow behavior of gas

condensate reservoirs: According to the definition, gas condensate reservoirs are carbohydrate

reservoirs the temperature of which is more than the critical temperature and less than the

maximum biphasic temperature of the system. Reverse condensation is the most common

feature of these reservoirs which occurs in fixed-temperature paths in the reservoirs.

2. Gas Reservoirs Are Classified as Follows

Dry gas reservoirs the temperature of which exceeds the maximum biphasic temperature and

surface temperature is out of biphasic range. Wet gas reservoirs the temperature of which

exceeds the maximum biphasic temperature but surface temperature is in biphasic range. Gas

condensate reservoirs the temperature of which lies between critical temperature and

maximum biphasic temperature. Phenomena occurring close to the wall of a well in

condensate gas reservoirs. The region close to well wall has the biggest effects on the

productivity of Gas condensate reservoirs. Analysis has shown that the productivity of the

wells highly depends on the distribution of saturated condensates in the region close to the

wall of the well. Productivity of gas condensate wells is greatly affected by the balance

between physical phenomena that occur due to pressure changes during the life of the

reservoir. The formation of a bank of fluids and the effect of non-Darcy flow are among the

physical phenomena reducing the productivity of the wells while, increasing capillary number

leads to the increase of relative permeability and finally the increase of productivity. Another

parameter increasing the productivity of gas condensate reservoirs is water evaporation close

to well walls, which occurs in high-temperature gas condensate reservoirs. It is the balance

between these parameters which determines the productivity of gas condensate reservoir.
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2.1. The Effect of Fluid Velocity and Surface Tension Forces

The region close to the walls can be distinguished by the high pressure gradient and high

velocity of fluids, compared to other regions. However, the velocity in the bulk of reservoir is

much less than that of the regions near the mouth of the well. In conditions when the

temperature and pressure exceed those of the initial fluid reservoir, the reservoir shows

behavior close to critical and characteristics of gas and liquid phases will be very close to

each other. This means surface tension forces between these two phases are little. In such

conditions, it is not only saturation which affects relative permeability of phases, as the

features of other fluids highly affect the relative permeability of the two phases, too.

2.2. Simulating the Effects of Water Vaporization near Well Walls on the Performance of

Dry Gas Wells

In the first section, the parameters affecting the phenomenon of water vaporization in dry gas

wells will be investigated through a single well radial model simulation. In the next part, the

effect of this phenomenon on the performance of productive wells in dry gas reservoirs will

be investigated through a single well radial model simulation in quasi-steady state. The results

of the simulations will be presented in each part, separately. The simulations were done using

GEM, combined emulation software.

3. Parameters affecting water vaporization

Making the model required for simulation

A 1 × 1 × 62 grid dry gas reservoir containing methane and connate water in radial

coordinates was selected and smaller grids near the productive well were selected in a way to

be able to show the roles of the phenomena near well wall more clearly. The smallest grid is

0.25 feet long and the biggest grid, which is also the outermost, is 600 feet long. On average,

each grid has porosity of 10%, 30 mg Darcy permeability and water saturation of 20%.

Relative permeability has been built based on Corey model and Peng- Robinson equation has

been considered as the equation of state. Some points should be considered in simulation:

firstly, in equation of state, water should be entered as a parameter; secondly, because the

reservoir fluid mainly is composed of a single component, regression of the equation of state

is not required. The initial pressure of the dry gas reservoir is considered to be 5000 Psi and
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the Debi of the reservoir is 10 MMSCF.

3.1. The effect of pressure on the amount of water vaporization

Pressure distribution is shown in a reservoir with 350 Fahrenheit-degree temperature and

semi-logarithmic Cartesian coordinates. The figure below shows when the pressure drops due

to production, along with the wave of pressure drop, a wave of water vaporization also starts

and moves toward the bulk of reservoir. The mole fraction of water in gas phase grows

exponentially with pressure drop, resulting in the reduction of water saturation and of course,

dryness of the region near well walls.

3.2. The effect of temperature on the amount water vaporization

Two different temperatures were selected to investigate the effect of temperature on water

vaporization near well walls. These two temperatures were 250 and 350 F, respectively. When

the temperature is 250 Fahrenheit degrees, a distance of 7.5 feet to well mouth is dry, while in

350 Fahrenheit degrees, this distance increases to 17.5 feet.

3.3. The effect of permeability on water vaporization

Permeability can be considered a crucial factor in distribution of pressure in reservoir. In order

to investigate the effect of absolute permeability on water vaporization near well walls, two

permeability of 10 and 30 mille Darcy were used in simulation. By controlling the other

parameters of reservoir, it was shown that reducing permeability from 30 to 10 increases layer

dryness from 17 to 32 feet.

3.4. The effect of porosity on water vaporization

The effect of porosity values of 10 and 20% on the amount of water vaporization near well

walls was studied for 500 days after production. When the porosity reduces the amount of

empty space also reduces, resulting in more pressure decrease and more water vaporization.

With other variables being controlled, porosity change from 20% to 10% increases 11 feet

dryness of well mouth to 20 feet.

3.5. The effect of connate water vaporization near well walls on the productivity of

high-temperature gas reservoirs

To evaluate the effect of water vaporization near well walls in high-temperature dry gas

reservoirs, a radial, 1 × 1 × 62 grid reservoir containing methane was chosen. Methane gas is
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in equilibrium with the water in the reservoir in the initial conditions and the grids near well

mouth are chosen small in order to depict this phenomenon more clearly. The smallest grid is

0.25 feet long and the biggest grid is 1000 feet long. Each grid has average porosity of 10%,

30 mg Darcy permeability, and 20% connate water. Relative permeability has been built based

on Corey model and Peng- Robinson equation has been considered as the equation of state.

Some points should be considered in simulation: firstly, in equation of state, water should be

entered as a parameter; secondly, because the reservoir fluid mainly is composed of a single

component, regression of the equation of state is not required. The initial pressure of the dry

gas reservoir is considered to be  5000 Psi and the temperature is 350° F. there were two

conditions in simulation of this reservoir: 1-maximum Debi of production was 30 million

standard cubic feet and 2- minimum pressure Draw Down is 1000Psi. The simulation

completed in 3,500 days and the effect of connate water vaporization on pressure Draw Down,

flow Debi, cumulative production and productivity index was investigated.

Table.1 simulation parameters of well productivity

AmountParameter

7000 ftExternal radius

0.5 ftThe radius of the mouth of the well

30ftThickness

30 md

Permeability

10%Porosity

20%Saturation of connate water 350℉Temperature

30 MMSCFVolumetric flow rate

62 1 1Simulation grids

CoreyRelative permeability

5000 psiInitial pressure

The effect of connate water vaporization on pressure draws down. When there is Non-Darcy
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flow in the reservoir, the following relationship by Dake exists between Debi and pressure.

Different scenarios have been used to investigate the phenomenon of connate water

vaporization near well walls in high-temperature dry gas reservoirs. The first scenario was

called Base case in which non-Darcy flow was not considered in simulations. The second

scenario takes account of non-Darcy flow in simulations. To this end, *NONDARCY1code is

used in data file. This code makes it possible to use Geerstma relationship to calculate

non-Darcy flow ratio to be used in simulation calculations. In the third scenario, both the

non-Darcy flow and the phenomenon of water vaporization are considered. The phenomenon

of water vaporization near well walls can be simulated in data file through

*H2O_INCLUDED or *OGW_FLASH *ON codes. These cods make it possible to involve

water saturation changes in the calculations to see the effects of it on simulation.

When water vaporization occurs near well walls, saturation of connate water will decrease

and consequently non-Darcy flow rate (inertia ratio) will decrease, which prevents further

reduction of pressure. Therefore, when the phenomenon of water vaporization is considered in

simulation, pressure draw down will decrease as a result of reduction in pressure drop.

3.6. The Effect of Connate Water Vaporization on Debi of Production and Cumulative

Production

In data file, pressure draw down of 1000 Psi was determined and simulator continues

production with a fixed Debi until pressure draw down reaches 1000 Psi. Then, Debi is

reduced as much as necessary so that pressure draw down is kept at the determined level

(1000 Psi). If non-Darcy flow is activated in the simulation, pressure draw down reaches its

minimum defined value (1000 Psi) sooner as a result of the extra pressure drop. In conditions

when water vaporization is activated, since beta decreases, pressure drop near well walls

decreases too and it takes longer for pressure draw down to reach the defined value.

3.7. The effect of connate water vaporization on productivity index (PI) of gas wells

The relationship below can be used to calculate PI of gas wells:

PI=Q/((P ̅^2-P_wf^2))

In gas wells, PI has reverse relationship with pressure draw down and average pressure

difference of well (P ̅^2-P_wf^2)
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The greater the pressure difference, the smaller the fraction and the smaller productivity index.

Any factor which prevents the reduction of pressure draw down, increases productivity index.

When there is non-Darcy flow in reservoir, the pressure difference is bigger than when

non-Darcy flow is not considered. This is because the existence of inertia ratio is a factor

contributing to the drop of pressure draw down and it increases the gap between average

pressure and pressure draw down by decreasing pressure draw down. This factor enlarges

denominator of the fraction and results in the decrease of productivity. As it was mentioned

before, the phenomenon of water vaporization near well walls results in the formation of a

new profile of connate water saturation. When connate water decreases, non-Darcy flow rate

(inertia ratio) decreases too and reduced extra pressure drop. Therefore, as it is seen in

previous figures, pressure draw down in such conditions is more than the time when only

non-Darcy flow is considered. The more the pressure draw down, the less the gap between

average pressure and pressure draw down, the smaller the denominator, and the higher the

productivity. It can clearly be shown that the phenomenon of water vaporization can increase

productivity index by reducing the negative effect of non-Darcy flow.

4. CONCLUSION AND SUGGESTIONS

The present research study aimed at investigating the effect of the phenomena near well walls,

especially connate water vaporization, firstly on high-temperature gas reservoirs, then on lean

gas condensate reservoirs and finally on rich gas condensate reservoirs. The findings are as

follow:

4.1. Findings

The phenomenon of water vaporization in gas reservoirs and gas condensate reservoirs occurs

at high temperature and depends on pressure and temperature. Temperature rise and pressure

drop accelerate this phenomenon.

Porosity decrease and permeability reduction lead to more pressure drop, resulting in more

water vaporization.

Reduction of connate water saturation reduces the inertia ratio, which itself leads to the

increase in pressure drop and the increase in the rate of productivity.
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The phenomenon of water vaporization in condensate gas reservoirs occurring near the mouth

of wells increases gas phase relative permeability,  increases gas phase saturation and

improves productivity of well.

This study showed that the phenomenon of water vaporization should be considered in

simulation of gas condensate reservoirs and it is only GEM software from CMG package

which is able to simulate this phenomenon.

4.2. Suggestions

More complex reservoir models and a higher number of wells can be used in further research

studies.

For better investigation, a larger number of samples of rich and lean fluids can be

investigated.

With access to true information about production, more reliable and accurate results can be

achieved.

Fig.2. Pressure distribution in semi-logarithmic coordinates

Fig.3. Water saturation distribution in 350 Fahrenheit degrees, 100, 500 and 1000days after

production

Fig.1.The distribution of pressure of reservoir with Cartesian coordinates
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Fig.4.The profile of connate water saturation 200, 500 and 1000days after the start of

production

Fig.5.The changes in the saturation of connate water at varying times

Fig.6.The comparison of pressure drawdown in 3 different scenarios: without considering

non-Darcy flow and connate water vaporization, considering non-Darcy flow, and considering

both non-Darcy flow and connate water vaporization

Fig.7.The comparison of cumulative production in in 3 different scenarios: without

considering non-Darcy flow and connate water vaporization, considering non-Darcy flow,

and considering both non-Darcy flow and connate water vaporization
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Fig.8.The comparison of productivity in 3 different scenarios: without considering

non-Darcy flow and connate water vaporization, considering non-Darcy flow, and

considering both non-Darcy flow and connate water vaporization
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